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Today, large business processes are composed of smaller, autonomous, interconnected sub-systems, achiev-
ing modularity and robustness. Quite often, these large processes comprise software components as well
as human actors, they face highly dynamic environments and their sub-systems are updated and evolve
independently of each other. Due to their dynamic nature and complexity, it might be difficult, if not impos-
sible, to ensure at design-time that such systems will always exhibit the desired/expected behaviors. This, in
turn, triggers the need for runtime verification and monitoring facilities. These are needed to check whether
the actual behavior complies with expected business constraints, internal/external regulations and desired
best practices. In this work, we present Mobucon EC, a novel monitoring framework that tracks streams of
events and continuously determines the state of business constraints. In Mobucon EC, business constraints
are defined using the declarative language Declare. For the purpose of this work, Declare has been suit-
ably extended to support quantitative time constraints and non-atomic, durative activities. The logic-based
language Event Calculus (EC) has been adopted to provide a formal specification and semantics to Declare
constraints, while a light-weight, logic programming-based EC tool supports dynamically reasoning about
partial, evolving execution traces. To demonstrate the applicability of our approach, we describe a case study
about maritime safety and security and provide a synthetic benchmark to evaluate its scalability.

Categories and Subject Descriptors: D.1.6 [PROGRAMMING TECHNIQUES]: Logic Programming; D.2.5
[SOFTWARE ENGINEERING]: Testing and Debugging - Monitors; F.3.2 [LOGICS AND MEANINGS
OF PROGRAMS]: Semantics of Programming Languages - Process Models

General Terms: Languages, Management, Verification

Additional Key Words and Phrases: Business Constraints, Declarative Process Models, Event Calculus, Run-
time Verification, Monitoring, Operational Decision Support, Process Mining

1. INTRODUCTION
Today’s systems typically operate in dynamic, complex and interconnected environ-
ments. Larger systems are composed of smaller systems and evolve over time, be-
coming different from their initial design: e.g., sub-systems could be updated inde-
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pendently of each other or small parts of the system could slightly change interfaces
and interaction patterns, etc. Such systems need to deal with dynamic environments,
where many unexpected events can happen, thus creating situations that are not pos-
sible to foresee at design time. Moreover, in many cases human actors also take part
in processes, together with software components. All these characteristics make it dif-
ficult to ensure that such large systems behave as expected.

Nevertheless, organizations need to guarantee the correct and safe execution of pro-
cesses. For example, new legislation is forcing organizations to put more emphasis on
compliance to internal/external regulations. Moreover, there is a continuous pressure
to meet deadlines and improve response times. Consequently, the number of accept-
able systems’ behaviors is reduced by such requirements. We use the term (business)
constraint [Montali 2010] to refer to any rule that specifies or constrains the set of
acceptable behaviors. Some constraints can be enforced by an explicit and machine-
interpretable model representing the acceptable execution flows for one system in iso-
lation. However, it is unreasonable to think that all constraints can be incorporated in
such executable description. First, the integration of diverse and heterogeneous con-
straints would quickly make models unreadable and tricky. This would become even
more critical when the system behavior is modeled using procedural, workflow-like ap-
proaches, as business constraints are inherently declarative [Pesic and van der Aalst
2006; Montali et al. 2010]. Secondly, business constraints often target uncontrollable
aspects, such as activities carried out by internal entities working in an autonomous
way (e.g., people) or by external components, independently from the system itself.

Given that such business constraints cannot be directly incorporated at design time
into the system, it would be sufficient that they are satisfied by the system when it
is enacted. Obviously, this is possible only if information about the running system
is tracked, stored and made available for analysis. Fortunately, as argued by van der
Aalst et al. [2010], this is the case for the majority of today’s systems: detailed informa-
tion about the system dynamics and, in particular, the executed activities is typically
stored and made available in high-quality event logs. This enables the application of
process mining techniques [van der Aalst 2011], to “evaluate all events in a business
process and do so while it is still running”. The runtime aspect is of particular im-
portance: noncompliant state of affairs could indicate wrong/dangerous situations or
fraud; hence, they must be promptly detected, to generate suitable alerts and trigger
recovery or compensation mechanisms. The application of process mining techniques
to monitor and guide running cases is referred to as operational (decision) support
[van der Aalst et al. 2010], and it is a relatively new area. Operational support helps
business practitioners in the evaluation of all relevant factual data, not only of se-
lected samples, and works in a “push-button” way. It can be used to check conformance,
predict the future and recommend what to do next. In the context of this work, we fo-
cus on the first task, proposing a novel verification framework, called Mobucon EC
(Monitoring business constraints with Event Calculus), able to dynamically monitor
streams of events characterizing the process executions (i.e., running cases) and check
whether the constraints of interest are currently satisfied or not.

The realization of a business constraints monitor poses two key requirements. On
the one hand, the monitoring framework must be able to capture the complexity of
business constraints, providing at the same time faithful, correct and founded results.
To this end, there is a need for expressive languages to suitably define business con-
straints: such languages must have a formal and precise semantics and should be
equipped with sound reasoning algorithms and tools. On the other hand, the moni-
tor must produce such results in a timely fashion, being the analysis carried out on-
the-fly, during the system execution. These requirements ask for a suitable trade-off
between expressiveness and tractability. In this respect, Mobucon EC relies on De-
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clare, a declarative language for business constraints [Pesic and van der Aalst 2006].
To meet the expressiveness requirements, we focus on an extended version of Declare
constraints, supporting durative actions and quantitative time aspects, such as de-
lays and deadlines [Montali et al. 2010; Montali 2010]. We do not tackle data-related
aspects, but they can be seamlessly incorporated in our approach. Here, we provide De-
clare with a formal semantics based on the Event Calculus (EC) [Kowalski and Sergot
1986; Shanahan 1999]. The EC is a logic-based, expressive framework that allows us
to model complex knowledge bases dealing with events and properties (fluents) whose
truth value evolves over time. Hence, it is able to declaratively represent and rea-
son about how the events that characterize the execution of a process instance affect
the “state” of Declare constraints. Monitoring is then carried out using a light-weight,
logic programming-based EC axiomatization for dynamically reasoning about partial
and evolving traces [Bragaglia et al. 2012], thus meeting the performance require-
ment. This is achieved by suitably evolving the seminal idea of Cached Event Calculus
(CEC), firstly proposed by Chittaro and Montanari [1996].

Unlike approaches that bind the notion of constraint violation to logical inconsis-
tency (thus halting when the first violation is encountered), through the formalization
of “constraint instances”, Mobucon EC provides continuous support, without interrupt-
ing its functioning even after a violation. This is highly desirable, because the moni-
tored system evolves in an autonomous manner and there is no guarantee that it will
halt when a violation is encountered.

To demonstrate the potential of our approach, we discuss two different case studies.
The first one focuses on a real process in the context of maritime safety and secu-
rity, where extended Declare constraints are used to declaratively state the allowed
behaviour of vessels that cross a specific area. The second case study focuses on an ex-
tensive synthetic benchmark with randomly generated constraint models and traces:
the aim is to assess the feasibility, performance and scalability of Mobucon EC. Mobu-
con EC has been fully implemented inside ProM [Verbeek et al. 2010], the most widely
used process mining framework. Version 6.1 of ProM embeds an operational decision
support infrastructure. Mobucon EC exploits this infrastructure to monitor any system
whose dynamics is represented by event streams.

In summary, in this work we introduce the formalization of time-aware Declare con-
straints and non-atomic activities using the EC and the application of our reactive
reasoner to the setting of process monitoring: this is our scientific contribution. More-
over, this work introduces the Mobucon EC framework and discuss its application to
real cases as well as synthetic benchmark with randomly generated constraint models
and traces.

The remainder is organized as follows. Sections 2 and 3 provide some preliminar-
ies, introducing the Declare framework and the EC. Section 4 discusses how Declare
constraints and process execution traces can be formalized as an EC theory. Section 5
deals with the Mobucon EC implementation and its evaluation. An overview of related
work and a conclusion complete the paper.

2. THE DECLARE NOTATION
We provide a brief introduction to Declare. For a comprehensive description of the lan-
guage, we refer the interested reader to [Pesic and van der Aalst 2006; Pesic et al. 2007;
Pesic 2008; Montali 2010]. Declare is a language for the constraint-based, declarative
specification of processes. Instead of rigidly defining the control flow, it focuses on the
(minimal) set of rules that must be satisfied in order to correctly execute the process. It
hence accommodates flexibility by design, providing a set of modeling abstractions that
suitably mediate between control and flexibility. Differently from procedural specifica-
tions, where activities can be interconnected by means of sequence patterns, mixed
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with constructs that explicitly tackle the splitting and merging of control flows, De-
clare provides a number of control-independent business constraints to interconnect
activities. It is possible to use constraints referring to the future or to the past, as well
as constraints that do not impose any ordering among activities. Furthermore, Declare
models are open: any activity can be freely executed, unless it is explicitly stated oth-
erwise by means of a constraint. On the one hand, openness guarantees flexibility: all
the executions that do not violate any constraint are implicitly allowed. On the other
hand, to tune the degree of openness supported by the model, suitable abstractions are
dedicated to capture not only what is required, but also what is forbidden. In this way,
the modeler is not bound to explicitly enumerate the acceptable executions and models
remain compact: they specify desired/undesired events, leaving unconstrained all the
executions that are neither mandatory nor forbidden.

Even though concurrency constructs are not explicitly present in Declare, concur-
rency is natively supported: as long as the stakeholders involved in a process instance
behave within the boundaries imposed by the business constraints, they are free to
choose the most appropriate way of executing activities (including the case in which
they are executed in parallel).

