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Abstract

For many companies, business processes have become the focal point of atten-
tion. As a result, many tools have been developed for business process engineer-
ing and the actual deployment of business processes. Typical examples of these
toolsare BPR (Business Process Reengineering) tools, ERP (Enterprise Resource
Planning) systems, and WFM (Wbrkflow Management) systems. Some of the lead-
ing products, eg. SAP R/3 (ERP/WFM) and ARIS (BPR), use Event-driven Pro-
cess Chains (EPCs) to model business processes. Although event-driven process
chains have become a widespread process modeling technique, they suffer froma
serious drawback: neither the syntax nor the semantics of an event-driven process
chain are well defined. In this paper, this problem is tackled by mapping event-
driven process chains (without connectors of type V) onto Petri nets. Petri nets
have formal semantics and provide an abundance of analysis techniques. Asare-
sult, the approach presented in this paper gives formal semantics to event-driven
process chains. Moreover, many analysis techniques become available for event-
driven process chains. To illustrate the approach, it is shown that the correctness
of an event-driven process chain can be checked in polynomial time by using Petri-
net-based analysis techniques.

Keywords: Event-driven process chains, Petri nets, workflow management, veri-
fication.

1 Introduction

As aresponse to increased competitive pressure in the global marketplace, enter-
prises are looking to improve the way they are running their businesses. The term
business process engineering ([27]) subsumes the set of principles, activities, and



tools to support improvements of business processes. At the moment many soft-
waretools are available to support and enabl e business process engineering efforts.
Typical examples of these tools are:

¢ BPR (Business Process Reengineering) tools
A BPRtool can be used to model and analyze business processes. Thevisual
representation of processes and the ability to evaluate alternatives support
the (re)engineering of business processes.

e ERP (Enterprise Resource Planning) systems
ERP systems such as SAP R/3, BAAN, PeopleSoft, and Oracle automate
manufacturing processes, organize accountants' books, and streamline cor-
porate departments like human resources. An explicit representation of the
business processesis used as a starting point for configuring these systems.

e WFM (Workflow Management) systems
A WFM system isageneric softwaretool which alowsfor the definition, ex-
ecution, registration and control of workflows (cf. [13, 18]). In essence, the
workflow management system is a generic building block to support busi-
NEesS processes.

BPR tools support the ‘re-thinking’ of business processes, ERP and WFM sys-
tems are the software applications that make these reengineered processes possi-
ble. Each of these tools requires an explicit representation of the business pro-
cesses at hand. Most of the business process modeling techniques that are used,
are vendor specific, i.e., they are supported by just one tool. Only afew tools use
ageneric technique such as Petri nets, SADT, IDEF, or EPC.

Inthispaper, wefocus on the process modeling techni que used by some of thelead-
ing tools in the field of business process engineering. Process models made with
this technique are called Event-driven Process Chains (EPCs), cf. [14]. Event-
driven process chains are used in tools such as SAP R/3 (SAP AG), ARIS (IDS
Prof. Scheer GmbH), LiveModel/Analyst (Intellicorpinc.), and Visio (Visio Corp.).
SAPR/3([12, 7]) istheleading ERP-system and isused in morethat 7500 compa-
niesin 85 countries. ARIS ([26]) |eads the BPR tool market (7000 licenses). Live-
Model/Analyst and Visio are also examples of BPR tools based on event-driven
process chains.

Event-driven process chains have become a widespread process modeling tech-
nigue, because of the success of products such as SAP R/3 and ARIS. Unfortu-
nately, neither the syntax nor the semantics of an event-driven process chain are
well defined. Asaresult, an event-driven process chain may be ambiguous. More-
over, itisnot possible to check the model for consistency and completeness. These
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problems are serious because event-driven process chains are used as the specifi-
cation of business processes and need to be processed by ERP and WFM systems.
The absence of formal semantics also hinders the exchange of models between
tools of different vendors and prevents the use of powerful analytical techniques.

In this paper, these problems are tackled by an approach based on Petri nets (cf.
[20]). The Petri net formalism is a popular and powerful process modeling tech-
nigue for the representation of processes which exhibit concurrency, parallelism,
synchronization, non-determinism, and mutual exclusion. The building blocksused
in an event-driven process chain (events, functionsand connectors) arecloseto the
building blocks used in a Petri net (places and transitions). In fact, event-driven
process chains correspond to a subclass of Petri nets. We will show that it is pos-
sible to map an event-driven process chain onto a Petri net. This way we can use
the Petri net formalism to give formal semantics to event-driven process chains.
Moreover, we can use advanced Petri-net-based techniquesto analyze event-driven
process chains. To show the potential of this approach, we present a technique
to verify the correctness of an event-driven process chain. For this purpose, we
use the so-called soundness property introduced in [2]. An event-driven process
chainis sound if, for any case, the process terminates properly, i.e., terminationis
guaranteed, thereare no dangling references, and deadlock and livel ock are absent.
We will show that for event-driven process chains the soundness property can be
checked in polynomial time. Throughout this paper, we consider event-driven pro-
cess chains without connectorsof type V (i.e. OR connectors). The semantics of a
join connector of type V isnot clear and subject to multipleinterpretations. There-
fore, we discuss the problems associated to such a connector and review possible
solutions.

