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Abstract—To support the whole business process com-
pliance lifecycle, one also needs to monitor the actual
processes and not just check their design. Recently, many
approaches have been proposed that utilize a broad range
of constraint languages and techniques to realize compliance
monitoring solutions. Due to this diversity, the comparison
of existing approaches is difficult and consequently hampers
the evaluation of which approaches are suitable for which
application scenarios. This paper provides a framework to
compare and evaluate existing compliance monitoring ap-
proaches. The framework is based on ten typical Compliance
Monitoring Functionalities (CMFs). These have been derived
using a systematic literature review and five case studies from
different domains. Existing approaches are evaluated based
on the CMF framework, resulting in a list of open questions
and a discussion of new challenges in this field.

Keywords-Process Mining; Business Process Compliance;
Compliance Monitoring; Operational Support

I. INTRODUCTION

For today’s organizations, proving that their business
processes comply with certain regulations has become a
major issue. Even though the necessary compliance checks
are predominantly viewed as a burden [1], business pro-
cesses that violate regulations cannot only cause damage
to an organization’s reputation and thus harm the business
success but can also lead to severe penalties and even
legal actions [2], [3]. In general, compliance checking
deals with the problem of understanding whether actual,
logged traces represent behaviors that are aligned with the
expected behaviors foreseen by compliance rules (such as
business rules, guidelines and best practices, external laws
and internal regulations).

Lifecycle support for process compliance comprises
design time compliance checks, (online) compliance mon-
itoring during runtime and post-mortem compliance anal-
ysis. Compliance monitoring is considered an important
building block in this lifecycle [3] for reasons such as
timely detection of non-compliance as well as provision
of reactive and proactive countermeasures. In particular,
compliance monitoring is related to operational deci-
sion support, which aims at extending the application
of process mining techniques to on-line, running process

instances, so as to detect deviations, recommend what
to do next and predict what will happen in the future
instance execution [4]. In this paper, we explicitly focus
on compliance monitoring approaches.

Fig. 1 depicts the general compliance monitoring archi-
tecture. The business IT tier at the bottom is where the
business processes, scattered over different systems (e.g.,
ERP or CRM tools), are executed. To gather events from
the different systems and make them available for compli-
ance monitoring, an event bus (or a similar infrastructure)
is required. Such event architecture is often already in
place in many companies as part of the middleware stack.

In general, compliance monitoring approaches are
driven by two factors: (1) the compliance rule language
that is used to specify the compliance requirements and
(2) the event format the compliance checks are based
on. Due to the possible heterogeneity of the data sources
employed, an integrated target event format is desirable. In
2010, the IEEE Task Force on Process Mining has adopted
XES (eXtensible Event Stream) [5] as the standard for
storing, exchanging and analyzing event logs. Due to its
extension mechanism, XES enables the consideration of
many aspects relevant in the context of business process,
e.g., time and organizational issues.

Lately, a multitude of compliance monitoring ap-
proaches has arisen that utilize a broad range of languages
to express compliance requirements and different tech-
niques to realize monitoring solutions. Due to this diver-
sity, the comparison of existing approaches is difficult and
consequently hampers the evaluation of which approaches
are suitable for which application scenarios. Hence, the
overall goal of this paper is to provide a framework for
evaluating existing approaches based on typically used
Compliance Monitoring Functionalities (CMFs) using a
style similar to existing frameworks for process patterns
[11], [12], [13].

From a methodological point of view, CMF engineering
can be conducted following the explicitly specified and
well-proven research methodology for engineering process
change and time patterns as applied in [12], [13], i.e., by
1) defining selection criteria, 2) describing the data sources
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Figure 1. The general compliance monitoring architecture

Table I
CASE STUDIES

Domain Project URL Reference
Health care EBMC2 ebmc2.univie.ac.at [6]
Manufacturing Adventure www.fp7-adventure.eu [7]
Higher education HEP www.wst.univie.ac.at/communities/hep/ [8]
Maritime safety Poseidon www.esi.nl/poseidon/ [9]
IT project management SeaFlows www.seaflows.de [10]

and the process of data collection and 3) describing the
CMF identification procedure. In the following, we briefly
discuss how each of these steps was applied in this paper.

1) Selection Criteria: We focus on the elicitation of
functionalities that are relevant for process compli-
ance monitoring, i.e., the observation and enforce-
ment of compliance constraints that are imposed over
business processes during run time. This means that
functionalities for compliance verification at process
design time or compliance by construction are not
considered. Moreover, we exclude monitoring of con-
straints that do not refer to any process activity, e.g.,
integrity constraints on process data elements [14].