2.1. Declare models
A Declare model is composed of a set of business constraints, which, in our case, are
used to monitor the execution of an external, uncontrollable process. Constraints are
attached to one or more activities and are used at execution time to define the ac-
ceptable executions of the corresponding activity instances. In the basic setting, each
activity represents an atomic unit of work and is therefore traced by means of a single
event occurring at some time point during the execution of a case. In the following, we
first give an overview of Declare constraints applied over atomic activities and then we
discuss how non-atomic activities can be seamlessly treated by our approach.

A Declare model is typically designed in two steps. First, the relevant activities of the
application domain are elicited and inserted into the model. At this stage, the model is
completely unconstrained and the activities can be performed an arbitrary number of
times, in whatever order. Then, Declare constraints are added to capture the business
constraints of the system, leading to a partially closed model: only those executions
that comply with constraints are now accepted.

2.2. Constraints
To support several application domains, ranging from closed, prescriptive settings
to flexible, adaptive ones, Declare supports a rich (extensible) set of business con-
straints. They are grouped into four families: existence, choice, relation and negation
constraints. Existence constraints are unary cardinality constraints expressing how
many times an activity can or must be executed. For example, the Declare model

2..∗

get info
0

publish info

contains two existence constraints: existence 2, specifying that activity get info must
be executed at least twice and absence, stating that activity publish info cannot be
executed. Such constraints are parametric in the actual numbers; in the general case,
existence N states that the involved activity must be executed at least N times, while
absence N states that the involved activity can be executed at most N−1 times. Choice
constraints are an extension of existence constraints that tackles multiple activities
at the same time; more specifically, they are n-ary constraints expressing that one or
more activities must be executed, choosing them from a set of possible alternatives.
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Table I. Some Declare relation constraints, together with their corresponding negated version

a •−−−− b
Responded existence When a is
executed, b must be executed either
before or afterwards

a •−−−−‖ b
Responded absence If a is exe-
cuted, b can never be executed in
the same case

a •−−−I b
Response Every time a is exe-
cuted, b must be eventually exe-
cuted afterwards

a •−−−I‖ b
Negation response When a is ex-
ecuted, b cannot be executed after-
wards

a •===I b

Alternate response Every time a
is executed, b must be consequently
executed, before a further occur-
rence of a

a •===I‖ b

Negation alternate response If a
is executed twice, b cannot be exe-
cuted between the two occurrences
of a

a •=−=−=−I b Chain response Every time a is
executed, b must be executed next a •=−=−=−I‖ b

Negation chain response Every
time a is executed, b cannot be exe-
cuted next

Relation constraints are binary constraints requiring the execution of some “target”
activity when some other “source” activity is executed. The source activity is graphi-
cally identified using a “bullet” notation. Every time the source activity of a relation
constraint is executed, the constraint requires the execution of another (target) activ-
ity. As shown in Table I, depending on the constraint type, additional requirements
may be imposed on the target activity, making the constraint harder or softer.

Relation constraints cover many possible qualitative temporal relationships among
two distinct activities: responded existence does not impose any ordering, response re-
quires an “after” ordering, while precedence (not shown in Table I, but included in
Fig. 1) imposes a “before” ordering. Note that Declare, in its basic version, only sup-
ports a qualitative notion of time: constraints could specify the expected relative posi-
tions among two event occurrences, but they cannot express metric distances between
them. Later in the paper, we overcome this limitation.

Another important aspect of the language is that relation constraints can be gener-
alized in such a way that multiple source or target activities can be interconnected by
a single constraint. In this case, the constraint is called a branching constraint. The
semantics of branching corresponds to disjunction among event occurrences, which
translates in the following behavior: a branching on the source side means that the
constraint triggers whenever one of the source activities is executed, whereas a branch-
ing on the target side implies that the constraint is satisfied by the (proper) execution
of any target activity. For example, a branching chain response with a as source and b
and c as targets is satisfied if, whenever a is executed, one among b and c is executed
next. This shows that constraints with a branching target involve an implicit choice.

Negation constraints are the negative version of relation constraints: they forbid the
execution of some activity when a certain state of affairs is reached. Table I shows
the correspondence between some relation constraints and their negative counterpart;
the parallel clearly attests that each negation constraint forbids the presence of an
activity, while the same activity is expected by the corresponding positive constraint.
Notice also that negation constraints can branch as well, with the same disjunctive
semantics adopted for relation constraints.

Fig. 1 shows a sample process modeled in Declare. It deals with the flexible man-
agement of an order. A customer has the possibility of adding items, submitting the
order to the seller and paying it. The seller, in turn, handles the delivery of orders and
of the corresponding payment receipts. The execution of activities is governed by con-
straints, which implicitly identify the acceptable courses of execution. In particular, an
order can be submitted only if at least one item has been chosen (precedence (1)) and
no further items can be chosen after having submitted an order (negation response).
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deliver 
orderpay

order
submit
order

choose
item send 

receipt

negation response

precedence (1)
precedence (2)

responded existence

response

Fig. 1. An order management process in Declare

An order can be paid only if it has been previously submitted (precedence (2)) and the
payment triggers two expectations: the order must be delivered either before or after-
wards (responded existence) and a receipt must be consequently sent as well (response).

This example shows the flexibility of Declare: the same model accommodates many
possible executions. For example, it is acceptable that a case is ended by the customer
before submitting an order or after having submitted an order without paying it (but
when the order is paid, the seller is expected to deliver the order and the receipt).
Hence, trace choose item → choose item → submit order is compliant with the model.
Trace choose item → submit order → choose item is instead noncompliant: it violates
the negation response constraint. Thanks to the loose nature of the responded existence
constraint, the model seamlessly supports the situation in which the seller waits for
the payment before delivering the order, but also the case in which an order is delivered
before the payment (trusted customer) or even without the payment (free gifts orders).
Finally, notice that it is possible to execute deliver order and send receipt an arbitrary
number of times, even without executing other activities. These particular executions
are meant to support multiple attempts of such activities, as well as to support cases
in which a “gift” order is autonomously delivered by the company or where another
receipt is sent again for an order that was previously delivered.

2.3. Extending Declare with Metric Constraints and Non-Atomic Activities
The basic Declare approach has been extended with non-atomic activities, quantitative
time constraints, task data and data-aware conditions [Pesic 2008; Montali 2010; Mon-
tali et al. 2010; Montali et al. 2013]. In this work, we focus on the first two extensions,
showing how they can be formalized in the EC for monitoring purposes. The approach
can be easily extended to incorporate data-aware conditions as well (see Section 7).

Non-atomic, durative activities are activities whose execution spans over a time pe-
riod and is driven by multiple event occurrences. Their incorporation in the language
requires three steps: (i) the identification of the atomic events characterizing the exe-
cution of an activity; (ii) the definition of the activity lifecycle, i.e., a description of the
acceptable orderings in which such events may occur; (iii) an extension of the graphi-
cal notation so as to properly handle non-atomic activities. In this paper, we adopt the
simple activity lifecycle proposed by Pesic [2008] for Declare, but the approach is able
to cover more complex lifecycles as well. In the lifecycle considered here, each activity
is associated to a start event (s for short), marking the beginning of the activity, and
to a consequent completion (c for short) or cancelation (x for short) event, respectively
marking the proper or premature termination of the activity. We can graphically ex-
tend the notation of Declare activities with “ports” that explicitly account for these
three event types, as shown in Fig. 2. In this way, the modeler can attach constraints
to any of such ports. This makes it possible to model fine-grained constraints such as
“when activity a is completed, then activity b must be eventually started” or “activity c
cannot be canceled until activity a is completed”. These three event types are connected
by the following lifecycle constraints:
— activity termination - every start event must be eventually followed by a corre-

sponding single completion or cancelation event;
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aa
s c

x

Fig. 2. Representation of atomic and non-atomic activities

— completion consistency - every completion event must be preceded by a correspond-
ing single start event;

— cancelation consistency - every cancelation event must be preceded by a correspond-
ing single start event.

The lifecycle does not only impose a suitable ordering among events, but also requires
a one-to-one matching between every start event and a consequent completion or can-
celation one. In other words, events must be properly correlated to each other.

As illustrated by our case study in Section 5, it is common for business constraints to
incorporate metric time aspects, such as delays and deadlines. As proposed in [Montali
et al. 2010], time-ordered constraints can be augmented with metric time aspects, by
annotating them with two numerical values that delimit the time span inside which
the triggered constraints have effect. This time span is interpreted as relative with
respect to the time at which the source activity of the constraint is executed. We can,
e.g., extend the order management process shown in Fig. 1 to state that when an order
is paid, the receipt must be sent between 2 and 4 time units after the payment. The
response constraint looks, in this case, as follows:

pay order
(2,4)
•−−−I send receipt

where 2 and 4 represents the delay and deadline associated to the response constraint.

3. THE EVENT CALCULUS
We provide an overview of the Event Calculus (EC), which is the formal framework
underlying Mobucon EC. In particular, we introduce the calculus, describe its main
primitives (called the EC ontology) and then sketch the problem of monitoring EC
specifications, relating it to deductive reasoning.

3.1. A Brief Introduction to the EC
In 1986, Kowalski and Sergot [Kowalski and Sergot 1986] proposed the EC as a gen-
eral framework to reason about time, events and change, overcoming the inadequacy
of time representation in classical logic. EC adopts an explicit representation of time,
accommodating both qualitative and quantitative time constraints. Furthermore, it is
based on (a fragment of) first-order logic, thus providing great expressiveness (such as
variables and unification). The three fundamental concepts are that of event, happen-
ing at a point in time and representing the execution of some action and of properties
whose validity varies as time flows and events occur; such properties are called fluents.
An EC specification is constituted by two theories, each containing a set of axioms:
— a general (domain-independent) theory axiomatizing the meaning of the predicates

supported by the calculus, i.e., the so called the EC ontology;
— a domain theory that exploits the predicates of the EC ontology to formalize the

specific system under study in terms of events and their effects on fluents. Our
domain theory is focused on the formalization of the Declare language.

