
Service Discovery from Observed Behavior While
Guaranteeing Deadlock Freedom in Collaborations

Richard Müller1,2, Christian Stahl2, Wil M.P. van der Aalst2,3, and
Michael Westergaard2,3

1 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
Richard.Mueller@informatik.hu-berlin.de

2 Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands

{C.Stahl, W.M.P.v.d.Aalst, M.Westergaard}@tue.nl
3 National Research University Higher School of Economics, Moscow, 101000, Russia

Abstract. Process discovery techniques can be used to derive a process
model from observed example behavior (i.e., an event log). As the ob-
served behavior is inherently incomplete and models may serve different
purposes, four competing quality dimensions—fitness, precision, simplicity,
and generalization—have to be balanced to produce a process model of high
quality.
In this paper, we investigate the discovery of processes that are specified as
services. Given a service S and observed behavior of a service P interacting
with S, we discover a service model of P . Our algorithm balances the four
quality dimensions based on user preferences. Moreover, unlike existing discov-
ery approaches, we guarantees that the composition of S and P is deadlock
free. The service discovery technique has been implemented in ProM and
experiments using service models of industrial size demonstrate the scalability
or our approach.

1 Introduction

Service-oriented design [27] reduces system complexity, and service models are useful
to understand the running system, to verify the system’s correctness, and to analyze
its performance. However, it is often not realistic to assume that there exists a service
model. Even if there exists a formal model of the implemented service, it can differ
significantly from the actual implementation; The formal model may have been
implemented incorrectly, or the implementation may have been changed over time.
Fortunately, we can often observe behavior recorded in the form of an event log. Such
event logs may be extracted from databases, message logs, or audit trails. Given
an event log, there exist techniques to produce a (service) model. The term service
discovery [6] or, more general, process discovery [3] has been coined for such techniques.

In this paper, we assume a known service model S and an event log L contain-
ing observed behavior in the form of message sequences being exchanged between
(instances of) the implementation of S and (instances of) its environment (i.e., the ser-
vices S interacts with) to be given. Our goal is to produce a model of the environment

2

of S. As the event log is inherently incomplete (i.e., not all possible behavior was
necessarily observed), there are, in general, infinitely many models of the environment
of S. Clearly, some models might be more appropriate than others regarding some
user requirements. Therefore, service discovery can be seen as a search process, aiming
at producing a model of the environment that describes the observed behavior “best”.

To judge the discovered model we consider two aspects: correctness (internal con-
sistency of model, e.g., no deadlocks) and quality (ability to describe the underlying
observed process well).

Correctness is motivated by the discovery of sound workflow models in [11], where
soundness refers to the ability to always terminate [1]. In our service-oriented setting,
it is reasonable to require that S and its environment interact correctly. As a minimal
requirement of correct interaction, we assume deadlock freedom throughout this paper.
We refer to such model of the environment of S as a partner of S. Thus, we are
interested in discovering a partner of S.

Regarding quality, there exist four quality dimensions for general process mod-
els [3]: (1) fitness (i.e., the discovered model should allow the behavior seen in the event
log), (2) precision (i.e., the discovered model should not allow behavior completely
unrelated to what was seen in the event log), (3) generalization (i.e., the discovered
model should generalize the example behavior seen in the event log), and (4) simplicity
(i.e., the discovered model should be as simple as possible). These quality dimensions
compete with each other. For example, to improve the fitness of a model one may end
up with a substantially more complex model. A more general model usually means a
less precise model. We assume that a user guides the balancing of these four quality
dimensions. As a consequence, we aim at discovering a service model that is a partner
of S and, in addition, balances the four quality dimensions guided by user preferences.

The actual challenge is now to find such a model. As a service S has, in general,
infinitely many partners, the search space for service discovery is infinite. Therefore,
we are using a genetic algorithm to find a good but possibly not an optimal model of a
partner of S. We have implemented this algorithm. It takes as an input a service model
S, an event log, and values for the four quality dimensions. The output of the algorithm
is a model of a partner of S that comes close to the specified values of the quality dimen-
sions. We show its applicability using eight service models of industrial size. Moreover,
based on the notion of a finite representation of all partners of S [16]—referred to as
operating guideline—we additionally apply an abstraction that reduces the search space
to a finite one. Although the abstraction only preserves fitness, our experimental results
shows that the other quality dimensions do not suffer too much due to this abstraction.

Summarizing, the main contributions of this paper are:

– adapting existing discovery techniques for workflows (i.e., closed systems) to
services (i.e., reactive systems);

– adapting the metrics for the four quality dimensions to cope with service models;
– presenting an approach to reduce an infinite search space to a finite one; and
– validation of the algorithm based on a prototype.

We continue with a motivating example in Sect. 2. Section 3 provides background
information on our formal service model and process discovery techniques. Section 4
adapts existing discovery techniques and metrics for workflows for service mining

3

and reduces the infinite search space to a finite one. We present experimental results
in Sect. 5. Section 6 reviews related work, and Section 7 concludes the paper.

2 Motivating Example

Figure 1 shows a service S modeled as a state machine and an event log L. A transition
label !x (?x) denotes the sending (receiving) of a message x to (from) the environment
of S. The event log L contains information on 210 traces. There are three types of
traces: ac (10 times), ad (100 times), and bd (100 times). Our goal is to produce a model
of the environment of S. Two example models are P andR in Fig. 1. P incorporates the
frequently observed behavior in L (traces ad and bd) and disregards trace ac, arguing
that ac is negligible for a “good” model. R incorporates even more than the observed
behavior in L—for example, the trace bc which was not observed in the interaction
with S—generalizing the observed behavior in L in account for L’s incompleteness.

