
Discovering Stochastic Petri Nets with Arbitrary Delay
Distributions From Event Logs

Andreas Rogge-Solti1 and Wil M.P. van der Aalst2 and Mathias Weske1

1 Business Process Technology Group,
Hasso Plattner Institute, University of Potsdam, Germany

{andreas.rogge-solti,mathias.weske}@hpi.uni-potsdam.de

2 Department of Information Systems, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tue.nl

Abstract. Capturing the performance of a system or business process as accu-
rately as possible is important, as models enriched with performance information
provide valuable input for analysis, operational support, and prediction. Due to
their computationally nice properties, memoryless models such as exponentially
distributed stochastic Petri nets have earned much attention in research and indus-
try. However, there are cases when the memoryless property is clearly not able to
capture process behavior, e.g., when dealing with fixed time-outs.
We want to allow models to have generally distributed durations to be able to
capture the behavior of the environment and resources as accurately as possible.
For these more expressive process models, the execution policy has to be specified
in more detail. In this paper, we present and evaluate process discovery algorithms
for each of the execution policies. The introduced approach uses raw event execu-
tion data to discover various classes of stochastic Petri nets. The algorithms are
based on the notion of alignments and have been implemented as a plug-in in the
process mining framework ProM.

Keywords: process mining, stochastic Petri nets, generally distributed transitions

1 Introduction

Process mining has emerged as a promising technology to gain insights into the actual
execution of business processes and has been successfully applied in hundreds of or-
ganizations [1]. Besides the discovery of process models, process mining can also be
used to enrich existing models with information gathered from event logs. In particular,
capturing activity durations and waiting times in the business process is necessary to gain
insights about the performance of the process. Further, these enriched models can be used
as basis for prediction algorithms to estimate the time until completion of the process [1].
Estimating the remaining run time of business processes and its activities is an important
management task, since it allows to improve the allocation of resources. It also increases
the quality of results when clients inquire the status and expected completion of a given
business process.

2 A. Rogge-Solti, W. van der Aalst, M. Weske

Petri nets have been used widely in the business process domain, either as first class
modeling languages, or as basis for verification purposes. There exist mappings for
many workflow and business process modeling languages (e.g., BPMN, UML activity
diagrams, BPEL, and EPCs) into Petri nets [2], as they are able to capture the most
important control flow constructs.

If we have historical observations of a given process, e.g., an event log with timing
information, it is possible to extract stochastic performance data and add it to the model.
These enriched models can be used in a number of use cases. Besides answering questions
such as “How many percent of the process instances take longer than 10 days?”, they
can be used as basis for simulation, e.g., for what-if analysis. Moreover, they can be
used to get accurate predictions of the remaining time and offer operational support.

Current state-of-the-art performance mining techniques focus only on gathering mean
and variance (assuming normally distributed durations) [3,4], or the firing rate (assuming
exponentially distributed durations) [5,6] of times. We are interested in automatically
learning more fine grained information and want to be able to capture deterministic
time-outs, or irregularities, such as multi-modal distributions. This paper investigates
performance mining techniques for generally distributed transition stochastic Petri nets
(GDT_SPN) that do not restrict distributions to any shape.

Multiple execution policies exist for these models that need to be taken into ac-
count [7]. In a nutshell, the problem addressed in this paper is to infer the stochastic
parameters of a given Petri net, using an event log, and an execution policy. We base
our algorithms on the alignment technique originally developed for conformance check-
ing [8]. Our alignment-based approach is more robust than naïve replays of logs on the
model, as it guarantees finding the globally best alignment based on a cost function that
considers asynchronous parts of the replay.

The paper is organized as follows. In Section 2 preliminary definitions are provided.
The main challenges and the performance mining algorithms addressing them are dis-
cussed in Section 3. A preliminary evaluation showing the capabilities to restore different
kinds of models is presented in Section 4. Afterwards, related work is discussed in
Section 5. Finally, conclusions are presented in Section 6.

2 Preliminaries

In order to establish a formal basis and to clarify the difficulties and solution ideas, this
section introduces the concepts and techniques used throughout this paper. First, the core
concepts of event logs and Petri nets are given.

Definition 1 (Event Log). An event log over a set of activities A and time domain TD
is defined as LA,TD = (E,C, α, γ, β,�), where:

– E is a finite set of events
– C is a finite set of cases (process instances),
– α : E → A is a function assigning each event to an activity,
– γ : E → TD is a function assigning each event to a timestamp,
– β : E → C is a surjective function assigning each event to a case.
– �⊆ E × E is the succession relation, which imposes a total ordering on the events

in E.