Starting from the seminal work of Kowalski and Sergot, a number of EC dialects have
been proposed [Sadri and Kowalski 1995] and a plethora of domain-independent theo-
ries have been developed to formalize them and provide reasoning capabilities. In this
work, we abstract away from the domain-independent theory and limit ourselves to
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Table II. The basic Event Calculus ontology

initially(f) Fluent f holds in the initial state happens(e, t) e occurs at time t

initiates(e, f, t) Event e initiates fluent f at time t holds at(f, t) f holds at time t

terminates(e, f, t) Event e terminates fluent f at time t

describe the predicates provided by the EC ontology. Since the majority of EC-based
approaches rely on the Horn clause fragment of first-order logic with negation as fail-
ure [Clark 1978], we make use of Prolog as the specification language.

3.2. The EC Ontology
Shanahan [1999] intuitively characterizes the EC as “a logical mechanism that infers
what is true when, given what happens when and what actions do”. These are the three
aspects tackled by the EC ontology, which contains the predicates shown in Table II.

“What actions do” is the domain knowledge about actions and their effects. It is
expressed inside the domain theory and captures how the execution of actions (i.e., the
occurrence of events) impacts the state of fluents. In the EC terminology, the capability
of an event to make a fluent true (false respectively) at some time is formalized by
stating that the event initiates (terminates) the fluent. More specifically, when an event
e occurs at time t, so that initiates(e, f , t) and f does not already hold at time t, then
e causes f to hold. In this case, we say that f is declipped at time t. There is also
the possibility to express that some fluent holds in the initial state, using the initially
predicate. Conversely, if terminates(e, f, t) and f holds at time t, then e causes f to not
hold anymore, i.e., f is clipped at time t. Given two timestamps t1 and t2, we say that
(t1, t2] is a maximal validity interval (MVI) for a given fluent f if (t1, t2] is a maximal
time window in which f uninterruptedly holds, i.e., f is declipped at time t1 and then
uninterruptedly holds until it is clipped at time t2. Note that fluents still hold when
they are clipped, but they do not hold at the time they are declipped, i.e., maximal
validity intervals are left-open and right-closed.

“What happens when” is the execution trace of a (possibly partial) instance of the
system under study, where “partial” means that it can contain a prefix of the full trace.
An execution trace is a set of occurred events. The basic forms of the EC assume that
events are atomic, i.e., bound to a single time point. In particular, an execution trace
is a set of binary, ground happens facts, listing the occurrences of events and their
corresponding timestamps. As for timestamps, the EC adopts a time structure with a
minimal element, usually associated to time point 0, which represents the initial state
of the system. Since event occurrences are associated to discrete timestamps, we use
natural numbers (N0) to represent time values. The mapping of a real timestamp to a
corresponding number depends on the chosen time granularity (such as msecs or day).
E.g., by choosing msecs as the time granularity, each timestamp t could be mapped to
the number of milliseconds between 1/1/1970 00:00 and t.

The combination of the domain knowledge and a concrete execution trace leads to in-
fer “what is true when”, i.e., the intervals during which fluents hold. The holds at(f , t)
predicate of the EC ontology is specifically used to test whether f holds at time t.

3.3. EC Domain Theories
An EC domain theory exploits the predicates of the EC ontology in order to formalize
how domain-specific events affect domain-specific fluents. In our setting, such theory is
constituted by a logic program whose clauses define the initial state of the system and
relate the occurrence of events with the initiation and termination of fluents, possibly
providing a set of conditions that should be met to effectively declip or clip them. As
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events' effects
[initiates/terminates]

validity of fluents
[holds_at]

EC
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reasoning

initial state
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trace
[happens]

(a)

events' effects
[initiates/terminates]
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reasoning
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events' effects
[initiates/terminates]

EC
reactive 

reasoning

initial state
[initially]

partial trace
[happens]

evolution of fluents
[holds_at]

(c)

Fig. 3. Abductive, backward and reactive reasoning in the EC setting

usual, variables are universally quantified with scope the entire clause. Hence, the
Prolog fact initiates(e, f, T )1 states that event e initiates f at every time (with the
proviso that f is not already holding; in this case, e has no effect). A simple yet non-
trivial example of EC theory is provided in the following example.

Example 3.1. Let us consider a system with a single payment event, used to in-
form the system that some monetary transaction has occurred: pay(p) represents a
transaction of p euros. We would like to infer, timepoint by timepoint, the total amount
of exchanged euros. In the EC, we can answer this question by introducing a fluent
tot(v) to represent that the current total amount corresponds to v and by exploiting
the following EC theory to capture how payment events affect the total amount:

initially(tot(0)).

terminates(pay(P ), tot(OV ), T ).

initiates(pay(P ), tot(NV ), T )← holds at(tot(OV ), T ) ∧NV = OV + P.

The first clause models that the total amount is initially 0. The second clause states
that when a payment event occurs, the currently computed total (old value OV ) ceases
to hold. The third one updates the total amount by initiating a new fluent whose
amount (new value NV ) corresponds to the current amount OV plus the paid euros P .
These clauses are specified using variables, instantiated when specific payment events
occur, with ground values for the payment. Using this modeling pattern, we can rep-
resent a sort of “multi-valued” fluents in the EC: the domain theory above represents
the correlation between payment events and the current value of the tot fluent.

3.4. Reasoning About EC Theories
Two main reasoning tasks are usually exploited in the EC setting: abductive and de-
ductive reasoning [Shanahan 1999]. Abductive reasoning (Fig. 3(a)) starts from an EC
domain theory plus a query representing a desired state of affairs (expressed as a con-
junction of [¬]holds at predicates), and seeks a sample trace that respects the domain
theory while achieving that state of affairs. Conversely, deductive reasoning takes an
external trace and combines it with an EC domain theory, inferring the validity inter-
vals of fluents. More specifically, the main purpose of deductive reasoners is to answer
queries that ask about the validity of fluents at some time point(s), expressed using
conjunctions of [¬]holds at predicates. A special case is the one in which the user is
interested in knowing the evolution of all fluents up to a certain time point, to recon-
struct the overall past and current “global” state of the system. We denote this query as
the global validity query. Deductive reasoning is typically carried out in a goal-oriented
fashion, starting from the query and reasoning backward (Fig. 3(b)).

1Which corresponds to clause initiates(e, f, T )← true.
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tot

start pay(50) 3 pay(70) 7

Fig. 4. The evolution of a (multi-valued) fluent, as depicted by Mobucon EC

In our work, we are interested in exploiting the EC as a monitoring framework,
which requires a reasoning paradigm able to account for a dynamic, evolving domain.
Indeed, monitoring focuses on a running execution, which cannot be described by a
single, complete trace, but by a stream of event occurrences. Moreover, there is no
explicit query, because the purpose is to track the running execution, inferring how
the occurring events impact on the evolution of fluents. Implicitly, monitoring asks for
the evolution of all fluents up to the time at which a new event is incorporated and
processed by the monitor. Therefore, monitoring calls for reactive reasoning (Fig. 3(c)),
i.e., for incrementally reasoning on the validity of fluents by revising and extending
the produced result as new event occurrences get to be known.

One could think that reactive reasoning can be simply reduced to an iterative appli-
cation of backward reasoning, where the query is always bound to the global validity
query and reasoning is triggered every time a new event is received. While this ap-
proach would in principle work, it is computationally intractable: reasoning must be
restarted from scratch every time the trace is updated, completely forgetting the pre-
viously calculated result. As customary in the reasoning about action literature, every
time a new event is processed, typically only a “small” portion of the entire system’s
state is affected, while a large extent of such state is maintained unaltered. Hence,
the lack of incremental capabilities makes backward deductive reasoning practically
inapplicable even for small-size problems.

Chittaro and Montanari [1996] studied this issue in the context of active temporal
databases, where the dynamic acquisition of new facts changes the validity of timed
data. In particular, they showed the inefficiency of deductive reasoners when dealing
with such kinds of update and proposed an alternative reasoning paradigm, which
caches the computed results for future use. They developed a Prolog-based Cached
EC (CEC), an incremental reasoner that caches the MVIs of fluents and revises them
every time a new set of facts is added to the database. Mobucon EC adopts the CEC-
inspired implementation described in [Bragaglia et al. 2012] for monitoring EC-based
specifications (see Section 5.1).

Example 3.2. Let us consider the EC theory described in Ex. 3.1 and a specific
stream of events. We use the notation ResT to represent the result computed for
the global validity query for the (possibly partial) trace T . The result is expressed
as the set of all fluent MVIs so far. At the beginning of the execution, CEC in-
fers that a total value of 0 has an MVI spanning from time point 0 to an unknown
future time point (∞ if the execution remains quiescent). Using notation f(t1,t2] to
state that fluent f has an MVI starting from t1 and ending in t2, we thus have:
Res∅ = {tot(0)(0,∞]}. Now suppose that a payment of 50 euros occurs at time 3. Accord-
ing to the EC theory, the current total value of 0 is clipped and a new total amount of 50
is declipped: Res{happens(pay(50),3)} = {tot(0)(0,3], tot(50)(3,∞]}. Finally, another payment
event of 70 euros happens at time 7 and CEC extends the previously computed result
as follows: Res{happens(pay(50),3),happens(pay(70),7)} = {tot(0)(0,3], tot(50)(3,7], tot(120)(7,∞]}.
Fig. 4 shows how Mobucon EC visualizes the evolution of the multi-valued fluent. For
convenience, all the MVIs related to different total values are grouped together, thus
giving an intuitive idea of how values change over time.
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4. FORMALIZING DECLARE CONSTRAINTS IN THE EVENT CALCULUS
In this section, we show how the EC can be used to formalize Declare. As mentioned in
Section 2.3, this formalization overcomes limitations of the classical LTL-based formal-
ization such as the metric time extension and the formalization of the activity lifecycle.
We discuss the representation of process execution traces and then focus on Declare
constraints. The core idea of the formalization is to capture the evolution of multiple
constraint instances, created and manipulated by the occurring events. This enables
a fine grained assessment of “how well” a running process instance is complying with
the constraint model under study.