S0

S1

!a

?c ?d

!b

?d
S2

S3 S4 S5

(a) Service S

trace

10 ac
100 ad
100 bd

210

(b) Event log L

P0

P1

?a

!d

P2

?b
⌧

(c) Service P

R0

R1

?a

R2

?b
⌧

!c !d

(d) Service R

Fig. 1: Running example: The event log L represents observed communication
behavior of S and its environment.

The service P is a partner of S—they both interact without running into a
deadlock—whereas the service R is not: If S sends a message b, then R receives this
message b and may send a message c. However, S cannot receive message c and
R does not send any additional messages unless it receives a message a or b. Thus,
the interaction of S and R deadlocks. For this reason, we prefer P over R and our
discovery algorithm would exclude R. Classical process mining approaches do not
take S into account and will allow for models that deadlock when composed.

3 Preliminaries

For two sets A and B, A]B denotes the disjoint union, i.e., writing A]B expresses
the implicit assumption that A and B are disjoint. Let N+ denote the positive
integers. For a set A, |A| denotes the cardinality of A, B(A) the set of all multisets
(bags) over A, and [] the empty multiset. Throughout the paper, we assume a finite
set of actions A such that {τ, final} ∩A = ∅.

For a set A, let A∗ be the set of finite sequences (words) over A. For two words v
and w, v v w denotes that v is a prefix of w. For a ternary relation R ⊆ A×B×A,

4

we shall use a
b−−→R a

′ to denote (a, b, a′) ∈ R. If any of the elements a, b, or a′ is
omitted, we mean the existence of such an element. The relation R∗ ⊆ A×B∗×A is

the reflexive and transitive closure of R, defined by a
b1...bn−−−−−→R∗ a

′ if and only if there

are a0, . . . , an ∈ A such that a = a0, a
′ = an, and, for all 1 ≤ i ≤ n, ai−1 bi−−→R ai.

If a −→R∗ a
′, then a′ is reachable from a in R.

3.1 State Machines for Modeling Services

We model a service as a state machine extended by an interface, thereby restricting
ourselves to the service’s communication protocol. An interface consists of two disjoint
sets of input and output labels corresponding to asynchronous message channels.
In the model, we abstract from data and identify each message by the label of its
message channel.

Definition 1 (State Machine). A state machine S = (Q,α,Ω, δ, I ,O) consists of
a finite set Q of states, an initial state α ∈ Q, a set of final states Ω ⊆ Q, a transition
relation δ ⊆ Q× (I]O]{τ})×Q, and two disjoint, finite sets of input labels I ⊆ A
and output labels O ⊆ A.

Let l(t) = a define the label of a transition t = (q, a, q′) ∈ δ. We canonically

extend l to sequences of transitions. For a state q ∈ Q, define by en(q) = {a | q a−−→δ}
the set of labels of outgoing transitions of q. The set R(S) = {q | α −→δ∗ q} denotes
the reachable states of S. The state machine S is deterministic if for all q, q′, q′′ ∈ Q
and a ∈ I]O, (q, τ, q′) ∈ δ implies q = q′ and (q, a, q′), (q, a, q′′) ∈ δ implies q′ = q′′;
it is deadlock free if, for all q ∈ R(S), en(q) = ∅ implies q ∈ Ω. y

Graphically, we precede each transition label x with ? (!) to denote an input
(output) label. A final state is depicted with a double circle (e.g., S3 in Fig. 1(a)).
An incoming arc denotes the initial state (e.g., S0 in Fig. 1(a)).

For the composition of state machines, we assume that their interfaces completely
overlap. We refer to state machines that fulfill this property as composable. We
compose two composable state machines S and R by building a product automaton
S ⊕ R, thereby turning all transitions into (internal) τ-transitions. In addition, a
multiset stores the pending messages between S and R.

Definition 2 (Composition). Two state machines S and R are composable if
IS = OR and OS = IR. The composition of two composable state machines S and
R is the state machine S ⊕R = (Q,α,Ω, δ,∅,∅) with Q = QS ×QR ×B(IS] IR),
α = (αS, αR, []), Ω = ΩS ×ΩR × {[]}, δ containing exactly the following elements:

– (qS, qR,B)
τ−−→δ (q

′
S, qR,B), if qS

τ−−→δS q
′
S,

– (qS, qR,B)
τ−−→δ (qS, q

′
R,B), if qR

τ−−→δR q
′
R,

– (qS, qR,B + [a])
τ−−→δ (q

′
S, qR,B), if qS

a−−→δS q
′
S and a ∈ IS,

– (qS, qR,B + [a])
τ−−→δ (qS, q

′
R,B), if qR

a−−→δR q
′
R and a ∈ IR,

– (qS, qR,B)
τ−−→δ (q

′
S, qR,B + [a]), if qS

a−−→δS q
′
S and a ∈ OS, and

– (qS, qR,B)
τ−−→δ (qS, q

′
R,B + [a]), if qR

a−−→δR q
′
R and a ∈ OR. y

5

We compare two state machines S andR by a simulation relation, thereby treating
τ like any action in A. A binary relation % ⊆ QS ×QR is a simulation relation of S
by R if (1) (αS, αR) ∈ %, and (2) for all (qS, qR) ∈ %, a ∈ A]{τ}, q′S ∈ QS such that

qS
a−−→S q

′
S, there exists a state q′R ∈ QR such that qR

a−−→R q′R and (q′S, q
′
R) ∈ %.