Discovering SPNs with Arbitrary Delay Distributions From Event Logs 3

We use e2 � e1 as shorthand notation for (e2, e1) ∈�. We call the ordered sequence of
events belonging to one case a “trace”. We assume that e2 � e1 implies γ(e2) > γ(e1),
i.e., the time ordering is respected.

Definition 2 (Petri Net). A Petri net is a tuple PN = (P,T, F,M0) where:
– P is a set of places,
– T is a set of transitions,
– F ⊆ (P × T) ∪ (T × P) is a set of connecting arcs representing flow relations,
– M0 ∈ P→ IN+

0 is an initial marking.

Over the years, various kinds of extensions to Petri nets have been proposed in order
to capture performance criteria. An overview of different important classes of stochastic
Petri nets can be found in [9]. For our purposes, we extend the widely known definition
of Generalized Stochastic Petri Nets (GSPNs) provided in [10], by allowing durations of
the timed transitions to be generally distributed. In terms of the categorization proposed
in [9], we use SPN with generally distributed transitions.

Definition 3 (GDT_SPN). A generally distributed transition stochastic Petri net is
a seven-tuple: GDT_SPN = (P,T,P,W, F,M0,D), where (P,T, F,M0) is the basic
underlying Petri net. Additionally:

– The set of transitions T = Ti ∪ Tt is partitioned into immediate transitions Ti and
timed transitions Tt

– P : T → IN+
0 is an assignment of priorities to transitions, where ∀t ∈ Ti : P(t) ≥ 1

and ∀t ∈ Tt : P(t) = 0
– W : Ti → IR+ assigns probabilistic weights to the immediate transitions
– D : Tt → D is an assignment of arbitrary probability distributions D to timed

transitions, reflecting the durations of the corresponding activities.

tA

tB

tC

tD

t1

t4

t3

W(t3)=0.7

W(t2)=0.3

p1 p2

p5

p3 p4

p6

p7 p8

t2

D(tC)=normal(9,2)

D(tB)=uniform(3,14)

D(tD)=deterministic(10)

D(tA)=lognormal(0,1)

Fig. 1: Example GDT_SPN model with two parallel branches, and a conflict between
transitions tC , and tD.

An example GDT_SPN model is depicted in Fig. 1. Here, all weights of transitions
are 1, unless otherwise specified, e.g., the weight of the immediate transition leaving
the loop t3 is 0.7. Immediate transitions (t1,t2,t3,t4) are depicted as black bars and have
priority 1. The timed transitions (tA,tB,tC ,tD) are depicted as boxes and have priority 0.
The distributions of the probabilistic delays of the transitions D are annotated in a

4 A. Rogge-Solti, W. van der Aalst, M. Weske

legend in the top left of the figure, e.g., transition tB has a uniform distribution in
the interval [3, 14[. Although the transition durations depicted in this example are of
parametric shape, it is also possible to specify other distributions, e.g., densities based
on nonparametric regression. Note that even though the example model in Fig. 1 is
structured and free-choice, the approaches presented in this paper are also applicable for
non-structured and non-free-choice models.

The basic semantics of GSPN models [10] are still valid for GDT_SPN models used
in this paper, i.e., only the enabled transitions of the highest priority are allowed to fire in
the current marking. This ensures that if immediate transitions are enabled, no timed tran-
sition can fire. As in GSPN semantics, the choice between multiple enabled immediate
transitions is resolved probabilistically in proportion of their weight parameters.

Next to the seven-tuple GDT_SPN = (P,T,P,W, F,M0,D), an execution policy [7]
has to be chosen to resolve conflicts between multiple enabled transitions and to decide
upon the memory of transitions, i.e., if and how long they store the duration of time
passed in enabled state. If more than one timed transition is enabled in a marking of a
GDT_SPN, the selection policy defines how the next transition is chosen.

In preselection mode, this choice is resolved based on the weights. When using
the race policy, each enabled transition picks a random sample of its distribution and
the one with the lowest sample fires next. The memory policy defines what happens to
the transitions that lose the race. There are three options, either i) resampling, which
constitutes to losing all progress, ii) enabling memory, where each transition remembers
its sampled duration until it becomes disabled or fires, or iii) age memory, where
transitions remember their sampled time, even through periods of disabling, until they
eventually can fire.

The most common execution policies used for business processes are either race
with enabling memory or race with age memory. We do not impose restrictions upon
the execution semantics in this paper, rather we provide algorithms to reconstruct
GDT_SPN models, assuming a particular execution policy. Before that however, we
need to introduce the notion of alignments [8,11], which we base our algorithms upon.