4.1. Process Execution Traces
Many systems that support the execution of multi-party interactions and activities
provide logging capabilities. This is true, for example, for all the mainstream process-
aware information systems [van der Aalst 2011]. On the one hand, each organization
is characterized by its own specific events, whose semantics and content depend on
the domain and whose format is determined by the underlying information system.
On the other hand, all systems share a set of common abstractions, including notions
such as the ones of execution trace and event. Throughout this work, we will rely on
a small number of such abstractions, which are widespread across different domains.
They correspond to the notions in XES2, a standard format proposed by the IEEE task
force on process mining commonly used for the representation of event logs. In par-
ticular, a trace is constituted by events that characterize the execution of activities,
marking, in particular, the execution steps of activity lifecycle’s instances (activity in-
stances for short). Each event contains an event type, an event identifier, the name of
the involved activity and the timestamp at which the event has occurred. The event
type corresponds to e (“executed”) for atomic activities. For non-atomic activities, it
matches with one of the characteristic lifecycle event types (s for “start”, x for “cance-
lation”, c for “completion”).

A process execution trace can be then formalized in the EC by means of happens
predicates. More specifically, a process execution trace T is a finite set of facts of the
form happens(ev(id, type, a), t), where id is an event identifier, type ∈ {e, s, x, c} is the
event type, a is an activity name, and t is a timestamp. Note that, by default, traces are
interpreted as partial traces, i.e., as traces that could possibly be extended in the future
with new event occurrences. However, it could also be the case that a specific execu-
tion of the process under study eventually reaches an end, i.e., that the trace becomes
a closed, complete trace. For this purpose, a special case complete atomic activity is im-
plicitly included in each Declare model and its (only) execution marks the termination
of the process instance. We assume, in the following, that traces are well-formed. An
EC trace T is well-formed if T is partial (happens(ev( , , case complete), ) 6∈ T ) or T
is total, i.e., one and only one case complete event belongs to T and case complete is
the last event occurrence in T : all other events have a timestamp less than the one of
case complete.

4.2. Formalizing the Activity Lifecycle
The formalization of event occurrence and trace is not sufficient to capture the execu-
tion of instances of non-atomic activities. Indeed, when an event occurs, it must obey
to the activity lifecycle described in Section 2.3. If this is not the case, a monitoring
error must be reported and, at the same time, it must be ensured that such event
does not affect the status of any constraint attached to the corresponding activity. In

2http://www.xes-standard.org/
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active
(id)initial completed

(id)
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(id)

s,id c,id

x,id

error
(id)

s,id or case_completec,id or x,id s,id or c,id or x,id

s,id or c,id or x,id
s,id or c,id or x,id

Fig. 5. A simple lifecycle for non-atomic activities using a correlation identifier and including an error state

fact, we assume that only “correct” event occurrences have an impact on constraints.
The rationale behind this choice comes from the observation that an error in the ac-
tivity lifecycle is a critical misbehavior that is caused either by a severe design error
or by a problem in the logging infrastructure. In both cases, the logged information is
unreliable and it would be unfair to use it for judging compliance.

To tackle this issue, we introduce a set of EC rules that formalize the lifecycle shown
in Fig. 5, where transitions are mapped to events and fluents represent the active,
completed and canceled states. An important feature of our approach is that the evolu-
tion of an activity execution through its lifecycle state is done on a per-instance basis.
In other words, we foresee the possibility that the same activity is executed multiple
times in the same process instance. This requires the ability to track multiple, possibly
parallel evolutions of the same activity lifecycle and in particular to distinguish and
correlate those events that belong to the same lifecycle, by properly binding each can-
celation/completion event to the corresponding previous start one. The separation of
activity instances and the identification of their lifecycle is important for our purposes
because, as we will see in Section 4.3, each of them could impact the prescribed con-
straints in a different way, once quantitative temporal conditions or other data-aware
conditions are taken into account.

To realize such a correlation mechanism, we make use of the event identifier and
consider two events to be part of the same activity lifecycle if their activity name and
event identifier are equal. We then employ fluent l state(i(id, a), s) to model that the
instance identified by id of activity a is currently in state s. The activity is instantiated
every time a start event occurs, using the event identifier attached to the start event
as an identifier for the activity instance. The evolution of the instance through the
lifecycle is then tracked by following the structure described in Section 4.1. An event
occurrence advances some activity instance if it refers to that activity and contains
the same identifier. Without such correlation mechanism, when two start events of the
same activity are followed by a completion, it would not be possible to decide which of
the two active instances has been completed.

Let us first focus on the portion of the lifecycle dealing with the correct transitions,
i.e., the ones that do not lead to an error state. To this purpose, we introduce and
define three “inferred” event occurrences, which are not explicitly contained in the ex-
ecution trace. They are used to conceptually identify the situation in which a possible
start/completion/cancelation event correctly leads to start, complete or cancel an activ-
ity instance. Such inferred events will be used in the formalization of Declare, in order
to guarantee the aforementioned principle that only event occurrences that respect the
activity lifecycle constraints can affect the constraints to be monitored. A further set
of axioms is used to bind the inferred events to the corresponding state transitions.
This means that, whenever an event is tracked, but it does not lead to generate a cor-
responding internal inferred event, then the status of all constraints is not affected at
all. It is worth noting that the following axioms show the ability of the EC to define
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event occurrences in terms of other event occurrences, a là Complex Event Processing
(CEP) [Luckham 2001; Artikis and Paliouras 2009].

AXIOM 1 (EFFECTIVE START). An activity instance is effectively started by a start
event occurrence, provided that the same event occurrence did not happen in the past
(this case is managed by Axiom 4 below):

happens(start(ID,A), T )←happens(ev(ID, s,A), T )

∧ ¬happens(ev(ID, s,A), Tp) ∧ Tp < T.

The effective start triggers a creation of the corresponding activity instance, transferring
the identifier and placing the instance in the active state:

initiates(start(ID,A), l state(i(ID,A), active), T ).

AXIOM 2 (EFFECTIVE COMPLETION). An activity instance with name A and iden-
tifier ID is effectively completed at time T if a completion event matching with A and
ID occurs at some time T , such that the activity instance is active at time T .

happens(compl(ID,A), T )←happens(exec(ID, c, A), T )

∧ holds at(l state(i(ID,A), active), T ).

The effective completion triggers a transition to the completed state:

terminates(compl(ID,A), l state(i(ID,A), active), T ).

initiates(compl(ID,A), l state(i(ID,A), completed), T ).

AXIOM 3 (EFFECTIVE CANCELATION). The effective cancelation of an activity in-
stance mirrors the axioms used for effective completion.

happens(cancel(ID,A), T )← happens(exec(ID, x,A), T )

∧ holds at(l state(i(ID,A), active), T ).

terminates(cancel(ID,A), l state(i(ID,A), active), T ).

initiates(cancel(ID,A), l state(i(ID,A), canceled), T ).

Beside the three aforementioned states, we introduce a further set of rules used to
identify undesired situations, which correspond to a transition to a special error state
used for monitoring purposes. The transitions to the error state correspond to the ones
shown in Fig. 5. Observe that some error configurations capture the functionality of in-
stance identifiers with respect to the pair constituted by activity name and event type.
This principle guarantees that two active instances of the same activity necessarily
have distinct identifiers.

AXIOM 4 (ERROR STATE). Any event occurrence causing an error has the effect of
terminating the current state (provided that it is not already in an error state):

terminates(Ev, l state(i(ID,A), S), T )←holds at(l state(i(ID,A), S), T ) ∧ S 6= error

∧ initiates(Ev, l state(i(ID,A), error), T ).

Completion and cancelation events cause an error if they occur when the corresponding
activity instance is not active:

initiates(ev(ID, c, A), l state(i(ID,A), error), T )← ¬holds at(l state(i(ID,A), active), T ).

initiates(ev(ID, x,A), l state(i(ID,A), error), T )← ¬holds at(l state(i(ID,A), active), T ).

The start event causes an error if the corresponding activity instance has been already
activated in the past, by means of another start event that refers to the same activity
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start 1,s,foo 2,s,foo 2,c,foo 1,x,foo 3,c,foo 4,s,foo 1,s,foo case_complete

foo

Fig. 6. Sample evolutions of four instances of activity “foo” (event timestamps are not shown)

and is associated to the same identifier:

initiates(ev(ID, s,A), l state(i(ID,A), error), T )← happens(ev(ID, s,A), Tp) ∧ Tp < T.

A last source of error is determined by the execution of a case complete event when the
activity instance is still active, which is in fact a temporary state.

initiates(ev( , e, case complete), l state(i(ID,A),error), T )←
holds at(l state(i(ID,A), active), T ).

Fig. 6 shows the outcome produced by applying the EC-based formalization of the ac-
tivity lifecycle on a simple execution trace. The same activity is executed four times,
showing three possible errors as well as a correct execution.

4.3. Business Constraint Instances and Their States
Monitoring business constraints amounts to computing how the event occurrences that
characterize the execution of a process instance affect the evolution of constraints
states over time. Our approach is inspired by existing approaches for runtime veri-
fication using temporal logics and enactment of Declare models. However, unlike these
approaches we take into account the notion of non-atomic activities and of metric time.
On the one hand, Bauer et al. [2007] introduced a framework for the runtime verifica-
tion of Linear Temporal Logic formulae, where formulae are associated to one among
four distinct states: (i) permanent satisfaction (the process instance is compliant with
the formula); (ii) temporary satisfaction (the process instance is currently compliant
with the formula, but it is still possible to violate it in the future); (iii) permanent vi-
olation (the process instance is not - and will not be - compliant with the formula);
(iv) temporary violation (the process instance is currently violating the formula, but
it is still possible to comply with it in the future). On the other hand, Pesic et al.
[2007] introduced an enactment environment for Declare, with a similar approach to
the one of [Bauer et al. 2007]. In this environment, at each time every constraint is
associated to one among three states: two correspond to permanent and temporary
violation, while the third (fulfillment), is used to represent temporary or permanent
satisfaction, attesting that the current trace is compliant with the constraint.

