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Abstract—More and more information about processes is
recorded in the form of so-called “event logs”. High-tech systems
such as X-ray machines and high-end copiers provide their
manufacturers and services organizations with detailed event
data. Larger organizations record relevant business events for
process improvement, auditing, and fraud detection. Traces in
such event logs can be classified as desirable or undesirable
(e.g., faulty or fraudulent behavior). In this paper, we present
a comprehensive framework for discovering signatures that can
be used to explain or predict the class of seen or unseen traces.
These signatures are characteristic patterns that can be used
to discriminate between desirable and undesirable behavior. As
shown, these patterns can, for example, be used to predict
remotely whether a particular component in an X-ray machine
is broken or not. Moreover, the signatures also help to improve
systems and organizational processes.

Our framework for signature discovery is fully implemented
in ProM and supports class labeling, feature extraction and selec-
tion, pattern discovery, pattern evaluation and cross-validation,
reporting, and visualization. A real-life case study is used to
demonstrate the applicability and scalability of the approach.

Key words: Process Mining, Signature Patterns, Event Log,
Discriminatory Patterns

I. INTRODUCTION

Many of today’s information systems record an abundance

of event logs. Such event logs often contain data indicating

the health of a process or the status of a case, etc. One can

consider such health indicators as class labels. For example,

an X-ray machine event log might contain information on

system failures and broken parts/components; an insurance

claim event log might contain information on whether a claim

is fraudulent or not. Organizations are interested in gaining

further insights on such health indicators such as learning

whether there are any common patterns among the cases with

a certain class label or whether there are any discriminatory

patterns between cases of different classes. Signature discovery

is concerned with finding such patterns.

Signature discovery is a process mining technique [1].

Process mining aims to discover, monitor and improve real-

life processes by extracting knowledge from event logs readily

available in today’s (information) systems. Signature discovery

examines traces in such event logs and aims to diagnose

differences and predict the class of unclassified traces. There

are many applications for signature discovery. We mention two

motivating examples:

• Fault diagnosis of high-tech systems: High-tech systems

such as medical devices, copier machines, and wafer

scanners, all generate event logs capturing their day-

to-day operations [2]. These systems may malfunction

when they are used abnormally (operational processes

deviating significantly from their normal/intended usage).

Malfunctions are also noticed when parts/components in

the system encounter faults and/or deteriorate. System

event logs are often the primary source of information for

diagnosing (and predicting) the causes of failures in these

systems. Early detection and diagnosis of system mal-

functions can help avoid catastrophic failures and reduce

productivity loss. For large and complex systems such as

these, there is a pressing need for better techniques for

processing, understanding, and analyzing these data [3].

• Detecting fraudulent claims: Insurance companies across

all sectors (e.g., healthcare, automobile, property, etc.) are

plagued by fraudulent claims costing billions of dollars

annually [4]. Detecting fraud and abuse relies heavily

on analysts/auditors inspection of claims in conjunction

with domain knowledge. Automated fraud detection is

only viable if complex patterns can be uncovered in

massive amounts of low-level data [5]. There is a need

for analytical techniques for effective detection of fraud

[6], [7], [8], [9]. Assuming that there exists a historical

database where we have “cases” comprising the evidence

collected so far that indicates fraud, one can try to learn

patterns/characteristics of behavior in such cases that

discriminate them from normal behavior and use the

uncovered patterns for monitoring future instances.

In this paper we present a framework for automated dis-

covery of signature patterns from event logs where some or

all cases carry a label indicating the class that they belong

to. We evaluate the goodness of this framework on a real-life

case study on finding patterns that can be correlated to part

replacements in an X-ray machine.

The rest of the paper is organized as follows. Section II

discusses our framework for signature discovery while Sec-

tion III presents the realization of the framework. A real-life

case study of discovering signature patterns for diagnosing

faults in X-ray machines is presented in Section IV. Related

work is presented in Section V. Finally, Section VI concludes

the paper.