2) Data Sources and Collection: The acquisition of the
CMFs used two information sources: a systematic
literature review on process compliance monitoring
approaches [15], [16], [17], [10], [18], [19], [20],
[21], [22], [23], [24] and case studies from five
different domains as summarized in Table I. For the
literature review, we harvested relevant keywords in
the context of compliance monitoring and used them
for literature selection by matching with title and
abstract. The selection of the case studies was mainly
driven by covering different application domains as
well as the availability of the related processes and
compliance requirements.

3) CMF Identification Procedure: We systematically
collected CMF candidates from the different sources
as described above. In principle, we considered ev-
ery CMF discovered from these sources, but only
after “cleaning” and/or aggregating/segmenting the
set of CMF candidates. This resulted in a framework
consisting of 10 CMFs. The cleaning and aggregat-
ing/segmenting task was conducted based on three
rounds of expert discussions. The expert discussions
were conducted along the 10 CMFs in a qualitative
way. As the research area is further developing, more
CMFs may be added to this framework over time.

The main contribution of this paper is the framework of
ten typical functionalities for process compliance monitor-
ing presented in Section II. Existing approaches including
implementations are discussed along the proposed CMF
framework in Section III resulting in a collection of open
challenges and research questions. Section IV concludes
the paper.

II. COMPLIANCE MONITORING FUNCTIONALITIES

We now introduce the framework of Compliance Moni-
toring Functionalities (CMFs). They have been engineered
following the methodology as set out in [12], [13] and
described in Section I. In brief, we first harvested CMF
candidates from a literature study and the five case studies
summarized in Table I. Based on expert discussions,
these candidates were then cleaned and aggregated to the
following ten CMFs. Each CMF is described by listing its
name, a brief problem statement, a description, guidelines
about the evaluation criteria, implementation hints, related
patterns and examples of compliance rules illustrating the
functionality.

CMF 1: Constraints may refer to time
Problem: The bulk of real-world compliance rules involve
the combination of multiple activities or events in time.
Hence, time is obviously one of the most important
dimensions that a compliance rule language must tackle.

Description: Time-related conditions within compliance
monitoring constraints may be qualitative or quantitative
(i.e., metric time). This determines how temporal entities
can be related to each other. A qualitative notion of time
supports comparison between temporal entities without
referring to their actual distance. Typical qualitative tem-
poral patterns are “before” and “after”. Such temporal rela-
tions are utilized, for example, to capture the fundamental
ordering between events constrained by a compliance rule.
In contrast to qualitative time constraints, metric (or quan-
titative) time constraints specify the distance between time



entities. Metric constraints typically refer to deadlines,
delays and latency constraints in compliance rules [25],
[13].
Evaluation criterion: To fully support this functionality,
the approach under evaluation must be able to monitor
qualitative and quantitative time-related conditions.
Implementation: We briefly discuss the case of atomic
timestamps, which are associated to a point-based algebra
(see CMF 4 for a discussion on durative time entities).
Temporal logics such as LTL, CTL* and µ-calculus [26]
all adopt an inherent qualitative notion of time. Thus, they
easily capture qualitative temporal relations such as “be-
fore” or “after”. If not already inherent, such temporal re-
lations can be introduced to the compliance rule language
as the semantics of these relations can be defined over
execution traces (and their linear/branching future). When
metric times come into play, two approaches are typically
followed for their representation: an implicit approach,
embedding them inside temporal operators (like in real-
time logics such as MTL and TLTL [27]) and an explicit
approach, where explicit time variables are introduced and
subject to arithmetic constraints (like in extensions of logic
programming such as the Event Calculus [28]).
Related patterns: CMFs 2, 9.

Examples:
• (Qualitative time) For payment runs with amount beyond
e10,000, the payment list has to be signed before being
transferred to the bank and has to be filed afterwards for
later audits [10].

• (Qualitative time) When an investor receives an amount
of money, she becomes in charge of eventually investing
it in bonds or in stocks and she cannot receive money
anymore before the investment [15] (this is called “alternate
response” in the Declare language [18], [29]).

• (Quantitative time) For Stage 1A patients, an appointment
for sonography has to be made within 12 months (European
Skin Cancer Treatment guideline [30]).

• (Quantitative time) A passenger ship leaving Amsterdam
has to moor in Newcastle within 16 hours [9].