2.1 Cost-Based Alignments

Figure 2.a) shows two execution traces (tr1, tr2) of the model depicted in Fig. 1, such that
each event in the trace corresponds to a transition in the net with matching subscript, e.g.,
event B belongs to transition tB. For this example, we assume that immediate transitions
are invisible, i.e., they do not appear in the log, and all timed transitions are visible. This
must not necessarily be the case in general, as there might be observable immediate
transitions or invisible timed transitions as well. Dealing with invisible timed transitions
is out of scope of this paper, however. We denote invisible transitions in a model in
the alignment with a τ symbol. Note that trace tr2 does not fit well into the model, so
we want to find an optimal alignment between model and log. For this purpose, we
reuse the methods developed by Adriansyah et al. in [8], which results in a sequence of
movements that replay the trace in the model. These movements are either synchronous
moves, model moves, or log moves. Figure 2.b) displays a perfect alignment for tr1 that
consists of synchronous, or invisible model moves only.

Discovering SPNs with Arbitrary Delay Distributions From Event Logs 5

(a) a small log:

tr1 : 〈 A, B, D, C, B〉
tr2 : 〈 B, D, D〉

(b) perfect alignment for trace tr1:

log A � B D � � � C B � �

model
A τ B D τ τ τ C B τ τ

tA t1 tB tD t2 t4 t1 tC tB t2 t3

(c) two possible alignments for trace tr2:

(c.1)
log � � B D D � �

model
A τ B D � τ τ

tA t1 tB tD t2 t3

(c.2)
log � � B D � � � D � � �

model
A τ B D τ τ τ D B τ τ

tA t1 tB tD t2 t4 t1 tC tB t2 t3

Fig. 2: Event log and possible alignments for the traces.

For trace tr2 there exist multiple possible alignments, of which two are depicted in
Fig. 2.c). The� symbol represents no progress in the replay on either side, e.g., the first
step in the alignment in Fig. 2.c.1) is a model move. In fact, for the model in Fig. 1 there
exist infinite alignments, as the model contains a loop that could be traversed an arbitrary
number of times, resulting in two additional model moves, and three invisible model
moves per iteration. The cost based alignment approach in [8] makes sure that alignments
containing unnecessary moves get penalized by higher cost and therefore excluded from
the optimal alignments. Alignments provide a deterministic firing sequence in the model
replaying the traces in an optimal way.

3 Mining GDT_SPN Models

There are multiple difficulties in mining GDT_SPN models from event logs. First, we
describe how the alignment technique introduced in Section 2.1 helps dealing with noisy
event logs, i.e., logs where events might be missing, be at unexpected positions, or be
reflecting activities not captured in the model.

3.1 First Challenge: Dealing with Noisy Logs

In order to extract decision and timing information from logs and combine the extracted
information with a Petri net to get a GDT_SPN model, each individual trace in the log
needs to be aligned to the Petri net. That is, the path in the model that was taken in
the trace has to be identified. Previous techniques to extend models with performance
information, e.g. the work in [3] tries to find the path through a model in a greedy way.
Typically, this is done by replaying the model and looking for the best next match(es)
between enabled transitions and next events with a given look-ahead. In contrast, the
cost-based alignment technique introduced in Sect. 2.1, guarantees to find one of the
alignments that is optimal in the sense that it has the least number of asynchronous
moves (given that all asynchronous moves are assigned equal costs).

In fact, we add a small cost δt based on individual event counts to each transition t in
the alignment, such that less frequent events and their corresponding transitions have a
slightly higher cost than more frequent ones. This ensures that the alignment algorithm
always favors the most frequent option, when there are multiple options to choose a path
in the model. This is a simple heuristic that may pick the wrong alignment, but the best
guess that can be made based on local frequency-based information. A more accurate
option would be to leverage the whole alignment approach to consider the stochastic
parameters of the model, which is out of scope of this paper.

6 A. Rogge-Solti, W. van der Aalst, M. Weske

The resulting alignments are only usable for our purposes, when most of the ob-
served behavior actually fits the model. If fitness values are very low, a lot of information
contained in the event log cannot be mapped to the model, and cannot be used for perfor-
mance analysis. In this case, we add a preprocessing step before eliciting performance
data. In this preprocessing step, the model needs to be adjusted to the log, which can be
done by repairing the model, cf. techniques presented by Fahland and van der Aalst [12]
to add optional subprocesses to models, or alternatively the work by Buijs et al. [13]
based on genetic mining.

Analyze fitness
between model

and log

fitness
very low?