II. SIGNATURE DISCOVERY FRAMEWORK

We propose the framework depicted in Fig. 1 for discov-

ering patterns that discriminate between different classes of
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behavior. Starting point is an event log consisting of events.

Each event refers to an activity or action (i.e., a well-defined

step in some process) and is related to a particular case (i.e., a

process instance). The events belonging to a case are ordered.

Therefore, cases are represented as traces of events that

correspond to “runs” of a possibly unknown process. Events

may have all kinds of attributes (e.g., timestamp, resources

used, temperature, costs, etc.). The proposed framework in

Fig. 1 is generic and works for any event log with labeled cases

(signifying different classes of behavior) with a provision for

some of the cases remaining unlabeled. We now explain the

constituents of our signature discovery framework.

Event Log

Class Labeling

Feature Extraction
and Selection

Discover Patterns
Classification & Association

Evaluation

Reporting and
Visualization

Fig. 1. Framework for signature discovery. The block depicted in dashed
rectangle is an optional step that is to be considered when some of the cases
in an event log are unlabeled.

A. Class Labeling

When event logs contain some cases that are unlabeled, an

important question to address is How can we assign labels to

those unlabeled instances? Efficient means to automatically

or semi-automatically derive labels need to be designed. We

propose the use of clustering and/or classification techniques,

such as the k-nearest neighbor [10] and one-class support

vector machines (SVM) [11], in machine learning to assist

in class labeling. For example:

• If the unlabeled instances are to be assigned one of the

class labels already present in the event log, then one may

consider the k-nearest neighbor approach. The basic idea

is to determine the k-nearest labeled instances for each

of the unlabeled instances and assign the majority class

of the k instances as the class label for the unlabeled

instance.

• If the labeled instances in the event log belong to only

one class and we are interested in labeling the unlabeled

instances to utmost two-classes, e.g., fraudulent and non-

fraudulent as in the case of insurance claims, an inter-

esting approach is the use of one-class support vector

machines. Here, we assume that the instances of one-class

(e.g., non-fraudulent) are labeled. One-class SVMs work

with the assumption that all positive (non-fraudulent) in-

stances are alike while each negative (fraudulent) instance

can be negative in its own way, i.e., the distribution of

the negative instances is unknown. Once a one-class SVM

is built over the non-fraudulent instances, any unlabeled

instance can be evaluated to either belonging to the non-

fraudulent class or not and labeled accordingly.

After the execution of this step, all instances in the event

log should have a class label. After this preprocessing step,

we can discover patterns that are specific for each class and

discriminatory between the classes.

B. Feature Extraction and Selection

This step corresponds to extracting the features from an

event log, which form the basis for signature patterns. Once

features are defined, each instance in the event log is to be

transformed into a vector space where the elements of the

vector correspond to the value of the selected feature in the

instance. We argue that a wide variety of feature types need

to be considered and the choice of the feature type largely

depends on the nature of the problem and its manifestation in

the event log. Domain knowledge can assist us in selecting

an appropriate feature. We recommend the consideration of

individual events, sequence features (tandem arrays, maximal

repeats and its variants), and alphabet features defined in [12],

[13] as features. Sequence features are important when an

occurrence of a particular sequence of events in the system log

defines a symptomatic pattern, e.g., when a part malfunctions,

the components that depend on/interact with this faulty part

retries and seeks for a response from the part. Retries often

manifest as loops, which are captured with tandem arrays [12],

[13]. As discussed in [13], alphabet features are derived from

sequence features by relaxing the ordering of events. Sequence

features that are defined over the same set of activities (events)

are considered to be equivalent under an alphabet feature. In

addition to the above features, one may also consider features

catering to other perspectives such as data (e.g., data objects

and their values in each trace).

If the number of features extracted is large, then it leads

to the problem of curse of dimensionality [14]. Feature selec-

tion techniques deal with removing irrelevant and redundant

features. One can adopt simple filtering techniques such as

removing infrequent features to advanced dimensionality re-

duction techniques such as principal component analysis [15]

for feature selection. Once the feature extraction and selection

is done, we transform the event log into a vector space as

depicted in TABLE I.