CMF 2: Constraints may refer to data
Problem: Compliance rules often not only define con-
straints on activities or events but also contain conditions
on data processed in a business process.
Description: Data refer to the ability of the compliance
rule language to not only target the control-flow compo-
nent, but also the data component. This leads to data-aware
compliance rules that can include constraints, require-
ments and expectations about data and their values. For
what concerns the constraints’ shape, a major distinction
can be drawn between unary data conditions that just
involve a single data object and extended conditions that
possibly relate multiple data objects at the same time.
Unary data conditions take the form d ⊙ v, where d
is some data object, ⊙ is a comparison operator and v
is some value of d’s domain. Extended data conditions
compare instead expressions involving data objects and
values. According to the classical data-related workflow
patterns [31], we can further distinguish between different

sources of data, namely activity data, i.e., data taken in
input or produced by the activities of a business process
and case data, namely data that are associated to a whole
process instance and can be accessed/manipulated by all
activity instances executed inside the case.1

Evaluation criterion: To fully support this functionality,
the approach must be able to monitor unary data condi-
tions and extended data conditions over activity and case
data.

Implementation: Data-aware compliance rule languages
typically employ variables to denote data objects and con-
ditions to pose constraints over them. The main difference
lies then in the domains of the data objects, as well as in
the “shape” of such constraints. In order to support data-
aware compliance rules, the corresponding compliance
monitoring approach must be able to evaluate the truth
of data conditions. This necessitates access to respective
data sources within the process runtime environment.

Related patterns: CMFs 1, 3. In some approaches, time
and resources can be dealt with at the same way as other
types of data. CMF 9.

Examples:
• (Activity data) The value of the tumor marker CA-125

written by activity blood test before the first cycle of
chemotherapy must be smaller than the value of the tumor
marker CA-125 written by activity blood test executed
after the third cycle of chemotherapy (ESMO clinical
guideline [32]).

• (Case data/extended data condition) If a vessel (case) is of
type fishing boat, the size of the boat is above 25 meters
(100 tons) and it is located at 54 degrees of latitude and 8.5
degrees of longitude, it cannot be engaged in fishing [9].

• (Unary data condition) The value of data element hardCosts
has to be smaller than 250 [33].

• (Comparison of multiple data objects) If the first test
terminates with a certain result code, then all the conse-
quent executions of the test should return the same result
code [10].

CMF 3: Constraints may refer to resources
Problem: Compliance constraints often relate to organi-
zational resources involved in the business process.

Description: Compliance rules often involve not only
the control-flow and the data perspective but also the
organizational perspective of a business process. This is
particularly true for compliance rules stemming from legal
sources. Resource-related conditions in compliance rules
can be considered a special case of data-related constraints
where the data refers to the resources involved. This is
because resource-related information is often represented
as case or activity data. Resource-aware compliance rules
include constraints, requirements and expectations on re-
sources (e.g., agents or roles) associated with activities
or events. Similarly to data-related constraints, we can
distinguish between unary resource conditions expressing
expectations on specific resource properties in isolation

1Note that other data patterns like scope and block data are too fine-
grained in the compliance monitoring setting.



and extended resource conditions relating multiple re-
sources.
Evaluation criterion: To support this functionality, the
approach under evaluation must be able to monitor unary
resource conditions and extended resource conditions.
Implementation: Depending on the particular event
model and the process runtime environment, language-
wise constraints on resources may be dealt with in a
similar manner as data-related constraints. Clearly, the
evaluation of resource-related constraints requires access
to resource information (such as originators, roles, groups)
during process execution. This is supported by the XES
organizational extension (cf. Section I).
Related patterns: CMFs 2, 9.

Examples:
• (Unary resource condition) Projects exceeding 5 days must

be approved by the management.
• (Extended resource condition) Every closed project must be

validated by a person who did not participate in the project
(4-eyes principle).