If such a % exists, we say that R simulates S. A simulation relation % of S by R is
minimal, if for all simulation relations %′ of S by R, % ⊆ %′.

We want the composition of two services to be correct. As a minimal criterion
for correctness, we require deadlock freedom and that every reachable state contains
only finitely many pending messages (i.e., the message channels are bounded). We
refer to services that interact correctly as partners.

Definition 3 (b-Partner). Let b ∈ N+. A state machine R is a b-partner of a
state machine S if S ⊕R is deadlock free and for all (qS, qR,B) ∈ R(S ⊕R) and all
a ∈ IS] IR, B(a) ≤ b. y

In Fig. 1, P is a 1-partner of S, but R is not because the composition S ⊕R can
deadlock.

If a state machine S has one b-partner, then it has infinitely many b-partners.
Lohmann et al. [16] introduce operating guidelines as a way to represent the infinite
set of b-partners of S in a finite manner. Technically, an operating guideline is a
deterministic state machine T where each state is annotated with a Boolean formula
Φ, which specifies the allowed combinations of outgoing transitions. A state machine
R is represented by an operating guideline if (1) there exists a minimal simulation
relation % of R by T (as T is deterministic, % is uniquely defined); and (2) for every
pair of states (qR, qT) ∈ %, the outgoing transitions of qR and the fact whether qR
is a final state must define a satisfying assignment to Φ(qT).

Definition 4 (b-Operating Guideline). An annotated state machine (T,Φ) con-
sists of a deterministic state machine T and a Boolean annotation Φ, assigning to
each state q ∈ Q of T a Boolean formula Φ(q) over the literals I]O] {τ, final}.

A state machine R matches with (T,Φ) if there exists a minimal simulation
relation % of R by T such that for all (qR, qT) ∈ %, Φ(qT) evaluates to true for the

following assignment β: β(a) = true if a 6= final ∧ qR a−−→δR or a = final ∧ qR ∈ ΩR,
and β(a) = false otherwise.

Let b ∈N+. The b-operating guideline OGb(S) of a state machine S is an anno-
tated state machine such that for all state machines R, R matches with OGb(S) iff
R is a b-partner of S. y

Figure 2a depicts OG1(S) = (T,Φ) of the service S. The state machine P (Fig. 1c)
matches with (T,Φ): The minimal simulation relation of P by T is % = {(P0, T0),
(P1, T3), (P1, T1), (P2, T5), (P2, T4), (P0, T5), (P0, T4), (P1, T7), (P2, T7), (P0, T7)},
and the formula Φ is evaluated to true, for all pairs of %. For example, for (P0, T0)
we have Φ(P0) = (true ∨ false)∧ (true ∨ false) which is true and for (P0, T4) we have
Φ(T4) = true. Thus, P is a 1-partner of S. Figure 2b depicts the smallest subgraph
G of OG1(S) such that P is still simulated by G, i.e., the subgraph used for the
simulation relation above. In contrast, the state machine R (Fig. 1d) does not match

6

with (T,Φ), because (R1, T1) violates the simulation relation: We have R1
!c−−→ but

T1 6 !c−−→. Thus, R is not a 1-partner of S.

dT1 a ^ b T2 c _ d T3

(a _ d) ^ (b _ d)T0

final T6finalT4 final T5

?b

?a!d !c

!d ?a

?b !d

true T7

?a, ?b ?a, ?b?a, ?b

?a, ?b ?a, ?b

?a, ?b, !c, !d

(a) OG1(S).

T1 T3

T0

T4 T5

?b

!d

?a

!d

T7

?a, ?b?a, ?b

?a, ?b, !d

⌧

⌧

⌧

(b) Subgraph G of OG1(S).

Fig. 2: OG1(S) and its smallest subgraph G such that P is simulated by G. The
annotation of a state is depicted inside the state. For OG1(S), every state has a
τ-labeled self-loop and the annotation an additional disjunct τ , which is omitted
in the figure for reasons of readability.

In the remainder of the paper, we abstract from the actual bound chosen and
use the terms partner and operating guideline rather than b-partner and b-operating
guideline.

3.2 Event Logs and Alignments

An event log is a multiset of traces. Each trace describes the communication between
S and R in a particular case in terms of a sequence of events (i.e., sent and received
messages). We describe an event as an action label and abstract from extra infor-
mation, such as the message content or the timestamp of the message. Formally, a
trace w ∈ A∗ is a sequence of actions, and L ∈ B(A∗) is an event log.

To compare a (discovered) service model R with the given event log L, we use the
alignment-based approach described in [4]. This approach relates each trace w ∈ L
to a sequence σ of transitions of R that can be executed from R’s initial state by
pairing events in w to events of σ.

Formally, a move is a pair (x, y) ∈
(
(A] {�})× (δR] {�})

)
\ {(�,�)}. We

call (x, y) a move in the model if x =� ∧y 6=�, a move in the log if x 6=� ∧y =�,
a synchronous move if x 6=� ∧y 6=�, and a silent move if x =� ∧y 6=� ∧l(y) = τ .