This paper builds on the results presented in [2, 4]. The application of Petri nets
to workflow modeling is aso described in [3, 6, 10, 11, 19]. In Germany, several
research groups have been working on the formalization of event-driven process
chains [8, 16, 17, 21, 24, 25]. Researchers of both the University of Hamburg
[16, 17] and the University of Saarland [8] have investigated the relation between
event-driven process chains and Petri nets. There are several differences between
these approaches and the approach described in this paper. First of al, in this pa-
per the translation to Petri netsis formalized. Secondly, our approach is based on
the classical Petri net instead of a high-level variant. Finally, we provide tools and
techniques to check the soundness property in polynomial time.



2 Event-driven processchains

Event-driven process chains are an intuitive graphical business process description
language introduced by Keller, Nuttgens and Scheer in 1992 ([14]). The language
istargeted to describe processes on the level of their business logic, not necessarily
on the formal specification level, and to be easy to understand and use by business
people. The methodology inherited the name from the diagram type shown in Fig-
ure 1. Such adiagram shows the control flow structure of the process as a chain of
events and functions, i.e., an event-driven process chain.

An event-driven process chain consists of the following elements:

e Functions
The basic building blocks are functions. A function correspondsto an activ-
ity (task, process step) which needs to be executed.

e Events
Eventsdescribethe situation beforeand/or after afunctionisexecuted. Func-
tionsare linked by events. An event may correspond to the postcondition of
one function and act as a precondition of another function.

e Logical connectors
Connectors can be used to connect activities and events. This way the flow
of control is specified. There are three types of connectors. A (and), XOR
(exclusiveor) and Vv (or).

These building blocks are shown in Figure 2.

The process modeled in Figure 1 models the processing of a customer order. The
process startswith the event customer order received. First the customer order data
is checked and as aresult of this function the order is either rejected or accepted.
The XOR connector models the fact that after the execution of the function com-
pare customer order data one of the two events (customer order accepted or cus-
tomer order rejected) holds. If theorder isregjected, the process stops. For each ac-
cepted order, the availability is checked. If the articles are not available, then two
functions are executed in parallel: purchase material and make production plan.
After executing both functions, the articles are produced. If either the event arti-
clesavailable or the event finished product holds, then the function ship order can
be executed. After the order has been shipped, the bill is sent. After sending the
bill, it is checked whether the bill has been paid (function check payment). If the
check has a positive result, the process is completed (event customer order com-
pleted). Otherwise the check is repeated until the result is positive. The example
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Figure 1: Modeling of a business process, using event-driven process chains.
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Figure 2: The building blocks of an event-driven process chain.

shown in Figure 1 shows that event-driven process chains are easy to read. Itillus-
trateswhy event-driven process chains have been accepted as amodeling technique
by many persons involved in business process engineering projects.

The event-driven process chain shown in Figure 1 is a so-called basic event-driven
process chain. It is possible to extend event-driven process chains with entities
(things in the real world), business objects (e.g. data), and organizationa units.
Thisway it is possible to model the input and output of a function in terms of en-
tities, business objects, and parts of the organization. Moreover, it is possible to
specify allocation rules and responsibilities. These extended event-driven process
chains (eEPCs) are supported by tools such as ARIS and SAP R/3. In this paper
we abstract from these extensions and focus on the control flow.

3 Formalization of EPCs

Not every diagram composed of events, functionsand connectorsisacorrect event-
driven process chain. For example, it is not allowed to connect two events to each
other (cf. [14]). Unfortunately, aformal syntax for event-driven process chainsis
missing. In this section, we give a formal definition of an event-driven process
chain. Thisdefinitionisbased on therestrictions described in [ 14] and imposed by
toolssuch as ARIS and SAP R/3. Thisway we are able to specify the requirements
an event-driven process chain should satisfy.

Definition 1 (Event-driven process chain (1)) An event-driven process chain is
afivetuple (£, F,C, T, A):

I is afinite set of events,

I is afinite set of functions,

(' isafinite set of logical connectors,

T € ¢ — {A, XOR,V} isafunction which maps each connector onto a
connector type,



-AC(EXFI)U(EXE)U(EXC)U(CXE)U(FxC)U(Cx F)J(CxC)
isa set of arcs.

An event-driven process chain is composed of three types of nodes. events (%),
functions (#') and connectors (C'). Thetype of each connector isgiven by the func-
tion7": T'(c) isthetype (A, XOR, or V) of aconnector ¢ € C'. Relation A specifies
the set of arcs connecting functions, events and connectors. Definition 1 showsthat
itisnot allowed to have an arc connecting two functions or two events. There are
many more requirements an event-driven process chain should satisfy, e.g., only
connectors are allowed to branch, thereis at least one start event, thereis at least
onefinal event, and there are several limitations with respect to the use of connec-
tors. To formalize these requirements we need to define some additional concepts
and introduce some notation.