CMF 4: Supporting not just atomic but also non-
atomic activities
Problem: Activities in a process may be non-atomic, i.e.,
may have a duration. Hence, compliance rule languages
must also support non-atomic activities.
Description: Non-atomic activities are durative activities
whose execution spans across a time interval. While the
execution of an atomic activity is associated to just a single
event attesting that an instance of the activity has been
“done”, non-atomic activities are associated to multiple
events and to a lifecycle that disciplines the allowed
orderings among such events. The lifecycle contains at
least the two event types start and complete. Moreover,
often additional event types such as suspend, resume,
abort are possible [5]. Compliance rules dealing with non-
atomic activities follow either an explicit approach, talking
about their multiple, atomic constitutive events, or an
implicit approach, where the activities are mentioned as
such without referring to their events.
Evaluation criterion: To fully support this functionality,
the approach under evaluation must be able to monitor
explicit or implicit conditions on non-atomic activities.
Implementation: Implementations differ depending on
whether the explicit or implicit approach is adopted.
With the explicit approach, the monitoring framework
must be able to handle at least two types of information
about each event: the activity it refers to and its type,
which must be one of the event types constituting the
activity lifecycle. Since the language directly tackles these
constitutive atomic events, it typically relies on a point-
based algebra to relate their relative position in time. The
implicit approach directly targets activities and assumes
that the time windows corresponding to their (non-atomic)
executions can be reconstructed from the monitored event
stream. Since the monitoring language predicates in this
case over durative temporal entities, it relies on an interval

algebra (such as the one by Allen [34]) to relate the
execution of different activities over time. See [35] for
a survey on temporal reasoning.
Related patterns: CMF 5, which extends CMF 4 with the
ability of modeling and monitoring the activity lifecycle
itself. CMF 9.

Examples:
• (Explicit) A flight payment cannot be canceled more than

twice.
• (Explicit) An order creation cannot be completed until the

customer registration is completed.
• (Implicit) Activity check project can be executed only while

the project is under preparation.
• (Implicit) Activities check project and modify project must

not overlap.

CMF 5: Supporting activity lifecycle
Problem: Non-atomic activities are associated to a life-
cycle defining the allowed orderings of the constitutive
events. Suitable monitoring mechanisms should be pro-
vided to check whether this lifecycle is indeed followed.
Description: The activity lifecycle describes the allowed
executions of events constituting non-atomic activities. In
particular, the lifecycle represents each constitutive event
marking a step of such executions, in which states it can
occur and to which state of the activity it leads. This
latter aspect implicitly defines the allowed orderings of
the constitutive events. The lifecycle is therefore mostly
captured by a state chart (cf. ADEPT [36] or iUPC [37]).
In general, multiple, independent executions of the same
activity (i.e., activity instances) can occur inside a case.
Each such instance corresponds to an instance of the activ-
ity lifecycle. A proper correlation mechanism is required
to correctly manage the progressions of each lifecycle
instance and, in particular, to associate a given event to the
right corresponding lifecycle instance. For example, if two
starts of some activity and two completions of the same
activity occur during a case, it is necessary to identify to
which start event each completion event refers to. From
the monitoring point of view, (meta-)rules capturing the
activity lifecycle and its instances can be used to check
whether the activity executions contained in a given trace
indeed comply with the expected lifecycle constraints.
Evaluation criterion: To fully support this functionality,
the approach under study must capture the activity life-
cycle and implement a correlation mechanism between
events.
Implementation: Implementations of this CMF are pos-
sible if the compliance rule language supports: (i) the
notion of “state”, (ii) a correlation mechanism between
events. Out-of-order events can either be ignored, or
managed by putting the corresponding activity instance
into a special “error” state, pointing out that a deviation
from the expected lifecycle has been detected. Correlation
can be realized by providing a special parameter used
to identify the corresponding activity instance. This way,
two events carrying the same identifier are recognized to
be part of the same lifecycle. Events carrying different



identifiers but referring to the same activity correspond to
different parallel lifecycle instances.

Related patterns: CMFs 4, 9.

Examples:
• (Activation) A start event creates an activity instance and

puts it into the “active” state.
• (Completion) Each completion event moves its associated

activity instance to the “completed” state, provided that the
instance is currently “active”.

• (Balance start/complete events) For every activity instance,
each start event has a single corresponding completion or
cancelation event.

CMF 6: Multiple-instances constraints
Problem: There may be multiple instances of the same
compliance rule in a trace due to multiple, possible parallel
occurrences of the involved activities. Monitoring at the
instance level allows for tracking fine-grained compliance
rules.

Description: When compliance rules are able to constrain
time in a quantitative way (CMF1) and/or data (CMF2)
and/or resources (CMF3), the same compliance rule can
be activated multiple times, as multiple events referring
to the activities targeted by the rule occur, each with its
own timestamp, data and resource information. In fact,
each of such events provides a specific “context” for the
compliance rule. This context is then used to instantiate the
temporal/data/resource conditions possibly associated with
the compliance rule. Consider, for example, the rule stating
that every time an order O is closed by the client, then
order O must be eventually delivered by the warehouse.
Clearly, the constraint is instantiated for each specific
closed order and each instance has its own evolution
depending on events specific for this order. For example,
it could happen that two orders are closed but only one
is delivered. In this case, two instances of the compliance
rule should be generated by the monitoring framework,
then judging one of them as satisfied and the other one as
violated. A discussion on multiple instances handling can
be found in [10], [25].