An alignment of a trace w ∈ L to R is a sequence γ = (x1, y1) . . . (xk, yk) of
moves, such that the projection of (x1 . . . xk) to A is w; the projection of (y1 . . . yk)
to δR is (αR, a1, q1) . . . (qj−1, aj, qj); and transition label l(yi) and action xi coincide
for every synchronous move (xi, yi) of γ. Let trace(γ) ∈ A∗ denote the word by
removing all τ-labels from l(y1) . . . l(yk).

7

Some alignments for L and P in Fig. 1 are:

γ1 =
a c
a �

(P0, a,P1)
γ2 =

a d
a d

(P0, a,P1) (P1, d,P2)
γ3 =

b d
b d

(P0, b,P1) (P1, d,P2)

The top row of γ1 corresponds to the trace ac ∈ L and the bottom two rows corre-
spond to the service P . There are two bottom rows because multiple transitions of P
may have the same label; the upper bottom row consists of transition labels, and the
lower bottom row consists of transitions. We have αP

a−−→δ∗P
but αP 6 ac−−−→δ∗P

; that
is, ac deviates from a by adding an additional c-labeled transition. Thus, a move in
the log, a “�” appears in the upper bottom row.

The goal is to find a best alignment that has as many synchronous and silent
moves as possible. The approach in [4] finds such an alignment using a cost function
on moves. Let γ be an alignment of a trace w to R. Formally, a cost function κ assigns
to each move (x, y) of an alignment γ a cost κ((x, y)) such that a synchronous or silent
move has cost 0, and all other types of moves have cost > 0. The cost of γ is κ(γ) =∑k
i=1 κ((xi, yi)); γ is a best alignment if, for all alignments γ′ of w to R, κ(γ′) ≥ κ(γ).

We use the function λR to give us for each trace w ∈ L a best alignment of w to R.

Finally, we combine the best alignment of each trace of L to R into a weighted
automaton AA. A state of AA encodes a sequence of (labels of) transitions of R.
We define the weight ω(w) of each state w as the number of times a trace of L was
aligned to w. We shall use AA for the computation of metrics for the two quality
dimensions precision and generalization later on.

Definition 5 (Alignment Automaton). The alignment automaton AA(L,R) =
(V, v0, E,ω) of L and R consists of a set of states V = A∗, an initial state v0 = ε

(ε is the empty trace), a transition relation E ⊆ V ×A×V with v
a−−→E va iff there

exists w ∈ L such that va v trace(λR(w)), and a weight function ω : V →N+ such
that ω(v) =

∑
w∈L∧vvtrace(λR(w))L(w) for all v ∈ V . y

Figure 3 depicts the alignment automaton AA(L,P) of the event log L and the
state machine P . Each trace in L is either aligned to the transition sequence labeled
with a, ad or bd (ignoring τ ’s), as a transition sequence labeled with ac is not present
in P . The weight of each state is depicted inside the state; for example, ω(a) = 110
means 110 traces of L can be aligned to a transition sequence of P whose prefix is a.

210
100b

d
a

d

110

100

100

Fig. 3: The alignment automaton AA(L,P)

8

4 Service Discovery

Given a state machine S and an event log L, service discovery aims to produce a
service R that is (1) a partner of S and (2) of high quality. The first requirement
reduces the search space from all composable services to partners of S and can be
achieved by model checking S⊕R or checking whether R matches with the operating
guideline OG(S) of S. In the following, discuss the second requirement.

4.1 Incorporating the Quality Dimensions

We are interested in discovering a partner of highest quality. Numerous metrics for
measuring the four quality dimensions have been developed [4,7,29]. However, we
cannot simply use these metrics but have to adapt them to cope with service models.

Fitness Let R be a partner of S and L an event log. Fitness indicates how much
of the behavior in the event log L is captured by the model R. A state machine with
good fitness allows for most of the behavior seen in the event log. We redefine the
cost-based fitness metrics from [4] for state machines: We quantify fitness as the total
alignment costs for L and R (computed using the best alignments provided by λR)
compared to the worst total alignment costs. The worst total alignment costs are the
sum of “log-only moves” for the events in the observed trace and “model-only moves”
to reach a final state. For the latter, we consider the “least expensive path” because〈TODO: Check:

original formulation
seemed wrong.〉

a best alignment will try to minimize costs [4].

Definition 6 (Fitness). The fitness of L and R is defined by

fit(L,R) = 1−
∑

w∈L

(
L(w)·κ(λR(w))

)
∑

w∈L

(
L(w)·

∑
x∈w κ((x,�))

) . y

Assume a cost function κ where each synchronous and each silent move has
cost 0, and all other types of moves have cost 1. The best alignments given by λP
are γ1–γ3. We have costs of 1 for γ1, 0 for γ2, and 0 for γ3; therefore, we calculate
fit(L,P) = 1− 10·1+100·0+100·0

10·2+100·2+100·2 ≈ 0.976. As expected, the fitness value is high because
only 10 out of 210 traces are nonfitting traces in L (i.e., the traces ac).