C. Discover Patterns

Given a dataset as depicted in TABLE I, the goal of this step

is to discover the patterns over the features, which are strongly

correlated to the class label (e.g., normal or faulty). We adopt

standard data mining techniques, i.e., decision tree learning

[16], [17] and association rule mining [18], [19]. These two

learning algorithms are chosen primarily for three reasons:

• they are non-parametric, i.e,. no specific data distribution

(of the input dataset) is assumed
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TABLE I
THE LABELED CASES IN AN EVENT LOG ARE TRANSFORMED INTO A

VECTOR SPACE BASED ON THE CHOSEN FEATURES (f1, f2, . . . , fm). ONE

CAN CHOOSE BETWEEN A NOMINAL (BINARY) REPRESENTATION (WHERE

THE VALUE FOR A FEATURE IN A CASE CORRESPONDS TO THE

PRESENCE/ABSENCE OF THE FEATURE IN THAT CASE) AND A NUMERIC

REPRESENTATION (WHERE THE VALUES CORRESPOND TO THE

FREQUENCY OF THE FEATURE IN THE CASE).

Instance f1 f2 . . . fm Class

1 3 1 . . . 0 N
2 0 6 . . . 1 F

3 1 0 . . . 4 F

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
n 2 2 . . . 0 N

• they generate simple, understandable rules that are easy

to interpret by domain experts

• they can easily handle imbalanced datasets, i.e., datasets

where the instances of each class are not approximately

equally represented

For the association rule mining, we adopt the special subset

called the class association rules [19], which is an integration

of classification rule mining and association rule mining. We

do not present the details of these algorithms in this paper.

The interested reader is referred to [16], [17], [18], [19], [14].

The result of this step are rules such as:
If f1 ≥ v11 AND f3 = v31 AND f7 = v72 then F OR

If f2 = v26 AND f4 = v47 then N OR

If f5 = v50 then F
where the vij’s are the values for the corresponding features.

D. Evaluation

We adopt standard metrics in data mining such as the

number of true positives (TP), false positives (FP), true neg-

atives (TN), and false negatives (FN), and derived metrics

from these such as accuracy, sensitivity, specificity, precision,

and F1-score to evaluate the goodness of the discovered

signatures. Models with sensitivity and specificity close to 1.0

are preferred [14].

For a given dataset, one can build many classifiers. The

differences mainly stem from the choice of parameter values

for the learning algorithm (e.g., split criterion in decision

trees, minimum support and minimum confidence constraints

in association rule mining, etc.). An important characteristic of

any learned model is its generalizability. Generalization refers

to the performance of a learned model over unseen examples

[14]. If the entire dataset is used for learning the signatures,

then the uncovered signatures may be overfitting. As a result,

the learned model may perform well on the input dataset, but

performs poorly on unseen examples. Therefore, we adopt

cross-validation techniques during the learning phase in the

above step.

Cross-validation [14], [20] is a model selection technique

where the input dataset is divided into two subsets, viz., a

training set and a validation set. The model is learned on the

training set and evaluated on the validation set. A special case

of cross-validation is the k-folds cross validation technique

where the input dataset is split into k subsets, and the model

is learned on the training data comprising of k−1 subsets and

validated on the last subset. This is repeated k times with k

different splits between the training and validation data. The

cross-validation performance is the average of the results (with

respect to metrics such as accuracy) on all the splits. We prefer

signature patterns with a better cross-validation performance.

If the performance is not satisfactory, one may change the

parameter settings for the learning algorithm and re-learn the

signatures.

E. Reporting and Visualization

The last step in the framework reports the findings and

visualizes the results. Automated reports eliciting the signature

patterns along with their performance metrics are generated.

Apart from reports, one may depict the results in pictorial

forms such as pie-charts and scatter plots. For example, Fig. 2

depicts the projection of a two-class multi-dimensional data

onto the top two principal components obtained using principal

component analysis [15]. Such a visualization helps in assess-

ing the goodness of a feature set. In the figure, we can see

that the two classes (normal and faulty) are clearly separable

thereby indicating that the chosen feature set representation

for the cases is good enough to find discriminatory patterns.
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Fig. 2. Visualization of dataset using principal components.