Definition 2 (Directed path, elementary path) Let £PC bean event-driven pro-
cesschain. Adirected path p fromanoden, toanoden, isasequence (n, na, ... ,
ng) such that (n;,n,41) € Afor1 <i <k — 1. piseementary iff for any two
nodesn; andn; onp,: #j = n; # nj.

The definition of directed path will be used to limit the set of routing constructs
that may be used. It also allows for the definition of C'zr (the set of connectorson
apath from an event to afunction) and C'zx (the set of connectors on a path from
afunction to an event). C'zr and C'rg partition the set of connectors C'. Based on
the function 7" we aso partition C' into C'», Cy, and C'xpop. The sets C; and C's
are used to classify connectors into join connectors and split connectors.

Definition 3 (N, C/\, C\/, CXOR, 0, CJ, Cs, CEF, CFE) Let FPC = (E, F, C, T,
A) be an event-driven process chain.

- N=FEUFUCistheset of nodesof £PC'.
- Cr={ce C|T(c)= A}
-Cy={ceC|T(c)=V}

- Cxor={ce C|T(c)= XOR}

- Forn e N:
en = {m | (m,n) € A} isthe set of input nodes, and
ne ={m | (n,m) € A} istheset of output nodes.

- Cy={ce C|]ec|>2}istheset of join connectors.

- CUs={ceC||ce|>2}istheset of split connectors.
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- Cgpr C C suchthat ¢ € Cgpifand only if thereisa pathp = (nq,na, ...,
ng—1, ng) SUchthat ny € £, ng,... ,ng_1 € C,np € Foandc € {ny, ...,
nk_l}.

- Cpp C C suchthat ¢ € Cpg if and only if thereisa path p = (nq,na, ...,
ng—1, ng) SUchthat ny € F,ny, ... ,ng_1 € C,ny € E,andc € {ny,...,
nk_l}.

Consider for example thelogical connector ¢ connecting the function check avail-
ability and the events articles available and articles need to be produced in Fig-
ure 1. Connector ¢ is a split connector of type XOR connecting one function and

two events, i.e,, ¢ € Cxor, ¢ € Cs,and ¢ € Crp. Definition 3 enables us to
specify the additional requirements an event-driven process chain should satisfy.

Definition 4 (Event-driven process chain (2)) An event-driven process chain
EPC = (E,F,C, T, A) satisfies the following requirements:

- Thesets £, I, and C are pairwisedigoint,i.e, ENF =0, ENC = (), and
Fnco =0.

- Foreache € F: |ec|<land|ce| < 1.

- Thereisat least oneevent ¢ € F suchthat | e ¢| = 0 (i.e. astart event).
- Thereisat least oneevent ¢ € £ suchthat |c e | = 0 (i.e. afinal event).
-Foreachfe F:|ef|=1and|fe|=1.

- Foreachce C: |ec/>1and|ce]| > 1.

- The graph induced by FPC' is weakly connected, i.e., for every two nodes
ni,ng € N, (ny,na) € (AU A"

- Cyand Cs partitionC,i.e, C;NCs=0and C; U Cs = C.
- CEF and CFE partition C, i.e., CEF N CFE = @ and CEF U CFE =C.

The first requirement states that each component has a unique identifier (name).
Note that connector names are omitted in the diagram of an event-driven process
chain. The other requirements correspond to restrictionson therelation A. Events
cannot have multiple input arcs and there is at least one start event and one final
event. Each function has exactly one input arc and one output arc. For every two
nodesn; and n, thereisapath fromn; ton, (ignoring the direction of thearcs). A
connector ¢ iseither ajoin connector (|ce | = 1 and | e ¢| > 2) or asplit connector



(lec] = 1and|ce| > 2). Thelast requirement statesthat aconnector c iseither ona
path from an event to afunction or on apath fromafunctionto an event. Itiseasy to
verify that the event-driven process chain shown in Figure Lissyntactically correct,
i.e,, al therequirementsstated in Definition 4 are satisfied. Intheremainder of this
paper we assume all event-driven process chains to be syntactically correct.

Note that {CJ, Cs}, {CEF, CFE}, and {C/\, CXOR, C\/} partition C, i.e., Cy and
Csaredigointand C = C; U Cs, Cgr and Cpp aredigointand ¢ = Cgp U
Crg,and Cy, Cxor and C, are pair-wisedigointand C' = €', U Cxpr U Cy. In
principlethereare2 x 2 x 3 = 12 kinds of connectors! In [14] two of these 12
constructs are not alowed: a split connector of type C'z cannot be of type XOR
orv,i.e, Cs N Crr N Cxop = 0and Cs N Cgr N Cy = 0. Asaresult of this
restriction, there are no choices between functions sharing the same input event.
A choice is resolved after the execution of a function, not before. In this paper,
we will not impose this restriction because in some cases it is convenient to model
such a choice between functions.

4 Mapping EPCsonto Petri nets

Definitions 1 and 4 only relate to the syntax of an event-driven process chain and
not to the semantics. In this section, we define the semanticsin termsof aPetri net.
Since Petri nets have formal semantics, it is sufficient to map event-driven process
chains onto Petri nets to specify the behavior unambiguously.