Simplicity Simplicity refers to state machines minimal in structure, which clearly re-
flect the log’s behavior. This dimension is related to Occam’s Razor, which states that
“one should not increase, beyond what is necessary, the number of entities required
to explain anything.” Various techniques exist to quantify model complexity [19]. We
define the complexity of the model R by its number of states and transitions, and
compare it with the smallest subgraph G of OG(S) such that R is simulated by G.
Although both R and G have the same behavior, G is not necessarily less complex
than R. Our metric takes this into account.〈TODO: This part

remains a bit weak,
but the paper has
enough content.〉

Definition 7 (Simplicity). Let OG(S) = (T,Φ). The simplicity sim(L,R) of L

and R is |QG|+|δG|
|QR|+|δR| if |QG|+ |δG| <= |QR|+ |δR| and 1 otherwise, where G is the

smallest subgraph of T such that G simulates R. y

9

Figure 2b shows the smallest subgraph G of OG(S) such that G simulates P . G
consists of 6 states and 14 transitions (including the τ-loops at states T4, T5, and T7).
Therefore, |QG|+|δG| = 6+14 = 20 and |QP |+|δP | = 3+4 = 7; thus, sim(L,P) = 1.
As expected, L and P have a perfect simplicity value, as P is less complex than G.

Precision Precision indicates whether a state machine is not general. To avoid “under-
fitting”, we prefer state machines with minimal behavior to represent the behavior ob-
served in the event log as closely as possible. We redefine the alignment-based precision
metric from [7] for state machines. This metric relies on building the alignment automa-
ton AA, which relates executed and available actions after an aligned trace of the log.

Definition 8 (Precision). Let AA(L,R) = (V, v0,E,ω) be the alignment au-
tomaton of L and R. Then the precision of L and R is defined by
pre(L,R) =

(∑
v∈V

(
ω(v) · |exec(v)|

))
/
(∑

v∈V
(
ω(v) · |avail(v)|

))
, where exec(v) =

en(v) inAA(L,R), and avail(v) =
⋃
q∈X en(q) withX = {q | αR w−−→δ∗R

q∧w|A = v}
in R. y

Figure 3 shows the alignment automaton AA(L,P), which has been build from
the best alignments γ1–γ3. We obtain pre(L,P) = 210·2+110·1+100·1

210·2+110·1+110·2+100·1+100·2 = 0.6. 〈TODO: Also add
parts 100·0+100·0 ?〉As expected, L and P have average precision, as P allows for far more behavior than

the behavior observed in L.

Generalization Generalization penalizes overly precise state machines which “over-
fit” the given log. In general, a state machine should not restrict behavior to just
the behavior observed in the event log. Often only a fraction of the possible behavior
has been observed, e.g., due to concurrency. For this dimension, we developed a new
metric. We combine the generalization metric from [4] with the alignment automaton
AA(L,R). The idea is to use the estimated probability π(x, y) that a next visit to
a state w of the alignment automaton will reveal a new trace not observed before:
x = |en(w)| is the number of unique activities observed at leaving state w, and
y = ω(w) is the number of times w was visited by the event log. We employ an
estimator for π(x, y), which is inspired by [10].

Definition 9 (Generalization). Let AA(L,R) = (V, v0,E,ω) be the alignment
automaton of L and R. The generalization of L and R is defined by gen(L,R) =

1−
(

1
|V |
∑
v∈V π(|en(v)|, ω(v))

)
, where π can be approximated [4] by π(x, y) = x(x+1)

y(y−1) ,

if y ≥ x+ 2, and π(x, y) = 1, if y ≤ x+ 1. y

We obtain gen(L,P) = 1− 1
5

(
2·3

210·209 + 1·2
110·109 + 1·2

100·99
)
≈ 1. Given the numbers

of traces in L, L and P have nearly perfect generalization as expected, because it
is unlikely to reveal a new trace not observed before.

Balancing the Quality Dimensions As quality refers to the possibly competing
quality dimensions fitness, simplicity, precision and generalization [3], we cannot
assume the existence of a partner that has the highest value for every dimension. We

10

rather need to balance these dimensions and, therefore, assume that a user specified
his requirements using weights ωfit , ωsim , ωpre, and ωgen . With these four weights,
we can actually search for the partner of S that has highest quality.

Definition 10 (Quality). Let ωall = ωfit + ωsim + ωpre + ωgen . The quality of R
for L is defined by quality(L,R) =

ωfit

ωall
fit(L,R) + ωsim

ωall
sim(L,R) +

ωpre

ωall
pre(L,R) +

ωgen

ωall
gen(L,R) y

Using weights of 2 for fitness, precision, and generalization, and a weight of 1 for
simplicity (incorporating that the discovered service can be simpler than its simulation
subgraph), we obtain quality(L,P) = 2

7 · 0.976 + 1
7 · 1 + 2

7 · 0.6 + 2
7 · 1 ≈ 0.879.

4.2 A Finite Abstraction of the Search Space

The actual challenge of service discovery is that the search space is the set partners
of S, which is infinite. In the following we present abstraction that reduces the search
space to a finite number of partners. To this end, we restrict ourselves to partners of
S that are valid subgraphs of OG(S) = (T,Φ), i.e., subgraphs of T whose states are
connected and contain the initial state of T and that match with OG(S). As T contains
only finitely many states, the number of valid subgraphs of OG(S) is finite too. So,
instead of investigating any partner of S, we only consider valid subgraphs of OG(S).

However, this finite abstraction comes at a price: Although every valid subgraph is
a partner of S, we may have excluded partners of S that have a better quality than any
valid subgraph. More precisely, it can be shown that this abstraction only preserves
fitness. We do not elaborate on this and refer the interested reader to [25]. The exper-
imental results in the next section illustrate the appropriateness of the abstraction.