III. IMPLEMENTATION

We have implemented the framework presented in the pre-

vious section as the ‘Signature Discovery’ plug-in in ProM1.

Given an event log where the cases are labeled (indicating

different classes of behavior), this plug-in uncovers discrimi-

natory patterns that distinguish between the different classes

of behavior. This plug-in assumes that the label of a case is

provided as an attribute value with the key “Class” in the event

log. Fig. 3 depicts the configuration step for class labeling

while Figs. 4 and 5 depict the configuration steps for feature

extraction/selection and learning algorithm respectively. Fig. 6

shows the results provided by the plug-in.

1ProM is an extensible framework that provides a comprehensive set of
tools/plug-ins for the discovery and analysis of process models from event
logs. See http://www.processmining.org for more information and to download
ProM.
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techniques for labeling:
k-nearest neighbor and
one-class SVM

parameter configuration
for one-class SVM

Fig. 3. Configuration step for labeling unlabeled instances in an event log.
The plug-in supports two algorithms, viz., k-nearest neighbor and one-class
SVM for class labeling.

feature type selection:
sequence or alphabet

feature selection: boa, kgrams,
tandem repeats, and maximal
repeat variants

binary or numeric feature count

Fig. 4. Configuration step for feature extraction and selection. Different
types of features are supported, e.g., sequence and alphabet features: tandem
arrays, maximal repeats and variants, and individual events.

pattern discovery techniques:
decision trees and class associa-
tion rules

parameter configuration
for the pattern discovery
techniques

evaluation techniques

Fig. 5. Configuration step for the learning algorithm for discovering signature
patterns. Two classes of algorithms, viz., decision trees and association rule
mining are supported.

IV. CASE STUDY

In this section, we present the case study of fault diagnosis

of X-ray machines from Philips Healthcare, a global leader in

professional and consumer healthcare. Although it is undesir-

able for these systems to malfunction, in reality, these systems

discovered
signatures

metrics assessing ththe goodness of
signatures: true (fa(false) positives,
true (false) negatives, and derived
metricsexport

signaturesi t

show inw instastancences ththatas
satatisfs y thhe seselectedsatisfy the selected
signatures

Fig. 6. Results of the ‘Signature Discovery’ plug-in. The plug-in estimates
different quality metrics for each of the discovered signatures.

do malfunction during their lifetime. However, when they do,

it is important that these problems are quickly and predictably

corrected. The X-ray machines considered in this study are

installed across the globe and continuously log all major events

(e.g., system operations, warnings, errors, etc.). Moreover,

problems (customer complaints) and the actions performed

to rectify them are logged as job sheets. The combination

of both data sources (logs and job sheets) provide a rich

source of historical service data. The organization sees an

opportunity of improving their system maintenance through

log-based fault diagnosis. More specifically, they are interested

in investigating whether the diagnostic value of system logs

can be improved by discovering patterns that can be corre-

lated to known problems and/or corrective actions with high

confidence. In this case study, we confine ourselves to the task

of finding symptomatic patterns in the event logs that can be

associated to a malfunction requiring the replacement of parts

in an X-ray machine. Parts that can be replaced in the system

are called Field Replaceable Units (FRUs).

A. Data Selection

The data selection process starts with first choosing the

FRU we are interested in, e.g., FRUs for which the variation

in mean-time-to-repair (MTTR) is large. This FRU could

have been replaced in many systems as part of corrective

maintenance in the past. We can identify all such systems from

the job sheets database. Furthermore, each system can have

multiple calls associated with this FRU replacement, i.e., it

could be the case that the same part had to be replaced several

times on a particular system at different periods of time.