We start from this latter approach, using the term pending to denote a constraint
that is temporarily violated. The rationale behind this choice is that a temporarily vi-
olated constraint expects the execution of a specific activity to become satisfied. How-
ever, a major difference between Mobucon EC and the two aforementioned approach
relies in the differentiation between constraints and their instances. While in [Bauer
et al. 2007; Pesic et al. 2007] the described states are used to track the evolution of
constraints over time, in Mobucon EC each constraint can be associated to multiple
instances, each of which follows an independent evolution. As the following examples
highlight, some constraints are active from the beginning of the execution and follow
a unique evolution as events occur, while other constraints are characterized by mul-
tiple, parallel and independent instances.
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Example 4.1. Let us consider a generic existence constraint stating that activity a
must be executed at least n times. It is initially in a pending state, waiting for n execu-
tions of activity a. When the n-th execution of a occurs, it becomes satisfied. Conversely,
if the case reaches an end and the constraint is still pending, it becomes violated.

Example 4.2. Let us consider a metric response constraint, with a and b source and
target activity respectively and associated to delay m and deadline n. The constraint
is triggered every time activity a is completed, expecting the start of a consequent b
occurring inside the desired time interval [m,n]. Such a time interval is grounded on
the basis of the time at which a occurred. To capture this behavior, every execution
of a starts a new, separate constraint instance. Each instance is placed in a pending
state, waiting for the occurrence of b inside the time interval obtained by combining the
time at which a occurred and the constraint’s time window. In particular, an instance
created at time t becomes satisfied if b is executed inside [t+m, t+ n] or violated if the
actual deadline t+ n expires and the instance is still pending.

The two examples intuitively introduce the notion of constraint instance, with exis-
tence being a single-instance constraint and response being a multiple-instance one.
In Ex. 4.2, this is due to the presence of metric time constraints, which require to rec-
ognize the difference even between multiple occurrences of the same activity, because
of the difference between their timestamps. More generally, the notion of constraint
instance resembles the one of activity instance: as different executions of the same
activity inside a business process determine separate instances of that activity, each
one grounded in a specific context (data, timestamp, . . . ), so it can trigger multiple
instances of the same constraint.

Summarizing, each constraint instance represents the application of the constraint
in a particular context. Since we limit our analysis to activities and temporal aspects,
the contextual information for event occurrences and constraint instances is composed
of the name of the executed activity and its timestamp. Technically, we associate a
global unique identifier to each modeled constraint and use term i(id, a, t) to denote
the instance of constraint identified by id that has been created by the execution of
activity a at time t. We use the arbitrary constant start as a placeholder for the activity
identifier for those instances that are active from the beginning of execution, such
as the case of Ex. 4.1. The approach can be seamlessly generalized by adding to the
context the other relevant pieces of information (resource, data, . . . ). According to the
discussion above, at each time point, every constraint instance can be in one among
the following states:
— pending (pend for short), a transient state representing the fact that the constraint

is waiting for the occurrence of one event (possibly, one among many events) and is
hence temporarily violated;

— satisfied (sat for short), a transient or permanent state indicating that the current
execution trace is compliant with the constraint;

— violated (viol for short) is a permanent state attesting that the instance has been
violated by the execution trace.

To represent these states, we rely on a (multi-valued) fluent state(I, S), where I is the
constraint instance and S the current state of I, with S ∈ {pend, sat, viol}. For example,
state(i(id, a, t), pend) represents the fact that instance i(id, a, t) is currently pending.

4.4. Constraints Formalization
We now describe the axiomatization of constraints semantics as an EC theory. Since
the semantics focuses on the creation and state transitions of constraints’ instances in
response to event occurrences, we first define a set of supporting predicates for state
manipulation. The first two rules deal with the creation of an instance, placing it in
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the specified state, either at the beginning of the execution or when some event occurs:

initially(state(I, S))← init state(I, S).

initiates(Ev, state(I, S), T )← creation(Ev, T, I, S).

The cur state predicate is defined to test the current state of an instance:

cur state(I, S, T )← holds at(state(I, S), T ).

A group of two rules is used to capture state transitions. A transition from state S1 to
state S2 is executable only if the instance is currently in state S1, and it is applied by
terminating the fluent associated to S1 and initiating the one bound to S2.

terminates(Ev, state(I, S1), T )← trans(Ev, T, I, S1, S2) ∧ cur state(I, S1, T ).

initiates(Ev, state(I, S2), T )← trans(Ev, T, I, S1, S2) ∧ cur state(I, S1, T ).

Let us now describe how the machinery discussed so far can be used to formalize some
key Declare constraints. The axiomatization of complex Declare models can be found
in the benchmark files (see Section 5.3). Each constraint is formalized by means of a
set of EC axioms. Two constraints of the same kind share the “form” of such axioms,
customized with its specific activities and parameters. The formalization of an entire
Declare model consists of the union of axioms used to formalize each one of its con-
straints. In the following, we assume that the activities involved in the constraints are
non-atomic and we make use of the inferred lifecycle events formalized in Section 4.2
to make sure that the state of constraints is affected only by those events that fit into
the activity lifecycle constraints. The same formalization can be applied to atomic ac-
tivities as well, by just considering their single event type.

4.4.1. Existence. Let us consider an existence constraint of the form

a
n..*

identified by id and stating that activity a must be completed at least n times. Follow-
ing Ex. 4.1, it can be formalized by means of three axioms, respectively managing the
creation, fulfillment and violation of the unique instance associated to the constraint.

AXIOM 5 (EXISTENCE CREATION). Each existence constraint is associated to a sin-
gle instance, created and put in the pending state when the case is started:

init state(i(id, start, 0), pend).

AXIOM 6 (EXISTENCE FULFILLMENT). A pending existence constraint instance be-
comes satisfied when the n-th execution of the involved event type (in our case the com-
pletion of a) occurs:

trans(compl( , a), T, i(id, start, 0), pend, sat)← hap(compl( , a), n, T ).

where hap(Ev,N, T ) tests whether Ev occurred N times before or at T and it is obviously
called by abstracting away from the specific event identifier3:

hap(Ev,N, T )←findall( , (happens(Ev, Tp), Tp ≤ T ), L) ∧ length(L,N).

A violation of the existence constraint is detected when it is pending and a
case complete event is received. This attests that the case has reached an end and,

3The Prolog predicate findall(Objects,Goal, List) produces the List of all Objects that satisfy Goal, while
length(L,N) is true if N is the length of list L.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



Monitoring Business Constraints with the Event Calculus 39:17

consequently, that no further event will occur to move the instance from the pending
to the satisfied state. This observation does not only hold for the existence constraint,
but it captures the inherent semantics of the pending state and is therefore applied
to any constraint instance in the pending state, independently from the constraint it
belongs to. Indeed, a constraint instance is pending if it is waiting for the occurrence of
some event and such an expectation cannot be fulfilled anymore if the case is complete.

AXIOM 7 (SEMANTICS OF PENDING). When the case reaches an end, all pending
instances are declared as violated: trans(ev( , e, case complete), T, i( , , ), pend, viol).

4.4.2. Absence. Let us now consider an absence constraint, identified by id and mod-
eling that activity a cannot be canceled n times (i.e., it can be canceled at most n − 1
times). Like existence constraints, each absence is associated to a single instance. The
instance is initially put in the satisfied state and it persists in that state unless the
target activity is executed n times, leading to its violation.

AXIOM 8 (ABSENCE CREATION). Each absence constraint is associated to a unique
instance, created and put in the satisfied state when the case is started:

init state(i(id, start, 0), sat).

AXIOM 9 (ABSENCE VIOLATION). The active absence constraint instance becomes
violated when the n-th occurrence of the forbidden event (in our case, the cancelation of
activity a) is received:

trans(canc( , a), T, i(id, start, 0), sat, viol)← hap(canc( , a), N, T ).

It is worth noting that absence constraint instances are never pending. In fact, they do
not place any (positive) expectation concerning the occurrence of some event.

4.4.3. Metric Response. We consider the following “prototypical” response constraint

s1

s2

sk
...

t1

t2

tl
...

[m,n]

It includes branches (i.e., the presence of multiple sources and targets) and quantita-
tive time constraints. We use again id to identify the constraint. The meaning of the
constraint is: whenever one of the source activities is completed at some time t, one
of the target activities must be started between m and n time units after t. To deal
with branching response constraints, we make use of the member predicate4: instead
of directly checking if an activity is the source or target of a response constraint, we
test if it belongs to the set of sources [s1, . . . , sk] or targets [t1, . . . , tl].

AXIOM 10 (RESPONSE CREATION). A new instance of the response constraint is cre-
ated every time some activity A is completed and A is one of the sources. The instance is
put in the pending state, waiting for a future suitable execution of a target activity.

creation(compl( , A), T, i(id, A, T ), pend)← member(A, [s1, . . . , sk]).

A pending instance becomes satisfied if a target activity is executed afterwards, within
the time boundaries associated to the instance. We use the cur state predicate to ob-
tain the actual timestamp value contained in the instance context (which corresponds
to the time at which the instance was created). Such reference point is then suitably

4member(El, L) is true if list L contains El.
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combined with the constraint’s delay m and deadline n, determining the time win-
dow inside which the target event (in our case, the starting event of one of the target
activities) is expected to occur.