Note that some users may have problems with these formal semantics. They are
used to drawing diagrams which only give an intuitive description: the actual be-
havior is approximated by hiding details and exceptions. A precise and detailed
diagram may be undesirablein the early stages of the (re)design of a business pro-
cess. However, users of event-driven process chains should not feel restricted by
the presence of formal semantics. The formal semantics can beignored during the
early stages of the (re)design process. However, if the event-driven process chains
are used as a starting point for analysis (e.g. simulation) or implementation us-
ingaWFM or ERP system, it isvital to have diagramswhich specify the behavior
unambiguously.

Inthe remainder of this section we assume the reader to be familiar with Petri nets.
Appendix A introduces basic concepts such as the firing rule, firing sequences,
reachability, liveness, boundedness, strongly connectedness, and S-coverability.
For an introduction to Petri nets the reader isreferred to [20] or [23].

Figure 3 shows the basic strategy that is used to map event-driven process chains
onto Petri nets: events correspond to places and functions correspond to transi-
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Figure 3: Events are mapped onto places and functions are mapped onto transi-
tions.

tions. The tranglation of connectorsis much more complex. A connector may cor-
respond to a number of arcs in the Petri net or to a small network of places and
transitions. Figure4 showsthe rulesthat are used to map connectors onto Petri net
constructs. The behavior of a connector of type V' corresponds to the behavior of
aplace, i.e., aconnector of type vV agrees with a node of type ‘place’ in the Petri
net. A connector of type A agrees with anode of type ‘transition’. If the type of a
join connector agreesthetype of the output nodein the corresponding Petri net, the
connector is replaced by two or more arcs. For example, ajoin connector of type
A corresponds to a number of arcsin the Petri net if and only if the output nodeis
atransition (see Figure4). If thetype of ajoin connector and the type of the output
node do not agree, the connector is replaced by a small network. If the type of a
split connector does not agree with the type of the input node in the Petri net, the
connector is replaced by asmall network. Otherwise, the connector isreplaced by
anumber or arcs.

Figure 4 does not give any constructs for connectors of type V. The semantics of
join connectors of type V are not clear. This problemis tackled in Section 6. For
the moment, we assume all the connectorsto be of type A or XOR. Based on this
assumption the formalization of the mapping is rather straightforward.

Definition 5 (V) Let FPC = (E, F,C, T, A) be an event-driven process chain
withCy, =0and AN (C x C) = 0. N(EPC) = (PPN, TN PNy isthe Petri
net generated by EPC: PPN = E U (U.ee PIY), TN = F U (Upee TFY), and
FPN = (AN((E x F)U(F x E))) U (U,ec FI'Y). See Table 1 for the definition
of PPN TPN and FI'V,

The places in the Petri net correspond either to events or to constructs needed to
model the behavior of a connector in the event-driven process chain. Transitions
correspond to functions or are the result of the trandlation of a connector. Each
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H | 2 | e |
ce CgrnNCyin Oy 0 0 {(z,y) | x € ec and
y € co}
ceCrrnNCyNCy {pS |z € oc} | {t°} {(z,p5) | € oc}U
{(p5. 1) | @ € oc}U
{(t%2) [ 2 € co}
ce CgrnNCyN Cxor {pc} {t§|$€00} {( , )|$€OC}U
{(t8,p°) | « € oc}U
{(p2) |2 € co}
c€CrpNCyNCxor || 0 0 {(z,y) | x € ec and
y € co}
c€CprNCsnNCy {pS |« €co} | {t} {(z,t%) | x € oc}U
{(,55) | 2 € coju
(e |z € co)
ce CrrnNCsn Cy 0 0 {(z,y) | x € ec and
y € co}
c€CprNCsNCxor || 0 0 {(z,y) | x € ec and
y € co}
¢ € Crp N Cs N Cxor || {P°} {tz |2 € cot | {(2,p°) | v € oc}U
{2 69) | & € cotU
{lt52) |« € oo}

Table 1: Mapping an EPC connector ¢ € (' onto places, transitions, and arcs.
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connector ¢ € (' correspondsto the places, transitionsand/or arcslisted in Table 1.
InTable 1it isassumed that connectors are only connected to functionsand events,
i.e, AN(C'xC) = (. Althoughitispossibleto extend Table 1 with additional rules
for connections between connectors, we use an alternative approach. Every arc
connecting two connectorsisreplaced by an event and afunction, i.e., fake events
and functionsare added to the event-driven process chain beforethetrandationtoa
Petri net. Figure5illustratesthe approachthat isusedtohandlearcsin AN(C < C').
The arc between the XOR-join (join connector of type XOR) and the AND-join
(join connector of type A) is replaced by function X and event X and three arcs.
The arc between the AND-join and the XOR-split is aso replaced by a function,
an event and three arcs.

event C

g function X

event X

event Y

;
o ?fuﬁc‘nbn Y

[ oo

Figure5: Arcsbetween connectorsare replaced by events and functions beforethe
event-driven process chain is mapped onto a Petri net.

function E

Figure 6 shows the Petri net which corresponds to the event-driven process chain
shown in Figure 1. Note that the arc between the two X OR connectorsis replaced
by an event and a function, and mapped onto an additional place and transitionin
the Petri net. In this case there was no real need to add these additional nodes.
However, there are situations where adding events and functions is the only way
to model the control flow properly.