Repair model
with log to

increase fitness

Align model
and log

Collect performance
information by

replaying the traces
on the model

according to the
alignments

Alignment
for each

trace in log GDT_SPN
model

Configuration:
(execution policy,
distribution types)Event log

Petri net
model

Inputs:

Output:

y
e
s

no

Fig. 3: BPMN model showing the approach to elicit GDT_SPN models.

Fig. 3 shows an overview of the elicitation approach proposed in this paper. The
inputs to the approach are the Petri net model reflecting the structural behavior of the
process, and an event log containing the traces representing actual executed process
cases. Further, a configuration is necessary, as GDT_SPN models are flexible in their
execution semantics and transition distribution types that will be fitted to the data. The
fitness between model and log can be analyzed by the technique described in [8] and
implemented in the process mining framework ProM. If the fitness is under a user
specified threshold, e.g., 0.7, first repair techniques available in [12,13] are executed on
the model to allow for the behavior observed in the log. Then, each trace in the event
log is aligned to the model to find one of the optimal paths through the model. With the
alignments, the collection of stochastic execution information according to the input
configuration is performed.

3.2 Second Challenge: Collecting the Stochastic Performance Information

With the alignments between model and the traces selected, the collection of performance
information can proceed depending on the configuration of the elicitation algorithm, i.e.,
execution policies and distribution types. First, we discuss the common approach that is
used regardless of the specific execution policy.

The alignment makes sure that each event is assigned to at most one transition in the
model. Based on the alignments, we replay the traces on the model, as if in a simulation,
but instead of sampling random values from the distributions, we use the observed values
extracted from the event log and infer the most likely stochastic model that explains the
observation best. This works well if we can gather all the information that would also be
produced in a simulation, i.e., the sample values of the transition firings, and the firing
ratios for the markings. The different execution policies (preselection / race and in case
of a race policy also the memory policy) are complicating matters. For example, races

Discovering SPNs with Arbitrary Delay Distributions From Event Logs 7

between simultaneously enabled transitions can only be observed indirectly: the sampled
values of the losing transition of the race cannot be recovered in all cases. Other reasons
for missing information might be noise in the data, e.g., missing events.

Depending on the execution policy of the GDT_SPN model, different approaches
are used to collect the stochastic parameters of the model.

Global preselection policy With the global preselection policy, only one transition
can perform work at once, leading to a serialized process execution. Given this policy,
we replay the traces in the model and collect in each visited marking for each enabled
transition the number of times, the transition was picked. These numbers, when nor-
malized, give us a ratio of the weights of the transitions in each marking. Note that one
transition can be enabled in multiple markings, i.e., a transition weight needs to fulfill
multiple equations and there may be dependencies. Hence, we solve an optimization
problem to find the joint assignment to the transition weights that minimizes the error in
these equations of each marking. To achieve this, we implemented a gradient descent
algorithm that finds the weight vector that minimizes the individual errors in the process
mining toolkit ProM3. The algorithm is guaranteed to converge (if the learning rate is
sufficiently low) to a local optimum. Since the cost function of the errors is convex by
nature and has, similarly to linear regression, no local optima, it finds the best global
assignment. Note that if we would extend our model to capture marking dependent
weights, we would not need to average the errors out, but could directly estimate the
weights as the observed ratio of transition firings in each marking.

The time differences between events in the trace represent the duration of transition
firings. Since there is no parallel execution in global preselection, these transition
durations can be read from the trace directly. However, special attention needs to be
devoted to asynchronous moves in the alignment. The time difference between transitions
should only be collected, if the current move is synchronous and the previous is either
also synchronous, or a log move. In other cases the difference between the times of events
are spanning multiple transitions in the model. If more than one of these transitions is
timed, we can use this delay as upper bounds for all involved timed transitions on the
path in the alignment between the two events.

Race selection policy In the race selection policy, we also replay the traces in the model
according to the path dictated by the alignment. The challenge in the race selection
policy is that we can only read the duration sample of the winning transition directly.
That duration can however serve as a lower bound for the other transitions that lose their
progress. Depending on the memory policy this issue of non-retrievable samples is more
or less severe.

With the resampling memory policy, we only get exact samples for winning transi-
tions. In the worst case, when a transition loses every race, we have only a lower bound
on it’s distribution which makes inference on the actual shape or range of it’s values
impossible. However, this is only a problem for transitions that rarely happen. Note also
that this policy is rarely used in practice, as it does introduce dependencies between

3 See the StochasticPetriNet package of ProM (http://www.processmining.org)

http://www.processmining.org

8 A. Rogge-Solti, W. van der Aalst, M. Weske

parallel transitions, i.e., parallel transitions have to restart their work, because another
transition was faster.