5 Experimental Results

In this section, we report on experiments with eight service models of industrial size.

5.1 Algorithm and Implementation

Discovering a partner for a given state machine S and an event log L is challenging
because the search space is the infinite set of partners of S. Even the finite abstraction
of the search space to valid subgraphs (see Sect. 4.2) may still be too large to search
for an optimal candidate exhaustively. Thus, we are using a genetic algorithm to find a
good but possibly not a best partner. Genetic algorithms have been successfully applied
for discovering workflow models [18,11]. A genetic algorithm evolves a population of
candidate solutions (i.e., the individuals) step-wise (i.e., in generations) toward better
solutions of an optimization problem. In our setting, an individual is a state machine
R. The quality of a candidate solution is determined by the quality of R (see Def. 10).

Our algorithm employs the general procedure of genetic algorithms, which is
depicted in Fig. 4. It creates children through the operations crossover (i.e., randomly
exchanging subgraphs between two given individuals), mutation (i.e., randomly adding

11

or removing a transition or a final state from a given individual), and replacement
(i.e., replacing a randomly chosen individual by a new, randomly generated individ-
ual). We employ a combination of four different termination criteria: A time and a
generation limit (i.e., the evolution stops after a given amount of time or generations),
a stagnation limit (i.e., the evolution stops if the quality of the high-quality individual
stagnates a given number of generations), and a quality limit (i.e., the evolution stops
if the high-quality individual meets a specified threshold).

Fig. 4: The different phases of the genetic algorithm

We have implemented the genetic algorithm, both with and without the abstrac-
tion presented in Sect. 4.2, in Java as a plug-in [23] in the ProM framework [5].

5.2 Validation

We evaluate the feasibility of our approach by discovering partners for eight service
models of industrial size, see Table 1. The services “Loan Approval” and “Purchase
Order” are taken from the WS-BPEL specification [14], all other examples are
industrial service models provided by a consulting company.

Table 1: Size of the service models, the operating guidelines, and event logs

service S OG(S) event log L

name (abbreviation) |Q| |δ| |Q| |δ| cases events

Car Breakdown (CB) 11,381 39,865 1,449 13,863 300 1,938
Deliver Goods (DG) 4,148 13,832 1,377 13,838 300 1,938
Loan Approval (LA) 30 41 21 84 300 2,537
Purchase Order (PO) 402 955 169 1,182 300 2,537
Internal Order (IO) 1,516 4,996 97 567 300 1,938
Ticket Reservation (TR) 304 614 111 731 300 2,381
Reservations (RS) 28 33 370 3,083 300 2,671
Contract Negotiation (CN) 784 1,959 577 4,859 300 1,938

12

As most services were specified in WS-BPEL, we had to translate them into
state machines using the compiler BPEL2oWFN [15]. For each state machine S, we
calculated the operating guideline OG(S) using the tool Wendy [17]. Next, we used
the underlying state machine T of OG(S) to generate a random event log L using
the tool Locretia [13]. Because T is the “most permissive” partner [16] of S, there
exists a partner exhibiting the observed behavior in L. Each such event log L is free
of noise and consists of 300 cases with about 1,900–2,700 events. Table 1 shows
the details. The size of our generated event logs is the size of event logs successfully
applied to evaluate the genetic process discovery algorithm in [11]. Finally, we used
our implementation to discover a partner of S from OG(S) and L.

As parameters for the genetic algorithm, we used an initial population of 100
individuals, a mutation/crossover/replacement probability of 0.3 with at most 1
crossover point, and elitism of 0.3, i.e., the 30 individuals with the highest quality are
directly shifted to the next generation. The algorithm stops after 1,000 generations,
if it stagnates for 750 generations, if a quality of 0.999 is reached, or if it ran for
60 minutes. To take into account that a discovered service can be simpler than the
subgraph to be compared, we chose a weight of 1 for simplicity and a weight of 2
for all other dimensions. The experiment is available at [22].

To the best of our knowledge, there does not exist any other service discovery
implementation with which we could compare our algorithm. Therefore, we performed
two different experiments: one discovering a partner from the complete search space
and the other from the abstract search space.

The results in Table 2 show that discovered partners in Experiment 1 are more
complex than the ones in Experiment 2; that is, valid subgraphs are smaller than
arbitrary partners. This explains the higher computation time in Experiment 1 by
a factor of 2–10 compared to Experiment 2: Smaller candidates enable the algorithm
to compute more generations in less time.

For the same reason, Experiment 2 produced, in general, partners with higher
fitness. The simplicity values are by Def. 6 higher for Experiment 2. However, dis-
covered partners in Experiment 2 have slightly lower precision and generalization
values than the partners discovered in Experiment 1. Restricting the search space to
valid subgraphs is an abstraction, which neither preserves precision nor generalization.
Despite the loss of preservation of the abstraction, the overall quality is in all examples
better. In particular, if the discovered partner is in Experiment 1 is too large (e.g.,
Car Breakdown, Reservations), then the quality of the respective partner discovered
in Experiment 2 is much better.

Summing up, our experimental results validate that, in general, partner discovery
produces better results on a finite abstraction of the search space than on the complete
search space. Although the abstraction only preserves fitness, the values of the other
three dimensions and the quality are high.