Evaluation criterion: To support this functionality, the
approach under evaluation must be able to monitor mul-
tiple instances based on metric time and/or data and/or
resources.

Implementation: Supporting multiple instances of a com-
pliance rule requires mechanisms to discriminate between
different rule activations. This can be achieved by pre-
cisely characterizing which information (time, data, re-
sources) contributes to define the “context” of the rule
(see the examples below) and which are the events that
create separate instances of the rule by filling this context
with specific values. Each observed rule instance has to
be associated with a separate compliance state in order to
assess compliance at the rule-instance level.

Related patterns: CMFs 1, 2, 3, 9. Notice that CMF 5
and 6 are both concerned with introducing fine-grained
analysis of compliance rules, but while CMF 5 focuses on

multi-instance support for tasks, CMF 6 deals with multi-
instance support for compliance rules. Hence, it may be
the case that one of the two CMFs is supported, while the
other is not.

Examples:
• (Multiple instances based on timestamps) Every final sub-

mission has to be corrected within 6 weeks. Here, every
submission cycle termination creates an instance of the
compliance rule determined by its timestamp t; the instance
then checks that the correction occurs between t and t+6,
assuming a granularity of weeks [8].

• (Multiple instances based on data and resources) The
carbon footprint of a supplier must not exceed a value
of x. Depending on the number of suppliers modeled as
resources, the constraint is instantiated multiple times. If
suppliers can be added during runtime, the number of
constraint instantiations will increase accordingly.

CMF 7: Ability to reactively detect and manage com-
pliance violations

Problem: If a violation is tailored to logical inconsistency,
the computed answer of a monitor approach would simply
be repeatedly “non compliant”. However, a compliance
monitoring approach may accommodate a variety of ad-
ditional advanced features (besides detection) to continue
the monitoring after a violation takes place, give feedback
to the user and suggest compensation actions.

Description: In the context of reactive detection and
management of compliance violations, these factors can
be exploited to characterize the degree of support provided
by a compliance monitoring approach:

• Detection, the ability to detect compliance violations.
• Continuous monitoring, the ability to continue mon-

itoring after a violation.
• Feedback, the ability to provide detailed compliance

reports (see CMFs 9 and 10).
• Recovery and compensation mechanisms, used to

react to a violation with proper countermeasures.

Evaluation criterion: To support this functionality, the
approach under evaluation must implement one or more
recovery mechanisms to guarantee continuous monitoring.
In addition, the approach must provide fine-grained feed-
back to the user.

Implementation: As for recovery and compensation, an
added feature of the compliance rule language is the ability
of dealing with violations. An event violating a rule can be
used to contextualize it, making the rule active only when
some violation takes place. This kind of rule represents
a form of recovery or compensation, which introduces
further constraints/requirements upon a violation. This
can be realized, for example, by means of the so-called
contrary-to-duty operator [38] to the compliance rule
language. Continuous monitoring can be a challenge for
logic-based approaches (e.g., [18]) as the approach must
be able to tolerate inconsistencies to continue monitoring
after a violation occurred. In [15] the authors introduce
some recovery capabilities to realize different strategies
for continuous monitoring showing that automata based



approach are able to accommodate sophisticated recovery
mechanisms.

Related patterns: CMFs 6, 8, 9, 10.

Examples:
• (Recovery and compensation) Generally, the patient has to

formally confirm that she has been informed about risks
prior to invasive treatments. If this is not the case (e.g., in
emergency cases), this has to be documented and the patient
has to be informed about the treatment risks afterwards
(contrary-to-duty obligation).

CMF 8: Ability to pro-actively detect and manage
violations
Problem: While recovery and compensation measures
may be applied when detecting a violation, the violation
itself cannot be undone. To prevent possibly costly com-
pensation, a compliance monitoring approach should be
able to provide support for pro-actively detect and manage
possible compliance violations.