Since the system could have undergone version upgrades, it is

recommended (by domain experts) that the (system, call) pairs

are segregated based on their versions. Each call is associated

with a call open date and a call close date. Furthermore, the

system event logs are recorded every day. For each call, we

consider logs from the corresponding system a few days before

the call open date and a few days after the close date for

analysis. The rationale is that if there exists a symptomatic

pattern, it should have manifested in the system logs prior

to and during the life time of the complaint and that they

disappear in the event logs after the part replacement. The
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number of days that one should consider before (after) the

call open (close) date is largely dependent on the nature of the

FRU and is to be chosen on a trial and error basis guided by

domain knowledge. For example, a malfunction in a critical

part such as an X-ray tube is noticed immediately whereas

a malfunction in hard disk may not be noticed immediately.

Thus it may be sufficient to consider just a couple of days

before/after the call open/close date for the X-ray tube while

for the hard disk, a larger time window is recommended.

B. Defining Cases–Scoping and Filtering

During a single day of machine operation, the system could

have been (re)started or shutdown multiple times. A session of

system’s operation constitutes the sequence of events during

the normal operation mode between startup and shutdown as

illustrated in Fig. 7. Sessions form the basis for defining a

case. The events that are recorded in the X-ray system are

date

ti
m
e

call
open
date

call
close
date

3 days
before

3 days
after

normal oper-
ation mode

other modes

Fig. 7. Events during normal operation mode signify the events during the
regular usage of the system and constitute the focus of analysis. The system
could have been restarted multiple times during a single day. Each sequence of
events during the normal operation mode surrounded by other system modes
defines a session. In this example, we consider the log files 3 days before/after
the call open/close date of a part replacement in a particular system.

very fine-grained. This makes the total number of events that

are logged in a single day/session quite large, in the order of a

few thousands. Identifying the symptomatic patterns pertaining

to the malfunction of a FRU in the fine-grained event logs log

is a challenging task. This can be attributed to the fact that the

events that potentially bear an indication of the abnormality

form a small fraction of the overall event data. Considering

the whole log can induce a huge amount of unrelated events

thereby making the task of signature discovery analogous

to searching for a needle in a haystack. Domain experts

suggest that a malfunction in a FRU reflects as error and/or

warning events in the log pertaining to the component (unit)

it belongs to and/or components with which it interacts with.

Accordingly, we pre-process the log as follows:

• for a given FRU for which we are interested in identifying

the symptomatic patterns in the log, we first identify

(based on domain knowledge) the units (components) that

are related to the FRU, e.g., if X-ray tube is chosen as the

FRU, the units related to this are X-ray Control, X-ray

Generator, and Geometry.

• only the error/warning events pertaining to the units

related to the FRU during a session are considered

As mentioned earlier, the symptomatic patterns are expected to

have manifested in the system logs prior to and during the life

time of the complaint, i.e., on/before the call close date, and

disappear in the event logs after the part replacement (call

close date). Therefore, our problem of signature discovery

is to uncover patterns consistent across the different calls

(pertaining to that part replacement), which appear only in

the event logs prior to the corresponding call close dates and

disappear in the event logs after the call close date. It is

important to note that the manifestation of patterns pertaining

to a problem occurs only when that functionality or behavior

is invoked on the system. In other cases, we see a normal

behavior of the system. Hence in the time-period prior to

the call-close date (i.e., the time period between which the

customer sees some abnormality and the time at which the

problem is supposed to have been resolved), it is quite possible

that the system reflects a normal behavior during some of

the sessions. However, it is unknown which sessions exhibit

normal behavior.

We propose a means of transforming the system logs to

labeled cases. For this case study, we expect the cases to be

labeled as normal (N) and faulty (F). We use the juxtaposed

sessions approach to transform system logs into labeled cases.

The juxtaposed sessions approach creates two cases per call.