It is easy to see that for any event-driven process chain KFPC = (E, F,C, T, A)
satisfying the requirements in Definition 4, N'(EPC) = (PPN TPV FPN)isa
Petri net, i.e., PPN 0 TN = (and FPN C (PPN x TPNy U (TPN x PPN),
Moreover, the Petri net is free-choice (see Definition 12).
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Figure 6: The event-driven process chain of Figure 1, mapped onto a Petri net.
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Lemmal Let EPC = (E, F,C, T, A) bean event-driven processchainand PN =
N(EPC) the Petri net generated by £PC'. PN isfree-choice.

Proof.

We have to prove that for any two transitions¢,, ¢, sharing an input place, e¢; =
ol,. Therefore, we have to check every place with two or more output arcs. An
event cannot have more than two output arcs. The only way to obtain a place with
multiple output arcs is the mapping of XOR-split connectors onto Petri net con-
structs (see Figure 4). However, the rules given in Table 1 guarantee that the out-
put transitions have identical sets of input places. Therefore, the Petri net is free-
choice. O

Free-choice Petri nets [9] are a class of Petri nets for which strong theoretical re-
sults and efficient analysis techniques exist. For example, the well-known Rank
Theorem [9] alowsfor the efficient analysis of liveness and boundedness. In free-
choice Petri netsit is not allowed to mix choice and synchronization (see Defini-
tion 12). Lemma 1 shows that in an event-driven process chain choice and syn-
chronization are separated. On the one hand, Lemma 1 is apositive result because
it shows that event-driven process chain correspond to a subclass with many de-
sirable properties. On the other hand, the result shows that the expressive power
of event-driven process chains is limited compared to Petri nets. It is not possi-
ble to model advanced control structures which involve a mixture of choice and
synchronization (cf. [2, 4]).

5 Verification of EPCs

The correctness, effectiveness, and efficiency of the business processes supported
by ERP or WFM systems are vital to the organization. An information system
which isbased on erroneous event-driven process chains may lead to serious prob-
lems such asangry customers, back-log, damage claims, and loss of goodwill. Fla-
wsin the design of an event-driven process chain may also lead to high throughput
times, low service levels, and a need for excess capacity. Therefore, it isimpor-
tant to analyze the event-driven process chain before it is put into production. In
thissection we focuson the verification (i.e. establishing the correctness) of event-
driven process chains. The bridge between event-driven process chains and Petri
nets presented in this paper allows for the use of the powerful analysis techniques
that have been developed for Petri nets ([20]). Linear algebraic techniques can
be used to verify many properties, e.g., place invariants, transition invariants, and
(non-)reachability. Other techniques such as coverability graph analysis, model
checking, and reduction techniques can be used to analyze the dynamic behavior
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of the event-driven process chain mapped onto a Petri net. In this section we will
show that Petri-net-based techniques can be used to analyze the so-called sound-
ness property. To ssimplify the definition of this property, we restrict ourselves to
regular event-driven process chains.

Definition 6 (Regular) Anevent-driven process chain £PC' isregular if and only
if:

(i) EPC hastwo special events: e, and e,,,. Event ey, 1S a source node:
ec . = 0. Event ez, isasink node: e, 0 = 0.

(i) Everynoden € N ison a path from eg,,+ t0 €fy0-

Theidentification of e, and e, alowsfor aclear definition of theinitial state
and the final state. An event-driven process chain with multiple start events (i.e.
events without any input arcs) or multiplefinal events (i.e. events without any out-
put arcs) can easily be extended with aninitialization and/or atermination part such
that the first requirement is satisfied. The second requirement demands that every
event or function isin the scope bordered by e« and eg,..;. If the original event-
driven process chain is extended with an initialization and/or a termination part
such that thefirst requirement is satisfied, then the second requirement is quite nat-
ural. If the second requirement is not satisfied, then the event-driven process chain
is (1) composed of completely disunct parts, (2) it has parts which are never acti-
vated, or (3) parts of the event-driven process chain form atrap. Since the event-
driven process chain describes the life cycle of acase (i.e. aprocessinstance), the
two requirements are reasonable. The life cycle should have a clear begin event
and end event, and al steps should be on a path between these two events. In the
remainder of this paper we assume all event-driven process chains to be regular.

An event-driven process chain describes a procedure with an initial state and afi-
nal state. The procedure should be designed in such away that it alwaysterminates
properly. Moreover, it should be possible to execute any given function by follow-
ing the appropriate route though the event-driven process chain.

Definition 7 (Sound) A regular event-driven process chain £PC' is sound if and
only if:

(i) For every state M reachable fromtheinitial state (i.e. the state where event
esiare 1Sthe only event that holds), there exists a firing sequence leading from
state M tothefinal state(i.e. the statewhere event e;,,,; iSthe only event that
holds).
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(if) Thefinal state (i.e. event e, iSthe only event that holds) is the only state
reachable fromtheinitial state where event eg,,; holds.