AXIOM 11 (RESPONSE FULFILLMENT). A pending response instance becomes sat-
isfied when one of its target activities is started, at a time that falls within the actual,
expected time window.

trans(start( , B), T, i(id, A, Ti), pend,sat)← cur state(i(id, A, Ti), pend, T )

∧member(B, [t1, . . . , tl]) ∧ inside future(Ti,m, n, T ).

where inside future(Ref, V1, V2, T ) is used to test whether T is contained in the time
window ranging from Ref + V1 to Ref + V2:

inside future(Ref, V1, V2, T )← T1 is Ref + V1 ∧ T2 is Ref + V2 ∧ T ≥ T1 ∧ T ≤ T2.

When m is not specified (no delay), we consider it to be 0, while when n is not specified
(no deadline), we consider it to be virtually ∞. This specific case can be seamlessly
treated by interpreting∞ as a special constant “inf”, providing alternative definitions
for the inside future predicate.

The last two axioms deal with the violation of a response instance. Two possible
undesired situations may arise: either the instance is pending and the case reaches
an end (this behavior is already captured by Axiom 7) or the instance is pending but
its actual associated deadline is expired. Both cases identify a state of affairs where
no possible future evolution exists, such that the pending instance will be eventually
satisfied. The deadline expiration case must be managed only when the constraint is
associated to an actual value for the deadline. In particular, this situation is handled
with a best effort approach: since the EC has no intrinsic notion of the flow of time, but
“extracts” the current time from the occurring events, a deadline expiration is detected
at the first following time at which some event occurs.

AXIOM 12 (RESPONSE VIOLATION DUE TO DEADLINE EXPIRATION). A response
instance becomes violated if it is still pending after the maximum time at which a target
activity is expected to be executed.

trans( , T, i(id, A, Ti), pend, viol)←cur state(i(id, A, Ti), pend, T ) ∧ after future(Ti, n, T ).

where after future(Ref , V, T ) checks whether the deadline of V time units after Ref is
expired at time T , also dealing with the special case in which V corresponds to∞:

after future(Ref , V, T )← V 6= inf ∧ Td is Ref + V ∧ T > Td.

4.4.4. Metric Chain Response. Let us consider the same prototypical constraint used
in Section 4.4.3, but now employing a chain response instead of a simple response.
This constraint can be formalized as an extension of the response constraint. More
specifically, all the axioms discussed in Section 4.4.3 are maintained and an additional
axiom is introduced. This axiom poses the additional requirement that the target ac-
tivity must be executed next to the source one, i.e., between the execution of the source
and the target all other events are forbidden.

AXIOM 13 (CHAIN RESPONSE VIOLATION DUE TO INTERMEDIATE EVENT). A
pending instance of chain response becomes violated if an event related to a non-target
activity occurs.

trans(start( , X), T, i(id, A, Ti), pend, viol)← ¬member(X, [t1, . . . , tl]).

trans(compl( , X), T, i(id, A, Ti), pend, viol)← ¬member(X, [t1, . . . , tl]).

trans(cancel( , X), T, i(id, A, Ti), pend, viol)← ¬member(X, [t1, . . . , tl]).
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5. IMPLEMENTATION AND EVALUATION
Our monitoring approach has been implemented and evaluated in two ways: (1) us-
ing a real-life case study to illustrate its usefulness and (2) a set of experiments that
use synthetic data to evaluate its performance. Along the first line, we describe how
Mobucon EC has been fruitfully applied in the domain of maritime safety and security.
In particular, the case study deals with monitoring a vessel in a specific area using
a sensor network, which detects and shares events characterizing a “change of state”
in the vessel’s behavior. It shows that Mobucon EC can successfully target a variety
of systems beyond classical workflow and process-aware management systems. After
showing the usefulness of our approach, we shift attention to various experiments
that have been carried out to study the reaction time of the reasoner as the number of
events grows and the number of constraints to be monitored increases.

5.1. Implementation
The current implementation of Mobucon EC is composed of four modules:
(1) EC module, the core reasoner of the tool, containing a light-weight axiomatization

of CEC (see Section 3.4) written in standard Prolog [Bragaglia et al. 2012].
(2) Formalization module, which translates a Declare model into an EC theory.
(3) Information exchange module, which delivers events to the reasoner and receives

the newly computed result.
(4) Feedback module, which provides an intuitive feedback to the user, showing the

evolution of each constraint instance.
The reasoning module of Mobucon EC is written in standard Prolog, hence virtually
any Prolog engine can be used to perform the computations. We experimented with two
alternative solutions. The first relies on TuProlog (tuprolog.alice.unibo.it) and its main
advantage is that, being developed completely in JAVA, it can be seamlessly integrated
inside JAVA software, such as ProM; the main drawback is that its performance can-
not still compete with mainstream Prolog systems. The other solution relies on YAP
(yap.sourceforge.net), one of the highest-performance state of the art Prolog engines.
Unlike TuProlog, YAP cannot be directly invoked from JAVA code, but requires an
intermediate bridge (such as InterProlog5).

Hence, Mobucon EC can come in different flavors, from the pure reasoner (just a
Prolog theory consisting of CEC, the formalization of constraints and a set of facts de-
scribing the execution trace to be analyzed) to a full prototype equipped with a user
interface and integrated inside the version 6.1 of the well-known ProM process mining
framework [Verbeek et al. 2010].6 ProM 6.1 natively provides an Operational Support
(OS) service, which accommodates techniques for runtime process monitoring, recom-
mendations and predictions. As sketched in Fig. 7, the OS service takes care of receiv-
ing TCP/IP streams of event occurrences from an external system. Each request from
the external system must come with a process and a case identifier. In this way, the OS
support can handle multiple running cases at the same time, correlating each incoming
event to the corresponding stream. Each OS provider encapsulates the business logic
of a specific OS functionality, while the OS service mediates the interaction between
providers and the external system. Mobucon EC exploits this infrastructure and is im-
plemented as a monitoring OS provider. Each instance of Mobucon EC is associated to
a Declare model, which can be loaded from the XML file produced by the Declare editor
[Pesic et al. 2007].7 In order to facilitate testing and exploitation of Mobucon EC, two

5http://www.declarativa.com/interprolog/
6A stand-alone tester can be found at http://www.inf.unibz.it/∼montali/tools.html
7http://www.win.tue.nl/declare/
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Fig. 7. Operational support in ProM 6

client prototypes have been developed, one accepting the realtime acquisition of events
and the other loading traces from event logs.

5.2. Case Study: Monitoring the Behavior of a Vessel
Our case study has been conducted in the context of Poseidon [Maggi et al. 2012], a
project partially supported by the Dutch Ministry of Economic Affairs under the BSIK
program. In Poseidon, we have closely collaborated with practitioners from the sector
of maritime safety and security.

The case study is about monitoring the behavior of vessels as they move inside a cer-
tain maritime area. Each vessel has an on-board AIS (Automatic Identification System
[International Telecommunications Union 2001]) transponder that uses several mes-
sage types and reporting frequencies to broadcast information about the vessel. An
AIS receiver collects these broadcasted AIS messages and produces a TCP/IP stream of
messages. These messages contain information such as the maritime vessel identifier
(mmsi), the navigational status of the vessel and its ship type. This is the information
that can be used to monitor the behavior of the vessel. In particular, when monitoring
a vessel using the broadcasted stream of AIS messages, events correspond to changes
in the navigational status of the vessel: moored, under way using engine, aground, at
anchor, not under command, constrained by her draught, restricted maneuverability,
etc. Every change in the navigational status is associated to a single timestamp, thus
we represent the transition into some navigational status as an atomic activity.

Each vessel is monitored separately from the others, hence, a case is constituted
by the sequence of events that refer to the same mmsi number. Vessels are expected
to behave differently on the basis of their ship type, i.e., for each ship type, only se-
quences conforming to specific constraints are allowed. Some constraints also involve
metric time constraints that the event stream must satisfy, e.g., when a change in the
vessel’s navigational status is expected to occur within a given interval of time. These
constraints are loosely-structured and only limit the behavior of the vessels without
explicitly describing how they should operate. Therefore, the compliant behaviors can
be successfully represented using Declare. More specifically, the first step of our ex-
perimentation has been the construction of a Declare model representing the observed
behavior of every possible ship type, such as passenger or cargo ship. These models can
be extracted using process discovery techniques as presented in [Maggi et al. 2012]. In
particular, we have enriched the Declare models presented in [Maggi et al. 2012] with
quantitative time constraints that have been empirically assessed by analyzing the
behavior of the monitored vessels under ideal conditions. In general, our approach
can be applied to monitor the behavior of a system (in this case a vessel) evaluating
the overall system health on the basis of the number of anomalies detected. For this
experimentation, the stream of AIS messages has been recorded in an event log. Ex-
periments have been carried out by loading an excerpt of the log (corresponding to a
period of one week) in Mobucon EC, using a time granularity of seconds.
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Fig. 8. Expected behavior for vessel type passenger ship. Time granularity: seconds

5.2.1. Passenger Ships. The expected behavior of a passenger ship is tackled by the De-
clare model shown in Fig. 8. Events aground and not under command must never oc-
cur. Moreover, the vessel’s behavior must show a regular alternation of events moored
and under way using engine (modeled with chain response constraints in the model).

The monitored passenger ships are required to go back and forth between two re-
sorts. Together with domain experts, we have estimated that each journey must take
more than 9 hours (32400 secs.) and less than 11 hours (39600 secs.). Hence, con-
straint chain response([under way using engine], [moored]) is bound to this time win-
dow. Moreover, for constraint chain response([moored], [under way using engine]) we
specify a delay of 1 hour (3600 secs.) and a deadline of 3 hours (10800 secs.) considering
the time that each ship must spend in a harbor (for refueling, restocking etc.).