The sessions on/before the call close date are all appended

into a single case with a distinct delimiter (i.e., special char-

acters/symbols out of the activity alphabet) between them and

labeled as faulty (F). Similarly, the sessions after the call close

date are appended together with a distinct delimiter between

them and labeled as Normal (N). The distinct delimiter is

essential to ensure that patterns do not overlap across sessions

during the discovery process. Fig. 8 depicts this approach.

date

ti
m
e

call
open
date

call
close
date

3 days
before

3 days
after

=⇒

. . . F

. . . N

distinct
delimiter

Fig. 8. Scenario where each call defines two cases. The sessions on/before
the call close date are juxtaposed and assigned the label ‘faulty’ (F) whereas
the case defined by the juxtaposed sessions after the call close date can
be considered to be ‘normal’ (N). Delimiters are used to distinguish the
boundaries between sessions.

At the end of this process, we have an event log with cases

that carry a class label indicating a particular class of behavior.

We now proceed to uncovering the signature patterns in the

next section.

C. Signature Discovery

In this section, we discuss the application of the proposed

framework in uncovering signatures for two of the FRUs,
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which we anonymize as FRU I and FRU II. First, we discuss

the results for FRU I. For learning the signature patterns, we

considered this FRU’s replacements that happened in the years

2008 and 2009. As discussed earlier, since different versions of

the system can have different signatures, we split the systems

according to their versions and discover the signatures for

each version separately2. From the jobsheets, we identified

the systems and the dates when this FRU was replaced and

selected system log files between three days before the call

open date and three days after the call close date for these

systems. We considered the error/warning events from three

units, which we anonymize (for confidentiality reasons) as

Unit A, Unit B, and Unit C. These three units are considered

to be the most relevant for this FRU by the domain experts.

We used the juxtaposed sessions approach for defining the

cases and class labels. Using this procedure, we created cases

with two labels, i.e., normal or faulty, for each system type

and version, e.g., there are 32 instances for the system version

4.3.5.

We discovered the signature patterns from these instances

using the framework described in Section II. We used a combi-

nation of tandem repeat alphabet and maximal repeat alphabet

features [13] in conjunction with the class association rules

for learning the signature patterns. A couple of anonymized

signatures for the faulty class are provided in TABLE II. The

two signatures differ in the last two events. The interpretation

for this is that this FRU has multiple failure modes and the

manifestation of failure modes differs in the system event logs.

Each of the signatures in TABLE II captures one of these

failure modes.

TABLE II
ANONYMIZED SIGNATURE PATTERNS FOR FRU I.

If

xxxxxxxx1 Warning from Unit A is Present AND

Then Faulty

xxxxxxxx2 Error from Unit A is Present AND
xxxxxxxx4 Warning from Unit B is Present AND
xxxxxxxx4 Warning from Unit A is Present AND
xxxxxxxx5 Error from Unit A is Present

If

xxxxxxxx1 Warning from Unit A is Present AND

Then Faulty

xxxxxxxx2 Error from Unit A is Present AND
xxxxxxxx4 Warning from Unit B is Present AND
xxxxxxxx6 Warning from Unit A is Present AND
xxxxxxxx7 Error from Unit A is Present

We have evaluated the goodness of the signature patterns on

an independent test set of system logs between Jan 2010 and

Jun 2011 (Note that the signatures were discovered using logs

from 2008 and 2009). Signatures of a particular system type

and version are evaluated against systems of the same type and

version. TABLE III depicts the performance of the signatures

for two different versions of systems. The interpretation of

the true positives, false positives, true negatives, and false

negatives are as follows:

• TP: the signature is present in one or more log instances3

2It could be the case that for two different versions, the signatures are the
same (this implies that there is no change between these versions with respect
to this FRU)

3a log instance is one session of the system log in the normal operation
mode

of a system AND there is a FRU replacement in the

system subsequently AND the signature disappears after

the replacement,

• FP: the signature is present in one or more log instances

of a system BUT there is no FRU replacement in the

system (OR) the signature is present in one or more log

instances of a system AND there is a FRU replacement

in the system subsequently BUT the signature does not

disappear after the replacement,

• TN: the signature is not present in a log instance of a

system AND there is no FRU replacement in this system,

and

• FN: the signature is not present in a log instance of a

system BUT there is a FRU replacement in the system.