(iif) There are no dead functions, i.e,, for each function f there is a firing se-
guence which executes f.

The correctness criterion defined in Definition 7 is the minimal requirement any

event-driven process chain should satisfy. A sound event-driven process chain is
free of potential deadlocks and livelocks. If we assume fairness (cf. [28]), then the
first two requirements imply that eventualy the final state will be reached. (Note
that thisis aresult of the combination of soundness and the free-choice property
[15].) Consider for example the event-driven process chain shown in Figure 1. To
make the event-driven process chain regular, the two sink events (customer order

completed and customer order rejected) are joined by a termination part (i.e. an
XOR-join connector, afunction, and an event). By checking all possiblefiring se-
guencesit is possible to verify that the event-driven process chainis sound, i.e., it
is guaranteed that eventually every customer order that is received will be handled
completely.

Figure 7 describes an alternative process to handle customer orders. The event-
driven process chain showninFigure7isnot sound. If thebilling processis skipped
(i.e. the event no billing needed holds after executing the function register cus-
tomer order), then the event-driven process chain will deadlock (the input event
outstanding accounts of the AND-join preceding the function produce articleswill

never hold). If multiple payment checks are needed, then the fake event (the event
added to connect the AND-split and the AND-join) will hold after termination.

For the small examples shown in this paper it is easy to see whether an event-
driven process chain is sound or not. However, for the complex event-driven pro-
cess chains encountered in practice it is far from trivial to verify the soundness
property. Fortunately, Petri-net-based techniques and tools can be used to ana-
lyze the soundness property. Inspection of the coverability graph ([20, 23]) of the
Petri net which corresponds to the event-driven process chain is sufficient to de-
cide soundness. For complex event-driven process chains the coverability graph
may become very large. This phenomenon is known as the * state explosion prob-
lem’. A typical event-driven process chainwith 80 tasks and events can easily have
morethan 200.000 states. Although today’s computers have no problem anayzing
coverability graphs of this size, there are more advanced techniques which exploit
the structure of the Petri net generated by an event-driven process chain. These
techniques allow for very efficient decision procedures. Before presenting such a
procedure, we first list some properties that hold for any Petri net generated by a
sound event-driven process chain.
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Figure 7. An erroneous event-driven process chain.
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Proposition 1 Let KPC = (E, F,C,T, A) beasound event-driven process chain
and PN = N(EPC) the Petri net generated by FPC. Let PN be PN with an
extra transition t* connecting e, t0 e, and let M betheinitial state with one
token in e gpe.

- PN isstrongly connected,
- PN isScoverable,

- (PN, M)islive,

- (PN, M) is bounded, and
- (PN, M) is safe.

Proof.

PN is strongly connected because every node is on apath from ¢, 10 €5, @nd
€final 1S CONNECtE tO €4, Viat™.

PN isaWF-net (see[2]). Therefore, soundness coincideswith liveness and bound-
edness (see Theorem 11in[2]).

(PN, M) isfree-choice, live, and bounded. In[1] it is shown that thisimpliesthat
PN is S-coverableand (PN, M) is safe. O

Building ontheresults presentedin[2], we can provethat soundness can beverified
in polynomial time.

Theorem 1 An event-driven process chain can be checked for soundness in poly-
nomial time.

Proof.

An event-driven process chain corresponds to a free-choice WF-net (see [2]). A
WF-net is sound if and only if the extended net (PN, M) is live and bounded.
Liveness and boundedness can be decided in polynomial time (use the well-known
Rank Theorem [9]). Hence, soundness can be verified in polynomial time. O

Theorem 1 showsthat it is possible to extend tools such as ARISand SAP R/3 with
efficient decision procedures to verify the correctness of an event-driven process
chain. To guide the user in finding and correcting flaws in the design of an event-
driven process chain, it is also possible to supply additional diagnostics based on
the structure of the event-driven process chain / Petri net. For example, itis useful
to check whether the event-driven process chain is well-structured.
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Definition 8 (Well-structured) An event-driven process chain is well-structured
iff for any pair of connectors¢; € C's and ¢; € C'; such that one of the nodesisin
(', and the other in C'xor and for any pair of elementary paths p; and p, leading

frome; to ey, a(pr) Na(p:) = {c1, 2} = p1 = p2.t

O T EENO
/ \ / \
/ \ / \

| | | |
\ i \ i

\ / \ /
\ / \ /

Figure 8: Well-structurednessis based on the distinction between good constructs
(left) and bad constructs (right).

Figure 8 illustrates the concept of well-structuredness. An event-driven process
chain is not well-structured if an AND-split is complemented by an XOR-join, or
an XOR-gplit is complemented by an AND-join. Consider for example the event-
driven process chain shown in Figure 7. The XOR-split beforestart billingiscom-
plemented by the AND-join before ship order: there is an elementary path from
this XOR-join to the AND-join via no billing needed and there is an elementary
path from this XOR-join to the AND-join via start billing, send bill, outstanding
accounts, produce articles, and finished product. The fact that there is an imbal-
ance between the splits and the joins reveal s the source of the error in the design of
the event-driven process chain shown in Figure 7. The XOR-split can bypass the
synchronization point before produce articles.