Description: Pro-active support includes detecting future
violations and mechanisms for preventing violations. Fu-
ture violations are violations whose source is not yet
explicitly contained in the trace. They can be detected by
implicit violations caused by currently conflicting rules.
The presence of conflicting rules identifies violations that
cannot be revealed by considering each compliance rule
in isolation, but only by merging the contribution of two
or more compliance rules. The early detection of such
future compliance violations enables timely preparation
of recovery and compensation actions. Support for pre-
venting violations refers to the ability of a compliance
monitoring framework to provide assistance for complying
with imposed rules before compliance violations become
manifest. This comprises, for example, predictions and
recommendations of activities to be executed next in order
to preserve compliance.

Evaluation criterion: To support this functionality, the
approach under evaluation must implement mechanisms
for the early detection of conflicting conditions or provide
the user with recommendations about what to do next to
avoid violations.

Implementation: Future violations as described can be
detected when considering the interaction of all imposed
compliance rules. A typical task is evaluating whether the
compliance rules are not conflicting a-priori, i.e., that the
whole set of rules admits at least one compliant execution
trace. However, compliance rules that are not conflicting in
general may still become conflicting at some point during
the process execution. Thus, checking of compliance rules
at design-time or per individual constraint, is not sufficient
for detecting all types of future violations. It should be
noted that supporting such implicit violations can become
quite costly and the cost grows with the amount of rules
involved. For expressive compliance rule languages, this
becomes even undecidable. The identification of suitable
decidable compliance rule patterns for data- and time-
aware compliance rules is still an open challenge. To

avoid violations in a running process instance, it is also
possible to give recommendations about what to do next
by exploiting complete cases stored in event logs (e.g.,
using process mining techniques).
Related patterns: CMFs 7, 9, 10.

Examples:
• (Early detection of a violation) Every time an order is deliv-

ered, the warehouse must be replenished. If the replenish-
ment truck is broken, the warehouse cannot be replenished.
Consider an execution where the truck is broken and the
order delivered. Approaches able to detect conflicts among
rules would in this case point out an (implicit) violation:
the first constraint requires a replenishment and the second
forbids it.

• (Predictions and recommendations) Requests for building
permits need to be handled within 3 months. Based on
historic information, i.e., comparing a request currently
being handled with earlier requests, one can predict the
remaining processing time. A counter measure is taken if
the predicted remaining processing time is too long.

CMF 9: Ability to explain the root cause of a violation
Problem: Key to the practical application of a compliance
monitoring approach is its ability to pinpoint the root
cause of a compliance violation beyond providing the
counterexample that resulted in the violation. This is
particularly true when a compliance rule can be violated in
multiple ways or multiple rules are involved in a violation.
Description: Root cause analysis enables to diagnose the
root cause of a compliance violation, e.g., by isolating the
responsible event occurrences or the involved compliance
rules. Note that this kind of analysis is far from trivial and
sometimes could lead to multiple possible explanations or
to no explanation at all. Consider, for example, the case
of a sequence of events that culminates in the expiration
of a deadline: isolating the responsible events in this case
is impossible in general. Similarly, as discussed in [16]
there can be multiple sets of compliance rules that are
involved in a violation at the same time and therefore fine-
grained analysis is needed to identify the minimal set(s)
of conflicting rules. Beside the root cause analysis itself, it
is also of utmost importance to provide suitable ways for
communicating the result of the analysis to the end users
in a comprehensible and intuitive manner [10].
Evaluation criterion: To support this functionality, the
approach must implement mechanisms for root cause
analysis.
Implementation: For future research, effort should be
taken to provide diagnostics and proactive recommen-
dations based on the identification of the root cause
of a violation as this is so far addressed by only few
approaches [10], [17], [16].

Examples:
• (Root-cause of a violation within one rule) After the

component test is finished, an integration test has to be
conducted. Conceivably, it is required that the component is
not changed between these tests (as then a new component
test becomes necessary). If the component test is finished
and yet the component is changed before the integration



test is finally carried out, clearly the constraint is violated.
However, the root-cause is not that no integration test was
conducted but that the component was modified before the
integration test [10].

• (Root-cause of a violation involving multiple rules) If
medicine A is administered, follow-up medication with B
becomes necessary. If medicine C is administered, follow-
up medication with D is needed. Due to an incompatibility,
B and D must not be administered together. Even though
there is no incompatibility between A and C, if tasks
administer A and administer C both occur in a process,
this will cause a violation.

CMF 10: Ability to quantify the degree of compliance
Problem: Compliance metrics and indicators should be
employed by a monitoring framework in order to provide
aggregated feedback to the users, summarizing the detailed
information computed for each compliance rule.