False negatives indicate that the discovered signatures are not

complete and that there might be other symptomatic patterns

which we are not able to uncover. This results when the

training data does not represent all manifestations of failure

modes of the FRU. False negatives are not devastating whereas

false positives are. False positives have serious repercussions

and need to be minimized. False positives can lead to false re-

placements. False negatives affect the sensitivity and F1-score

metrics while false positives affect the specificity, precision,

and F1-score metrics.

From TABLE III, we can see that the uncovered signatures

perform quite well with a very high accuracy (above 98%).

Note that our evaluation involved a large set of independent

systems (743 in number) with logs considered in a different

time period from that of the training data. The uncovered

signatures for version 3.1.7 are able to detect all but one of

the required replacements and there are no false positives. The

discovered signatures for version 4.3.5 are able to indicate

a problem in this FRU for 24 of the 32 replacements and

could not capture the rest 8 replacements. The part could have

exhibited a failure mode different from that of the captured

signatures in these 8 replacements. Furthermore, we see just

two false positives in this case.

As another example, we considered a different FRU,

anonymized as FRU II. Just like in the previous scenario,

we considered part replacements in 2008 and 2009. Event

logs from systems with this part replacement were used for

learning the signature patterns. Signatures discovered using

the class association rule mining algorithm on the individual

events (as the feature set) performed better when compared

to other features and learning algorithms on the training data.

We evaluated the uncovered signatures on an independent set

of system logs between Jan 2010 and Jun 2011. TABLE III

depicts the performance of the discovered signatures for two

different versions of systems. We can see that, even in this

case, the uncovered signatures perform good as reflected by

the high accuracy (above 98%). The uncovered signatures for

version 3.1.7 are able to detect all but one of the required

replacements and there are no false positives. As mentioned

before, false negatives potentially indicate different failure

modes, the signatures of which are not captured in our dis-

covery phase, primarily due to lack of representative instances
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TABLE III
PERFORMANCE OF THE DISCOVERED SIGNATURES FOR THE TWO FRU REPLACEMENTS ON AN INDEPENDENT TEST SET OF SYSTEMS. VARIOUS METRICS

SUCH AS THE TRUE POSITIVES (TP), FALSE POSITIVES (FP), TRUE NEGATIVES (TN), FALSE NEGATIVES (FN), AND DERIVED METRICS SUCH AS

ACCURACY, SENSITIVITY, SPECIFICITY, PRECISION, AND F1-SCORE ARE MEASURED.

Part Version No. TP FP TN FN Accuracy Sensitivity (r) Specificity Precision (p) F1-score

Systems TP+TN

No.Systems
% TP

TP+FN
% TN

TN+FP
% TP

TP+FP
% 2∗p∗r

p+r
%

FRU I
3.1.7 120 3 0 116 1 99.16 75.00 100.00 100.00 85.71
4.3.5 623 24 2 589 8 98.39 75.00 99.66 92.30 82.75

FRU II
3.1.7 120 7 0 112 1 99.16 87.50 100.00 100.00 93.33
4.3.5 623 47 2 564 10 98.07 82.45 99.64 95.92 88.67

for this failure mode in the training phase. Systems of version

4.3.5 had a larger number of FRU II replacements and the

discovered signatures are able to detect a problem in the FRU

II in 82% of the cases (sensitivity metric). The discovered

signatures resulted in only two false positives, but do not cover

all failure modes. This is reflected by the 10 false negatives.

As mentioned earlier, false negatives are less problematic than

false positives. The signatures for these failure modes also

can be discovered when event logs representing these failure

modes are provided in the training dataset. To summarize, the

proposed framework for signature discovery shows significant

promise in fault diagnosis of X-ray machines.

The discovered signatures can be added to a knowledge base

and the logs of systems scanned for the presence of signature

patterns. This can assist the Field Service Engineers (FSEs)

during their diagnostic efforts. The FSEs can be provided with

log analyzer tools that check for the presence of signatures.

The manifestations of signature patterns suggest potential

problematic parts (FRUs) corresponding to the signature. Since

diagnostics are considered to be the most time consuming

and the most difficult task, such an automated assistance is

expected to reduce the MTTR significantly.