6 Related Work

The term “service discovery” describes techniques for producing a service model from
observed communication behavior of services [6], one the on hand, and techniques for

13

Table 2: Discovery of an ordinary partner (Experiment 1) and a valid subgraph
(Experiment 2) using the genetic algorithm (with quality and time) conducted on
a MacBook Pro, Intel Core i5 CPU with 2.4 GHz and 8 GB of RAM.

discovered partner in Experiment 1 discovered partner in Experiment 2

S |Q| |δ| q fit sim pre gen t |Q| |δ| q fit sim pre gen t

CB > 31k > 31k 0.58 0.11 0.02 0.9 1 1h 75 375 0.96 0.9 1 0.98 0.93 1h
DG 569 568 0.61 0.14 0.14 0.92 1 1h 225 845 0.97 0.91 1 0.98 0.98 29m
LA 33 53 0.91 0.87 0.69 0.99 1 30m 14 29 0.98 0.98 1 0.98 0.97 2m
PO 125 168 0.92 0.96 0.58 1 0.98 1h 81 243 0.98 0.91 1 1 1 5m
IO 61 60 0.57 0.2 0.38 0.85 0.75 1h 9 12 0.89 0.62 1 0.97 0.96 51m
TR 129 219 0.92 0.92 0.64 0.99 0.99 1h 28 111 0.97 0.95 1 0.98 0.94 3m
RS > 24k > 24k 0.48 0.33 0.02 0.33 1 1h 104 372 0.98 1 1 0.91 1 3m
CN 721 720 0.59 0.07 0.05 0.98 1 1h 40 119 0.93 0.81 1 0.98 0.94 1h

finding a service model in a service repository in service-oriented architectures [27],
on the other hand. In this paper, we investigated the discovery of a service model
from observed communication behavior, which corresponds to a particular form of
process mining [3]. Process mining research has been focused on workflows (i.e.,
closed systems) but during the last few years, process mining techniques have also
been applied to services resulting in the term “service mining”. Paper [2] reviews
service mining research and identifies two main challenges regarding the discovery
of services: (1) the correlation of instances of a service with instances of another
service (e.g., [9,21]) and (2) the discovery of services based on observed behavior
(e.g., [12,28,26,8,30,20]). This paper contributes to the second challenge.

In [24], we considered with weak termination a stronger correctness criterion than
deadlock freedom but solely focused on the fitness dimension, thus, ignored the three
other quality dimensions. To make the discovery efficient, we do not discover a “best”
model as in [24] but a model of high quality using a genetic algorithm. The idea of
using an genetic algorithm is inspired by the work of Buijs et al. [11] on discovering
sound workflow models while balancing the four conflicting quality dimensions. In
Sect. 4, we discussed the relation of our metrics for these four quality dimensions
and the metrics used in [11]. For the simplicity metric, we used the structure of
the operating guideline, which does not exist for workflow models. Correctness in
our setting is deadlock freedom of the service composition, a weaker criterion than
soundness in [11]. To deal with correctness in the setting of services, we assume a
service S to be given and we discover a partner of S from observed behavior of S.

Musaraj et al. [26] correlate messages from an event log without correlation infor-
mation and use this information in their discovery algorithm. In contrast, we abstract
from correlation information and assume cases to be independent. Furthermore, our ap-
proach produces a partner of a given service model S and balances the four conflicting
quality dimensions guided by user preferences. Motahari-Nezhad et al. [20] only con-
sider the fitness and the precision dimension and ignore generalization and simplicity
of the discovered service. Like Musaraj et al. [26], they do not assume a service model

14

to be given and, thus, they cannot guarantee that their produced service model can
interact correctly with its environment. Other approaches discover workflow models
from service interaction [12] from interaction patterns [8,30]. Whereas our algorithm
produces a complete service model, [12,8,30] can only discover parts of a service.

7 Conclusion and Future Work

We presented a technique to discover a service model from a given service S and
observed behavior of a service P interacting with S. Our technique produces a service
model for P that can interact correctly (no deadlocks) with S and, in addition,
balances the four conflicting quality dimensions (i.e., fitness, simplicity, precision, and
generalization). As an additional improvement, we proposed an abstraction technique
to reduce the infinite search space to a finite one. As an exhaustive search to find
an optimal solution may still be intractable, we implemented our technique as a
genetic algorithm. In a prototypical implementation, we experimented with several
service models of industrial size. Our results showed that the algorithm finds (nearly)
optimal solutions in acceptable time. It is worth mentioning that our approach is not
restricted to service models but can discover arbitrary reactive systems.

In future work, we aim to extend our presented approach by improving the
simplicity metrics, studying the impact of different weights of the quality dimensions on
the quality of the discovered partner, and investigating how the abstraction technique
based on valid subgraphs can be improved such that it preserves all metrics. We also
plan to extend our approach to stronger correctness criteria than deadlock freedom, e.g.,
weak termination (i.e., the possibility to always terminate in a service composition).