Itispossibleto have asound event-driven process chain whichisnot well-structured.
Nevertheless, well-structuredness is a desirable property. If possible, non-well-
structured constructs should be avoided. If such a construct is really necessary,
then the correctness of the construct should be double-checked, because it is apo-
tential source of errors,

Another diagnostic which might be useful is alist of all S-components (see Defi-
nition 15). If an event or a function corresponds to a place or transition not in any
S-component, then thisindicates an error. Note that a Petri net which corresponds

1The alphabet operator o is defined is follows. If p = (ny,na,...,ng), then a(p) =
{ni,no, ..., g}
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to a sound event-driven process chain is S-coverable (see Proposition 1).

Woflan ([9]) is an example of a Petri-net-based analysis tool which can be used
to decide soundness. Woflan (WOrkFLow ANalyzer) has been designed to ver-
ify process definitions which are downloaded from a workflow management sys-
tem. At the moment there are two workflow toolswhich caninterface with Woflan:
COSA (COSA Solutions/Software-Ley, Pullheim, Germany) and Protos (Pallas
Athena, Plasmolen, The Netherlands). Woflan generatesthe diagnostics mentioned
in this paper (and many more). In the future we hope to provide a link between
Woflan and EPC-based tools such as ARIS and SAP R/3.

6 Connectorsof typeV

In the second half of this paper (i.e. Sections 4 and 5), we abstracted from Vv -conn-
ectors. Thereason for thisabstraction is the fact that the semantics of join connec-
tors of type Vv are not clear. Consider for example the event-driven process chain
shown in Figure 9. If event X holds, function A or B needs to be executed. There
arethree possibilities: (1) function A, (2) function B, or (3) function A and function
B are executed. Although the intention of the construct shown in Figure 9 isclear,

GO~ oD

Figure 9: An event-driven process chain showing the use or v connectors.

itisdifficultto giveformal semanticsfor the\/-connectors. Figure 10 showsa Petri

net wherethe v -connectors are mapped onto places and transitionsin astraightfor-
ward manner. The transitions S A, SAB and S B model the OR-split by a choice
between the three possibilities. The OR-joinis modeled in asimilar way. Clearly,
the Petri net shown in Figure 10 is not the correct way to model the event-driven
process chainin Figure9. If S AB fires, J_A and J_.B may fire after the completion
of both functions. Moreover, event Y may hold before both functions are actually
executed. The core of the problem isthat it is difficult to determine whether ajoin
connector of type Vv should synchronize or not.

There are several waysto deal with connectors of type V.

e Firstof al, itispossibleto refine the event-driven process chain until all con-
nectors of type Vv are replaced by connectors of type A and/or XOR. This

21



Figure 10: A Petri net which correspondsto the event-driven process chain in Fig-
ure9.

may lead to an ‘explosion’ of the event-driven process chain. Note that if
there are n functions connected to each other by V-connectors, then there
are2” — 1 possible combinations. For example, for 10 functions, there are
1023 possible combinations.

e Secondly, it is possible to couple OR-splits and OR-joins, i.e., the selection
made by the split connector of type V is used by the join connector of type
V to see when all inputs have arrived. The semantics of such a concept can
be expressed in terms of a Petri net. Consider for example Figure 10: the
synchronization problem can be resolved by adding a place connecting S A
to J_A, aplace connecting S AB to J_AB, and a place connecting SB to J. B.

e Finaly, itispossibletoadapt thefiring rule with respect to transitionswhich
correspond to a join connector of type V. A transition ¢ of a set of transi-
tions X which correspondsto an OR-joinisenabled if and only if (1) thein-
put places of ¢ (et) are marked and (2) it is not possible that additional input
places of X (e.X) will become marked by firing other transitions. In other
words, postpone the join until the moment that it is clear that the input is
maximal.

None of the solutions seems to be very satisfactory. The first solution will lead to
large and unreadabl e event-driven process chains. The second solution only works
if every OR-split is complemented by an OR-join, i.e., the event-driven process
chain is symmetric with respect to connectors of type V. The last solution leads
to situations which are difficult to interpret and is difficult to formalize. Further
research is needed to tackle the problem in a more satisfactory manner.
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7 Conclusion

In this paper, we have presented formal semantics for event-driven process chains.
Although event-driven process chains have become a widespread process model-
ing technique, such a basis was missing. By mapping event-driven process chains
onto Petri netswe have tackled this problem. Inaddition, many analysistechniques
have become availablefor event-driven process chains. Thishasbeen demonstrated
by a decision procedure which verifies the correctness (i.e. soundness) in polyno-
mial time. The results presented in this paper give designers a handle to construct
correct event-driven process chains.

The approach presented in this paper can also be applied to extensions of event-
driven process chains, e.g., eEPC [26] and oEPC [22]. These extensionstypically
add: (1) adata view, (2) an organizational view, (3) and afunctional view to the
process view described by the traditional event-driven process chain. For the ver-
ification of the process view it is reasonable to abstract from these additional as-
pects. The processby itself should becorrect. The consistency between thevarious
views can be verified using techniques outside the scope of this paper. See[4] for
asimilar discussion in the context of workflow management.