V. RELATED WORK

Any framework or methodology that attempts at discov-

ering signature patterns, which discriminate between classes

of behavior, is bound to use machine learning/data mining

techniques. The differences between the solutions mainly

stem from the nature of application/domain, input data and

its treatment, and the definition and scope of patterns. The

problem of signature discovery can essentially be viewed as

one aimed at inducing a classifier for an event log with labeled

traces. Folino et al. [21] have proposed a decision tree based

predictive model defined over a set of attributes. The approach

that we present in this paper is generic and is based on standard

classical machine learning techniques: decision trees [16], [17]

and association rule mining [18], [19]. However, our approach

differs from [21] in four ways: (i) we start from event logs

rather than tabular data, (ii) in addition to decision trees, our

approach also considers association rules between attributes

and the class labels, (iii) our approach also addresses the

scenario where only a subset of traces in the event log has

a label, and (iv) we adopt several context-aware attributes

over common execution patterns manifested in the traces. An

approach based on sequence patterns and execution time is

presented in [22] for identifying failures in business processes

where failure patterns are defined to be those sequence patterns

that manifest in failure instances and not in normal instances.

There are several differences of this approach with the one

proposed in this paper. Unlike our approach, [22] assumes that

all cases are labeled and supports failure patterns defined only

in the form of sequence patterns [23] (On the contrary, our

approach supports a wide variety of features). Furthermore,

[22] is less robust to noise and does not define/use any means

of assessing the significance of one failure pattern over others

(e.g., it does not use metrics like the support or confidence).

Common or discriminatory patterns can also be uncovered

using trace alignment [24], [25] by aligning the traces and

identifying differences between traces of different classes.

However, this requires manual inspection of the alignment to

uncover the discriminating patterns. Inspecting for patterns is

cumbersome for large datasets. Therefore, in this paper, we

explore the feasibility of automatically extracting signature

patterns from event logs, which can be associated to a partic-

ular class.

In the remainder of this section, we focus on related work in

the context of fault diagnosis in alignment with our case study.

Event correlation based approaches for failure diagnosis have

been proposed in [26], [27], [28]. There are also commercial

tools such as HP’s OpenView Self-Healing Services [29] and

IBM’s Trivoli [30] for network management. These methods

and tools rely on either an existing rule base (typically derived

from the Failure Mode and Effect Analysis (FMEA) [31])

or some known dependency models about the system. Either

of these is hard to obtain for complex distributed systems

and/or flexible systems such as medical systems. Automated

identification of probable causes of performance problems in

large server systems was proposed in [32]. This approach relies

on the availability of well defined measurements on known

metrics relevant to performance problems. Techniques such

as these work well when one knows apriori what is to be

measured; the analysis then focuses mainly on finding corre-

lations over the measured values. However, event logs from

high-tech systems such as X-ray machines capture all events

that are triggered on/by/within the system and are typically

designed for multiple applications (e.g., understanding system

usage, debugging software bugs, etc.). These event logs tend

to be fine-granular making the analysis challenging. Such fine-

grained event logs first require elaborate preprocessing such

as defining abstractions and selecting an appropriate scope for
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analysis, which can vary depending on the domain and applica-

tion. Techniques based on the assumption that deviations exist

in component interaction patterns during system/application

failures have been proposed in [33], [34], [35]. However, these

techniques cannot be applied to event logs that do not capture

component interactions explicitly.

VI. CONCLUSIONS

In this paper, we explored the feasibility of automatically

identifying signature patterns that can discriminate between

different classes of behavior. We demonstrated that the pro-

posed framework works well, i.e., it is able to uncover

signatures with a high accuracy as was illustrated by a real-life

case study on malfunctioning X-ray machines. The resulting

signatures remain highly accurate even on unseen instances.

This indicates that the suggested framework has the potential

to become a powerful tool for the diagnosis of failures in

X-ray systems. The proposed framework is generic and can

be applied in many other domains ranging from embedded

systems to forensics and auditing.
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