Acknowledgement Support from the Basic Research Program of the National
Research University Higher School of Economics is gratefully acknowledged.〈TODO: Change ref-

erences 22 and 23 into
footnotes? Saves space
and avoids having too
many self references.〉

References

1. Aalst, W.M.P.v.d.: The application of Petri nets to workflow management. Journal
of Circuits, Systems, and Computers 8(1), 21–66 (1998)

2. Aalst, W.M.P.v.d.: Service mining: Using process mining to discover, check, and
improve service behavior. IEEE Transactions on Services Computing (2012)

3. Aalst, W.M.P.v.d.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer (2011)

4. Aalst, W.M.P.v.d., Adriansyah, A., Dongen, B.F.v.: Replaying history on process
models for conformance checking and performance analysis. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)

5. Aalst, W.M.P.v.d., Brand, P.v.d., Dongen, B.F.v., Günther, C.W., Verbeek, E.: ProM
6.2. http://www.promtools.org/prom6/

6. Aalst, W.M.P.v.d., et al.: Process mining manifesto. In: BPM 2011 Workshops
Proceedings. pp. 169–194. Springer-Verlag (2012)

7. Adriansyah, A., Munoz-Gama, J., Carmona, J., Dongen, B., Aalst, W.: Alignment based
precision checking. In: BPI Workshops. lnbip, vol. 132, pp. 137–149. Springer (2013)

http://www.promtools.org/prom6/

15

8. Asbagh, M., Abolhassani, H.: Web service usage mining: mining for executable
sequences. In: WSEAS 2007. vol. 7, pp. 266–271 (2007)

9. Basu, S., Casati, F., Daniel, F.: Toward web service dependency discovery for SOA
management. In: SCC 2008. vol. 2, pp. 422 –429 (2008)

10. Boender, C., Rinnooy Kan, A.: A bayesian analysis of the number of cells of a
multinomial distribution. The Statistician pp. 240–248 (1983)

11. Buijs, J.C.A.M., Dongen, B.F.v., Aalst, W.M.P.v.d.: On the role of fitness, precision,
generalization and simplicity in process discovery. In: CoopIS 2012. LNCS, vol. 7565,
pp. 305–322. Springer (2012)

12. Dustdar, S., Gombotz, R.: Discovering web service workflows using web services
interaction mining. Int. Journal of Business Process Integration and Management 1(4),
256–266 (2006)

13. Heiden, S., Müller, R.: Locretia - generating logs. http://svn.gna.org/viewcvs/

service-tech/trunk/locretia/

14. Jordan, D., et al.: Web services business process execution language version 2.0. OASIS
Standard 11 (2007)

15. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: WS-FM
2007. LNCS, vol. 4937, pp. 77–91. Springer-Verlag (2008)

16. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services. In:
ICATPN 2007. LNCS, vol. 4546, pp. 321–341. Springer (2007)

17. Lohmann, N., Weinberg, D.: Wendy: A tool to synthesize partners for services. Fundam.
Inform. 113(3-4), 295–311 (2011)

18. Medeiros, A., Weijters, A., Aalst, W.M.P.v.d., et al.: Genetic process mining: an
experimental evaluation. Data Mining and Knowledge Discovery 14, 245–304 (2007)

19. Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding the occurrence
of errors in process models based on metrics. In: CoopIS 2007, LNCS, vol. 4803, pp.
113–130. Springer (2007)

20. Motahari-Nezhad, H.R., Saint-Paul, R., Benatallah, B.: Deriving protocol models from
imperfect service conversation logs. IEEE Trans. Knowl. Data Eng. 20(12), 1683–1698
(2008)

21. Motahari Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event correlation for
process discovery from web service interaction logs. The VLDB Journal 20(3), 417–444
(Sep 2010)

22. Müller, R.: Data for the evaluation. https://www2.informatik.hu-berlin.de/top/
en/www/mitarbeiter/richard_mueller#

23. Müller, R.: Service discovery plug-in. https://svn.win.tue.nl/repos/prom/Packages/
ServiceDiscovery/

24. Müller, R., Aalst, W.M.P.v.d., Stahl, C.: Conformance checking of services using the best
matching private view. In: WS-FM 2012. LNCS, vol. 7843, pp. 49–68. Springer (2013)

25. Müller, R., Stahl, C., Aalst, W.M.P.v.d., Westergaard, M.: Service discovery from
observed behavior while guaranteeing deadlock freedom in collaborations. bpm-center.org
(2013)

26. Musaraj, K., Yoshida, T., Daniel, F., Hacid, M.S., Casati, F., Benatallah, B.: Message
correlation and web service protocol mining from inaccurate logs. In: ICWS 2010. pp.
259 –266 (2010)

27. Papazoglou, M.: Web Services - Principles and Technology. Prentice Hall (2008)
28. Rouached, M., Gaaloul, W., Aalst, W.M.P.v.d., Bhiri, S., Godart, C.: Web service

mining and verification of properties: An approach based on event calculus. In: CoopIS
2006, LNCS, vol. 4275, pp. 408–425. Springer (2006)

29. Rozinat, A., Aalst, W.M.P.v.d.: Conformance checking of processes based on monitoring
real behavior. Information Systems 33(1), 64–95 (2008)

http://svn.gna.org/viewcvs/service-tech/trunk/locretia/
http://svn.gna.org/viewcvs/service-tech/trunk/locretia/
https://www2.informatik.hu-berlin.de/top/en/www/mitarbeiter/richard_mueller#
https://www2.informatik.hu-berlin.de/top/en/www/mitarbeiter/richard_mueller#
https://svn.win.tue.nl/repos/prom/Packages/ServiceDiscovery/
https://svn.win.tue.nl/repos/prom/Packages/ServiceDiscovery/

16

30. Tang, R., Zou, Y.: An approach for mining web service composition patterns from
execution logs. In: WSE 2010. pp. 53 –62 (2010)

	Service Discovery from Observed Behavior While Guaranteeing Deadlock Freedom in Collaborations