At the moment we are working on two directions for further research. First of all,
we areworking on atool to support the approach presented in this paper. We hope
to extend Woflan such that event-driven process chains exported by ARISand SAP
R/3 can be analyzed directly. Secondly, we arelooking for amore satisfactory way
to deal with connectors of type V.
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A Petri nets

This appendix introduces the basic Petri net terminology and notations.?
Theclassical Petri netisadirected bipartitegraph with two node typescalled places
and transitions. The nodes are connected via directed arcs. Connections between
two nodes of the same type are not allowed. Places are represented by circles and
transitions by rectangles.

Definition 9 (Petri net) A Petri netisatriple (P, T, F'):
- Pisafinite set of places,
- T isafinite set of transitions (P N T = 1),

- FC(PxT)u(T x P)isasetof arcs (flow relation)

A place p iscalled aninput place of atransition¢ iff there existsadirected arc from
ptot. Placep iscalled an output place of transition ¢ iff there exists adirected arc
from¢ to p. We use et to denote the set of input placesfor atransition ¢. The nota-
tionste, ep and pe have similar meanings, e.g., pe isthe set of transitions sharing
p as an input place.

At any time a place contains zero of more tokens, drawn as black dots. The state,
often referred to as marking, is the distribution of tokens over places, i.e., M €
P — IN. We will represent astate asfollows: 1p; + 2p, + 1ps + Opy iSthe state
withonetokenin place p;, twotokensin p,, onetokenin ps and notokensin p,. We
can also represent this state asfollows: p; + 2p; + p3. To compare states we define
a partial ordering. For any two states M; and M,, M; < M, iff foradl p € P:
Mi(p) < Ma(p)

Note that we restrict ourselvesto arcswith weight 1. In the context of event-driven
process chainsit makes no sense to have other weights, because places correspond
to conditions. In a Petri net corresponding to a correct (i.e. sound) event-driven
process chain aplacewill never contain multipletokens(i.e. thenetissafe). States
with multiple tokens in one place are the result of design errors. To capture these
errors, we need to consider non-safe nets.

The number of tokens may change during the execution of the net. Transitions are
the active componentsin a Petri net: they change the state of the net according to
thefollowing firing rule:

2Notethat states are represented by weighted sums and note the definition of (elementary) paths.
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(1) Atransitiont issaidto beenabled iff eachinput place p of ¢ contains at least
one token.

(2) Anenabled transition may fire. If transition ¢ fires, then ¢ consumes one to-
ken from each input place p of ¢ and produces one token in each output place
p Of t.

Given aPetri net (P, T, F') and a state M;, we have the following notations:

- M, N M,: transition ¢ is enabled in state M; and firing ¢ in M; resultsin
state M,

- M, — M,: thereisatransitiont such that M, - M,

- My 5 M,: thefiring sequence o = t,yt5...t,_, leads from state M, to
state M,, i.e, My 3 M, 3 .. "3' M,

A state M, is called reachable from M, (notation A, = M,) iff there is a fir-
ing sequence o = tty...t,_, suchthat M; % M,. Note that the empty firing
sequenceisalso alowed, i.e., M; = M;.

Weuse (PN, M) to denote a Petri net PN with aninitial state M. A state M’ isa
reachable state of (PN, M) iff M = M’. Let us define some properties for Petri
nets.

Definition 10 (Live) A Petri net (PN, M) isliveiff for every reachable state M/’
and every transition ¢, there is a state M"” reachable from M’ which enablest.

Definition 11 (Bounded, safe) A Petri net (PN, M) isbounded iff for each place
p there is a natural number n such that for every reachable state the number of
tokensin p islessthan n. The net is safe iff for each place the maximum number
of tokens does not exceed 1.

Definition 12 (Free-choice) A Petri net is a free-choice Petri net iff for every two
transitions¢; and ¢,, et; N ety # () implies ot; = ot5.

Definition 13 (Path) Let PN be a Petri net. A path C' from a node »; to a node
ny isa sequence (ny, na, ... ,ng) suchthat (n,,n;11) € Fforl <i:<k—1.

Definition 14 (Strongly connected) A Petri netisstrongly connected iff for every

pair of nodes (i.e. places and transitions) = and y, there is a path leading from «
toy.
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Definition 15 (S-coverable) A Petri net PN = (P, T, F') is Scoverable iff for
each place p there is subnet PN, = (P, Ts, F;) suchthat: p € P, P, C P,
T, C T, F, C F, PN, isstrongly connected, PN, is a state machine (i.e. each
transition in PN, has one input and one output arc), and for every ¢ € F, and
teTl: (¢,t)e F=(q,t)e Fyand(t,q) € F = (t,q) € F.

A subnet PN ; which satisfies the requirements stated in Definition 15 iscalled an
S-component. PN ; isastrongly connected state machine such that for every place
q: if g isaninput (output) place of atransition ¢ in PN, then ¢ is also an input
(output) placeof ¢ in PN ,.
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