Fig. 9 shows the results for the monitoring of a specific case (i.e., of a specific ves-
sel) with respect to the Declare model in Fig. 8. The interface groups together all the
instances referring to the same constraint, under the name of the constraint itself.
The evolution of each constraint can be visualized in a summarized version, highlight-
ing the number of instances and giving a combined flavor of their contributions or in
a detailed way, which separately shows the evolution of each instance. The instance
related to constraint absence([not under command], 1) and the instance related to con-
straint absence([aground], 1) are always satisfied because in the stream of messages,
events not under command and aground never occur. The instance related to con-
straint existence([under way using engine], 1) is initially pending (because it is waiting
for the occurrence of at least one event under way using engine). When at 06-01-2007
02:00:02 under way using engine occurs, this instance becomes satisfied. Constraint
existence([moored], 1) has a similar behavior.

Fig. 9 also shows the thirteen instances related to constraint chain response([under
way using engine], [moored]) (delay: 9 hours, deadline: 11 hours). Every instance cor-
responds to a different occurrence of event under way using engine. Note that, in this
specific case, each instance of the constraint corresponds to a period of time spent by
the considered vessel under way using engine, i.e., for a different journey. The con-
straint specifies that when under way using engine occurs, it must be immediately
followed by moored. This is always the case except for the last occurrence of under way
using engine where the instance remains pending (instance 13). This is due to the fact
that the considered data, being extracted from a larger event log, is not still complete.
However, also when under way using engine is directly followed by moored, it may be
still too early or too late. In fact, only in instances 2, 3, 4, 5, 8, 10 and 11 event under
way using engine is followed by moored complying with the defined temporal specifi-
cations. In contrast, in instance 1, event moored occurs after less than 9 hours (after
7 hours and 55 minutes). In instances 6, 7, 9 and 12 event moored occurs after more
than 11 hours (after 11 hours and 6 minutes, after 11 hours and 8 minutes, after 11
hours and 25 minutes and after 11 hours and 33 minutes respectively). Similar pat-
terns can be found for constraint chain response([moored], [under way using engine])
(delay: 1 hour, deadline: 3 hours). In this case, every instance corresponds to a different
occurrence of moored, i.e., to a period of time spent by the vessel in a harbor.

The top of Fig. 9 shows the evolution of a metric measuring the overall system health
over time. This metric provides a global indication about “how much” the running
case is complying with the Declare model. Different metrics can be easily plugged into
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Fig. 9. Monitoring of a passenger ship

Mobucon EC. The basic information needed by the metrics, namely the number of vio-
lated, pending and satisfied constraint instances, can be easily obtained from the rea-
soner. E.g., the number V of violated instances at time T can be obtained by issuing the
query findall( , cur state( , viol, T ), L) ∧ length(L, V ). By binding T to a specific value
t, the query returns the number of instances violated at time t, whereas by leaving T
variable, it returns the total number of violated instances so far.

The study of effective compliance metrics is outside from the scope of this paper.
Sophisticated metrics can be designed, e.g., exploiting metric times or giving different
weights to the Declare constraints. Here, we use a simple but significant metric, which
computes the system health by considering the number of violated (#viol) and satisfied
(#sat) instances while ignoring the pending ones (being not yet clear whether they will
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Fig. 10. Expected behavior for vessel type cargo ship having a cargo of type “hazard pollutant A”

be violated or satisfied). In particular, at some time t the system health corresponds to
1 when #viol(t) + #sat(t) = 0 and to 1 − #viol(t)

#viol(t)+#sat(t) otherwise. As can be seen, in
this case the system health is quite homogeneous and slightly varies around 0.86.

5.2.2. Cargo Ships. The normative behavior for the ship type cargo ship is represented
by the Declare model in Fig. 10. In the remainder, we refer to this as simply a cargo
ship (although there are multiple cargo types). Events constrained by her draught,
restricted maneuverability and not under command must never occur. Moreover, event
at anchor must be followed by under way using engine. A cargo ship can anchor for
at most 7 hours, therefore we specify a deadline of 25200 secs. for constraint chain
response([at anchor], [under way using engine]). Event moored must also be followed
by under way using engine and considering that a cargo ship cannot be moored in a
harbor more than 24 hours, we specify a deadline of 86400 secs. for constraint chain
response([moored], [under way using engine]). Finally, event under way using engine
can be followed by at anchor or moored. We express this behavior by using a branched
chain response constraint. We have also estimated that each journey of a cargo can
take up to 2 days. Therefore, we specify a deadline of 172800 secs. for constraint chain
response([under way using engine], [moored, at anchor]).

Fig. 11 shows the monitoring of message streams received from two cargo ships.

5.3. Benchmark and Performance Assessment
For the practical application of our approach, the performance of Mobucon EC is of the
utmost importance: unlike classical process mining approaches, monitoring requires
short-term feedback every time the current state of affairs evolves and new event oc-
currences are acquired. Since we are interested in evaluating the performance of our
EC-based approach, we focus on the core monitoring task, that is, on the reasoning
engine per sè, without considering the interaction among components inside ProM nor
the time spent for visualization. This is why we chose YAP to carry out our evaluation.
For the evaluation, we have set up a generator of Declare models8. It requires a set of
configuration parameters that target the size and structure of the model: given
— a set A of activity names,
— a flag selecting atomic vs non-atomic activities,
— the length L of the trace to be monitored,
— the number N of constraints to be included in the model,
— the minimum/maximum cardinality C associated to existence constraints,
— the maximum branching factor B of relation/negation constraints,
— the minimum delay d and maximum deadline D for timed constraints,
the generator produces a self-contained Prolog test theory containing the axiomatiza-
tion of CEC and of activity lifecycle constraints, a randomly generated trace of L event
occurrences of the atomic activities inA (or their ports, in the non-atomic case) and the
EC-based formalization of N randomly generated constraints attached to activities in
A, tuned according to the parameters B, d and D. We used this generator to produce

8The generator code and the benchmarks are available at http://www.inf.unibz.it/∼montali/tools.html
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(a) (b)

Fig. 11. Monitoring two cargo ships: the health of ship (a) drops to 0.77; the one of (b) varies from 0.83 to 1

two benchmarks, one for atomic and one for non-atomic activities. The first bench-
mark contains 1000 tests dealing with Declare models with atomic activities, tuned
with |A| = 10, L = 1000, C = 5, B = 3, d = 0 and D = 50. These values were artificially
tuned to reflect reasonable models and to focus our evaluation on the most critical pa-
rameters, namely the number of constraints and the length of the trace. It is worth not-
ing that our approach is insensitive to some parameters. For example, the values for d
and D only contribute to determine the average number of violated/satisfied instances
of timed relation constraints, but the corresponding checks do not depend on the actual
values (since they are tested using Prolog arithmetic built-in functionalities). A simi-
lar observation holds for the number of activities as well, since their names are strings
tested for unification in the Prolog clauses. The benchmark contains 10 groups of tests
by increasing the number of constraints in the model (with N = 10, 20, . . . , 100). Each
group contains 100 tests obtained by combining 10 randomly generated traces with 10
randomly generated models. Tests are run by simulating the incremental acquisition
of the event occurrences contained in the trace (ordered according to their timestamps)
and measuring the latency time required by the reasoner to produce the updated mon-
itoring result after each event. The obtained average results are reported in Fig. 12.
They attest the scalability of Mobucon EC and its feasibility in dealing with models of
real-life size. In fact, the 1000-th event is processed in less than 100 msecs for models
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Fig. 12. Performance of Mobucon EC using a set of randomly generated benchmarks with atomic activities
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Fig. 13. Performance of Mobucon EC using a set of randomly generated benchmarks with non-atomic ac-
tivities (for readability, on the right we report only three sets of tests out of the ten shown on the left)

containing up to 50 constraints and for large models with 100 constraints, still less
than 300 msecs are required to update the monitoring result.

The second benchmark consists of 250 tests, generated in the same way (and with
the same parameters) as for the first benchmark, but with non-atomic activities. These
tests were organized in groups of 25, where each group contained from 10 to 100
constraints. Under the non-atomic activities assumption, the generator produces con-
straints that are randomly attached to one of the three ports associated to the selected
activity. An important issue is, in this case, to generate “reasonable” traces, i.e., traces
for which events can occur out-of-order (violating the lifecycle constraints), but where
the majority of activities are executed properly. We solved this problem by bookkeeping
the pair activity name and id attached to each start event, then randomly extracting
such pairs so as to generate a consequent cancel/complete event. The average results
for each group of tests are reported in Fig. 13. The fluctuation of the plotted values is
due to the fact that the processing time is much less for those events that only trig-
ger the evolution of a corresponding activity lifecycle, without affecting the status of
constraints. The average processing time for a model containing up to 50 constraints
does not exceed 170 msecs for any event in the trace, while, for a large model with 100
constraints, it reaches a maximum peak of ∼550 msecs.

6. RELATED WORK
The problem of runtime verification and monitoring is omnipresent and has been in-
vestigated in different research communities. Similar problems have been studied in
a variety of application domains ranging from runtime checking of software execution
and hardware systems to self-adaptive and service-oriented applications. Due to this
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diversity, comparing the existing approaches is difficult. In fact, each of them is suit-
able for specific application scenarios. For this reason, we will focus our discussion on
the description of the characteristics of the existing techniques and on their conceptual
differences with respect to the approach presented in this paper.

Spanoudakis and Mahbub [2006] present a framework for monitoring the compli-
ance of a BPEL-based service compositions with assumptions expressed by the user
or with behavioral properties that are automatically extracted from the composition.
The EC is exploited to monitor the actual behavior of interacting services and to re-
port different kinds of violations. Farrell et al. [2005] focus on the application of the
EC to track the normative state of contracts. They formalize the deontic notions of
obligation, power and permission, propose an XML-based dialect of the EC to model
contractual statements and dynamically reason upon contract events reporting viola-
tions and diagnostics about the reached state of affairs. These proposals exploit ad-
hoc event processing algorithms to manipulate events and fluents, written in JAVA.
Hence, differently from Mobucon EC they do not have an underlying formal basis and
they cannot take advantage of the expressiveness and computational power of logic
programming, such as unification and backtracking.