Description: The practical feasibility of a compliance
monitoring approach also relies on its ability to give
practitioners a sense of the compliance situation. For that,
crisp approaches associating two possible truth values
to each compliance rule, representing whether it is sat-
isfied or violated, is not sufficient. In contrast to crisp
compliance characterization, fuzzy approaches allow for
a range of values to capture the “degree of compliance”
of the running trace with respect to a compliance rule.
In this respect, we differentiate between approaches that
discretize the possible truth values from approaches that
adopt continuous distributions between 0 (violation) and
1 (satisfaction).

Evaluation criterion: To support this functionality, the
approach under evaluation must be able to characterize
the “healthiness” of a running trace through metrics.

Implementation: A typical approach to quantify the de-
gree of compliance is to “count” the number of viola-
tions and devise meaningful metrics that give a measure
about the overall compliance degree of a running process
instance. This is particularly effective when multiple-
instances are managed (cf. CMF 6). More fine-grained
metrics can be devised by using detailed information about
individual violations. Approaches using a continuous scale
need to calculate a “degree” of compliance, rather than
simply providing a yes/no answer. E.g., in the case of
a deadline, a matching function could assign different
noncompliance weights to traces missing the deadline,
depending on the amount of time that exists between the
deadline and the (late) event occurrence.

Related patterns: CMFs 1, 2, 3, 7.

Examples:
• (Metrics) A vessel cannot be not under command, a ves-

sel with one occurrence of not under command is more
“healthy” than a vessel with nine occurrences of not under
command [9].

• (Fuzzy) A passenger ship leaving Amsterdam has to moor
in Newcastle within 16 hours. It is desirable to judge with
different degrees of violation a ship arriving in Newcastle
after 16 hours and ten minutes and a ship arriving in
Newcastle after 18 hours [9].

III. EVALUATION

We evaluated compliance monitoring approaches using
the 10 CMFs presented in this paper. We focused on
compliance monitoring approaches, which mainly address
compliance checks during the process execution. These
approaches are different from other approaches that can
be used in other phases of the process lifecycle such as
process design (e.g., [39]) or the modeling of compliance
constraints (e.g., [1], [40]) and trigger specific questions.
For example, monitoring is carried out with actual data and
by considering finite, evolving prefixes of event traces.

Furthermore, we selected the approaches to be evaluated
based on the degree of detail on concepts provided in
publications. In fact, a certain degree of detail (for exam-
ple, in the used compliance rule languages) is necessary
in order to properly evaluate the approaches through our
framework. In addition, in order to compare them in terms
of performance and effectiveness, toolset availability is
crucial. The results of the evaluation are shown in Table II,
where “-”, “+” and “+/-” indicate functionalities that are
not supported, supported and partially supported from the
conceptual viewpoint. Bold emphasizes cases for which
an implementation is publicly available.

Mobucon LTL [15], [16] deals with a qualitative notion
of time (being based on LTL) but it does not support con-
straints concerning metric time. Mobucon LTL monitors
finite-trace LTL constraints through deterministic finite
state automata. Therefore, it does not tackle constraints
referring to data and resources (ranging over finite state)
because of the state space explosion problem. With this
approach, it is possible to express rules on non-atomic
activities but it does not fully support the monitoring of
activity lifecycle. Indeed, with this approach it is possible
to associate an event type to each occurrence of an activity.
However, a correlation mechanism to link different events
belonging to the lifecycle of the same activity cannot be
defined. This is, again, related to the impossibility for an
automata-based approach of monitoring constraints refer-
ring to data. Indeed, the most natural way of implementing
such a correlation mechanism would be to connect events
with the same value for a certain data (e.g., an activity ID).
Mobucon LTL provides proactive support. Indeed, it is
able to detect violations caused by the interplay of two or
more constraints. The approach has been implemented and
deployed as a ProM operational support plug-in.2 The tool
only supports simple metrics for quantifying the degree of
compliance of a case [41].