As described in Section 5.1, Mobucon EC is based on logic programming and ex-
ploits a lightweight axiomatization of the CEC by Chittaro and Montanari [1996]. An
alternative reactive but purely declarative axiomatization of the EC has been pro-
posed in [Chesani et al. 2010], exploiting an abductive logic programming-based proof
procedure for runtime compliance checking. A comparison of these two approaches, to-
gether with a performance evaluation showing that the axiomatization used by Mobu-
con EC outperforms the original axiomatization of CEC, is contained in [Bragaglia
et al. 2012]. The application of our EC-based approach for monitoring service chore-
ographies [Chesani et al. 2009] constitutes a preliminary investigation of the EC-based
axiomatization of Declare proposed in this work. Here, we have extended it with the
notion of constraint instances and their states, providing a more systematic support
for quantitative time constraints and system health evaluation.

A plethora of authors have investigated the use of temporal logics – Linear Tempo-
ral Logic (LTL) in particular – as a declarative language for specifying properties to
be verified at runtime9. LTL semantics for finite traces needs to be adapted to reflect
that reasoning cannot always provide a definitive answer, but must be open to the
acquisition of new events and to handle partial, finite traces. Consequently, also the
verification techniques must be revised. For example, Giannakopoulou and Havelund
[2001] present an approach to LTL runtime checking, where the standard LTL to Büchi
automata conversion technique is modified to deal with finite traces. The algorithm
produces a finite state automaton that is then used as observer of the system’s be-
havior. Bauer et al. [2011] introduce a three-valued semantics (with truth values true,
false and inconclusive) for LTL or timed LTL properties on finite traces. These truth
values strictly resemble the satisfied, violated and pending values adopted by Mobucon
EC to characterize the state of constraint instances.

When compared with these approaches, Mobucon EC supports quantitative time
constraints, non-atomic activities with identifier-based correlation and can be ex-
tended with data-aware conditions. Furthermore, techniques based on finite-trace LTL
usually associate the notion of violation to the one of logical inconsistency and are
therefore not suitable for continuous support. An exception to this is [Maggi et al.
2011], where the automaton constructed for monitoring carries specific information
that can be used to realize different recovery strategies for continuous support. An ad-
vantage of techniques relying on automata is their efficiency: their most expensive step

9See http://runtime-verification.org/
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is the automaton construction, which is done before the execution and can be greatly
optimized [Westergaard 2011]. Furthermore, they are not only able to check whether
the current trace is compliant with the given LTL specification, but also to identify
whether unavoidable violations will occur in the future. When it comes to Declare, this
ability is exploited to identify whether the interplay of two or more constraints will
surely lead to a future violation [Maggi et al. 2012]. Our EC-based approach is not
able to foresee these violations: it treats each constraint separately from the others.

As described in Section 4.1, we assume that the monitored execution traces contain
event identifiers that can be used for correlation, to detect multiple executions of the
same activity. As we have seen, this is of utmost importance for the proper assessment
of compliance and the consequent computation of overall “system health” metrics. In
[Pauw et al. 2005], correlation mechanisms are used to realize an intuitive and com-
prehensive visualization framework for analyzing web service executions. Such mech-
anisms are not only used to provide fine-grained information about each web service
transaction separately, but also to identify “chatty” communications, where repetitions
of the same web service invocations are detected to show potential bottlenecks and sug-
gest potential design improvements. However, as pointed out in [Dustdar and Gombotz
2006], there are cases in which process/activity instances are not directly present in
the event logs of the system. For example, correlation identifiers are not present in
standard web service logging facilities. How to tune the logging infrastructure and
obtain the necessary correlation information is outside from the scope of this work.
However, Mobucon EC can benefit of all approaches that aim to achieve correlation in
settings where it is not directly provided. In the web service setting, correlation can be
obtained by tuning the system so as to account for the needed “process information”
[Dustdar and Gombotz 2006], e.g., by means of WS-Addressing or the strategies in
[Nezhad et al. 2011]. Although [Nezhad et al. 2011] focuses on process instance-based
correlation, i.e., on the isolation of all event occurrences that refer to the same process
instance, we believe that a similar approach can be adopted also for activity instances.

7. DISCUSSION AND CONCLUSION
We have presented Mobucon EC, a non-intrusive framework for monitoring systems
whose dynamics is characterized by means of event streams. The framework is based
on a business constraint language that extends Declare with metric temporal condi-
tions and non-atomic, durative activities. The Event Calculus (EC) is used to formalize
the constraints to be monitored. One of the key advantages of logic-based approaches is
the separation between declarative knowledge (what is the problem about) and control
aspects (how to solve it). By exploiting Mobucon EC, Declare constraints can be for-
malized without specifying how to concretely monitor them. Furthermore, as long as
the EC ontology does not change, different EC reasoners can be seamlessly applied to
deal with alternative forms of reasoning, without affecting the proposed formalization.

It is interesting to note the relation between runtime verification and finiteness of
traces. At each time point, a running execution is characterized by a finite trace. How-
ever, it is an evolving trace, extended each time another event is observed. This process
could potentially continue forever. From the modeling point of view, this means that
the Declare diagrams could contain cyclic relationships, accounting for expected situa-
tions that must be repeatedly achieved. This is illustrated by the passenger and cargo
ship models shown in Figs. 8 and 10. No finite trace will fully comply with them: at
least one of their chain response constraints would be pending (if the trace is partial) or
violated (if the trace is complete). This has no impact on reasoning, which is triggered
by the occurrence of new events, checking the partial finite trace stored so far.

Currently, we are extending our approach in different directions, incorporating data,
resources (i.e., activity originators) and also recovery and compensation mechanisms to
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be instantiated in the case of a violation. For recovery and compensation, we will rely
on the preliminary proposal made in [Chesani et al. 2009], where the violations are
reified as special events. Making Declare data-aware is instead concerned with aug-
menting activities and constraints with additional information and conditions about
involved data and resources (beside lifecycle events and timestamps) [Montali 2010].
Technically, the framework here presented provides the basis for this kind of exten-
sion: to accommodate data, lifecycle events and the “context” of each constraint in-
stance must be extended with the activity data (such as, e.g., the price of an order),
while the EC axioms modeling the state transitions of constraints can exploit these
additional data to include further conditions (e.g., that the order’s price cannot exceed
a given threshold). Consider, e.g., an extended response constraint between two activi-
ties a and b, with the additional requirement that the originator (i.e., the responsible
resource) of b must be different than the one of a to satisfy the constraint (this is a form
of “four-eyes principle”). By introducing the originator as an additional parameter of
the lifecycle events, the response creation Axiom 10 becomes

creation(compl( , A,O), T, i(id, [A,O], T ), pend)← member(A, [a]).

The presence of O in the contextual information of the created instance can then be
used in the response fulfillment axiom (Axiom 11 in Section 3), to trigger the corre-
sponding state transition only if b is executed by an originator O2 different from O:

trans(start( , B,O2), T, i(id, [A,O], Ti), pend, sat)← cur state(i(id, [A,O], Ti), pend, T )

∧member(B, [b]) ∧O2 6= O ∧ inside future(Ti,m, n, T ).

This form of data-aware extension has been recently pursued in [Montali et al. 2013].
Another active research line concerns a comprehensive comparison of compliance

monitoring approaches, to assess their functionalities and performance. Although
there is a flourishing literature on monitoring approaches tailored to the measure-
ment of quantitative indicators such as Key Performance Indicators, we are interested
in monitoring compliance with complex business constraints. In this respect, we are
currently producing a literature review on compliance monitoring approaches, so as
to devise a framework for the systematic qualitative comparison of compliance moni-
toring functionalities. A quantitative evaluation of the state of the art is still difficult
because most of the approaches are not supported by publicly available software tools,
and due to the lack of shared benchmarks. An interesting matter of investigation will
therefore be to check whether the synthetic benchmarks adopted in this work can con-
stitute the basis for this quantitative comparison.

ACKNOWLEDGMENTS

The authors would like to thank Arjan Mooij for his valuable hints and comments on the paper.

REFERENCES
ARTIKIS, A. AND PALIOURAS, G. 2009. Behaviour recognition using the event calculus. In Proceedings of

AIAI. Springer.
BAUER, A., LEUCKER, M., AND SCHALLHART, C. 2007. The good, the bad, and the ugly, but how ugly is

ugly? In Proceedings of RV. LNCS. Springer.
BAUER, A., LEUCKER, M., AND SCHALLHART, C. 2011. Runtime verification for LTL and TLTL. ACM Trans-

action on Software Engineering Methodologies.
BRAGAGLIA, S., CHESANI, F., MELLO, P., MONTALI, M., AND TORRONI, P. 2012. Logic Programs, Norms

and Action. LNCS. Springer, Chapter Reactive Event Calculus for Monitoring Global Computing Appli-
cations.

CHESANI, F., MELLO, P., MONTALI, M., AND TORRONI, P. 2009. Verification of choreographies during exe-
cution using the reactive event calculus. In Proceedings of WS-FM. LNCS. Springer, 55–72.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



Monitoring Business Constraints with the Event Calculus 39:29

CHESANI, F., MELLO, P., MONTALI, M., AND TORRONI, P. 2010. A logic-based, reactive calculus of events.
Fundamenta Informaticae 1-2.

CHITTARO, L. AND MONTANARI, A. 1996. Efficient temporal reasoning in the cached event calculus. Com-
putational Intelligence 12.

CLARK, K. L. 1978. Negation as failure. In Logic and Data Bases. Plenum Press, 293–322.
DUSTDAR, S. AND GOMBOTZ, R. 2006. Discovering web service workows using web services interaction

mining. International Journal of Business Process Integration and Management.
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