In [41], the authors also provide ways for quantifying
the degree of compliance in Mobucon EC [25]. However,
also in this case, more sophisticated measurements for a
thorough compliance evaluation are still missing. The core
functionalities of Mobucon EC have been implemented
in Prolog and are publicly available.3 The integration
with the operational support backbone of ProM is an
ongoing effort. Being based on the Event Calculus, it

2http://www.win.tue.nl/declare/mobucon/
3https://www.inf.unibz.it/∼montali/tools.html



Table II
CMFS AND EVALUATION OF SOME MONITORING APPROACHES

APPROACH CMF 1 CMF 2 CMF 3 CMF 4 CMF 5 CMF 6 CMF 7 CMF 8 CMF 9 CMF 10
time data resources non-atomic lifecycle multi-

instance
reactive
mgmt

proactive
mgmt

root cause compl.
degree

Mobucon LTL +/- - - + - - + + + +/-
Mobucon EC + +/- + + + + + - +/- +/-
ECE Rules + +/- + + - - + - +/- +
Supervisory Control Theory +/- - + + + - - + - -
SeaFlows +/- +/- +/- + +/- + + + + +/-

can easily accommodate explicit (metric and qualitative)
time constraints and activity data. Accordingly, it manages
multiple constraint instances, with a limited form of root
cause analysis (it is possible only to associate violations
to compliance rule instances). Currently, case data is
not supported. Due to the richness of the language, the
framework cannot afford to support pro-active detection
of violations, but only violations that are explicitly present
in the monitored trace. In particular, it can only check the
trace of events collected so far, but not analyze the possible
future executions.

Similar limitations also apply to ECE rules [42]. Note
that ECE rules are a domain-independent approach that
was not specifically tailored for business process mon-
itoring. Therefore, functionalities like support for case
data and activity lifecycle were simply not investigated
(this is matter of ongoing work). ECE rules can deal
with both atomic and non-atomic temporal entities, cap-
turing qualitative and metric time constraints, as well as
point-based and interval-based ones. Two key features
characterize ECE rules. First, they support an imperfect
(i.e., fuzzy and probabilistic) matching between expected
and occurred events and hence deal with several fine-
grained degrees of compliance. Second, expected events
can be decorated with countermeasures to be taken in
case of a violation, hence providing first-class support for
compensation mechanisms.

The framework described in [17] is based on Su-
pervisory Control Theory. This approach allows for the
definition of constraints on resources but, in general, it
does not support data conditions. Through this approach,
it is possible to supervise the process-aware information
system by “blocking” those events that would lead to a
violation. This can be considered as a very sophisticated
form of proactive violation management, which is appli-
cable only when the process-aware information system
can be (at least partially) controlled by the monitor. Since
violations are prevented, the framework does not directly
consider the problem of reactive management nor violation
explanation.

SeaFlows [10] aims at encoding compliance states in an
easily interpretable manner to provide advanced compli-
ance diagnosis. While qualitative time is supported in the
graphical compliance rule language of SeaFlows, quanti-
tative time is not supported. It supports unary data and
resource conditions over activity and case data. However,
extended data/resources conditions are not yet addressed.
Even if the activity lifecycle is not addressed, SeaFlows

provides a correlation mechanism for events that can be
exploited for providing activity lifecycle support. Proactive
support in terms of guiding the process execution to
avoid compliance violations is supported. Even if the
compliance states of multiple compliance rule instances
can be aggregated to provide an overall compliance degree,
the framework still lacks a deeper investigation about
metrics.

As can be seen from Table II, several approaches deal
with CMFs 1 - 4. Further work needs to be done in
terms of supporting extended data and metric time condi-
tions. Fundamental issues such as detection of violations
are already well-understood as well. Better user support
in detecting and managing compliance violations and
explaining reasons for compliance violations should be
provided (CMFs 7 - 9). Activity lifecycle and multiple-
instances constraints are also not well supported (CMFs
5 - 6). Referring to CMF 10, sophisticated compliance
metrics are still missing.

IV. CONCLUSION

In this paper, we provided a framework for the sys-
tematic evaluation of compliance monitoring approaches
in the business process management area. Based on the
evaluation framework, we analyzed five state-of-the-art
approaches. Our evaluation pointed out that compliance
monitoring poses challenges related to representation lan-
guages, semantics of compliance, monitoring technologies
and reasoning facilities. None of the five approaches fully
supports more than six CMFs and most approaches are
not supported by publicly available software tools. As far
as the language perspective is concerned, further research
is needed in order to devise next-generation compliance
rule languages that are able to suitably mediate between
expressiveness and tractability. There are obvious relations
between compliance monitoring, query languages and data
stream analysis, so as with related fields such as policy
management and enforcement (see, e.g., [43]). We believe
that the cross-fertilization of the different research areas
would be beneficial. Moreover, there is a need for bench-
mark data sets to compare the different approaches and
tools with respect to performance and effectiveness.
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