Of more practical relevance is the enabling-memory policy, which allows for transi-
tions that lose a race against non-conflicting transitions to keep their progress. If we have
both events for the transition enabling and the one firing the transition, we can calculate
the duration of the transition by simple subtraction between these two events. In this
policy, we still cannot recover sample durations for transitions that lose a race against a
conflicting transition, i.e., a transition that disables it. Thus, we also have to deal with
censored data for timed transitions in conflict with other transitions.

Last, the age-memory policy even allows to reconstruct the sample duration of timed
transitions in conflict, if they are re-enabled, e.g., by another iteration of a loop. We
need to collect all enabled periods and take their sum to reconstruct the originally
sampled firing duration. This is straightforward by using age variables for transitions
and incrementing them by the time spent in enabled state during replay. Note that even
in the age-memory policy not all duration samples of conflicting transitions can be
collected from the event log in general. Recall that a transition does not necessarily
become enabled again after being disabled by a conflicting transition.

Thus, we can treat all memory policies for the race policy equally, besides from
subtle difference in gathering the samples, i.e., points in time when transition clocks
will be reset. In all cases we gather both accurate samples of the unknown distribution
that we want to infer, and also lower bounds on the remaining samples, when another
transition fired first. In general, we face the problem to infer the probability distribution
of a random variable with randomly right-censored data. Approaches to this problem
are well-known in statistics, cf. the overview by Padgett and McNichols [14]. We use
the method of Kooperberg and Stone [15] that fits log-splines to censored data, and is
available in R.4

3.3 Third Challenge: Dealing with Special Cases

As claimed in the introduction, allowing for timeouts is one important aspect of business
process modeling. Therefore, the mining algorithm needs to be capable to detect deter-
ministic durations in a model. In technical terms, once we have gathered the observed
samples and censored samples, we can check, whether a transition is deterministic or not,
by comparing the observed samples. If the samples are sufficiently close, we define the
transition to be deterministic. This can be made more robust against noise, by removing
outliers before applying these rules. In the mined model, the deterministic value is
estimated as the mean of the observed values.

Another quite important modeling construct are immediate transitions, which fire
immediately after they have been enabled, provided that they are selected amidst com-
peting immediate transitions. We assumed immediate transitions to be invisible. But if
corresponding events exist in the event log, the rule to identify these transitions is to set
a threshold and check, whether all observed values are within 0 and that threshold. Note
that we cannot give a general rule, as it depends on the domain, e.g., the response time
of systems, how large these thresholds should be.

4 See package logspline in R. (http://www.r-project.org/)

http://www.r-project.org/

Discovering SPNs with Arbitrary Delay Distributions From Event Logs 9

4 Evaluation

To evaluate how well the algorithm works on data, it is necessary to compare its output,
i.e., the discovered model, with the model that produced the behavior in the event log. In
general however, the theoretical model behind the observable phenomena is not known.
Therefore, we rely on a simulation based approach. First, we need a GDT_SPN model.
There exist already algorithms that can discover less expressive performance models
from data [5,4], which can serve as a starting point, or a hand-made model can be used.
In this evaluation, we focus on the following two questions:

– How many traces do we need to get reasonably accurate results?
– How tolerant is the algorithm towards noise in the log?

To gain insights into these questions, we ran the following experiment. First, multiple
logs are simulated from the GDT_SPN model depicted in Fig. 1 with increasing trace
count from 10 traces to 10000 traces. The simulated event logs, the underlying Petri net
(P,T, F,M0) of the GDT_SPN model, and the given execution policy are passed as input
to the discovery algorithm. The algorithm produces another GDT_SPN model, which
we compare with the original model.

There are several ways to assess the accuracy of a model. To test for the bias that our
method introduces in the model parameters, we calculate the mean absolute percentage
error (MAPE) of the estimated 1.moment and the original 1.moment of each timed
transition’s distribution. Note that we omitted the first transition tA from the calculation,
because we cannot calculate its duration, as there is no previous event with a timestamp
in the log. Weights are evaluated relatively to each other when selecting an immediate
transition, and additionally in preselection mode also when selecting the next timed
transition. Therefore, we need to compare the weight ratios in each marking of the
original and discovered model, where selection of the next transition is based on weights.
Because weights are evaluated relatively to each other, we normalize them first, before
we calculate the MAPE of the weights in each relevant marking.

10 50 500 5000

0
5

10
15

20
25

of traces

●

●

●

●

●
● ●

● preselection
race / resampling
race / enabl. memory
race / age memory

(a) MAPE of weights

10 50 500 5000

0
2

4
6

8
10

of traces

●

●

●

●
● ● ●

(b) MAPE of 1.moments
(ignoring censored data)

10 50 500 5000

0
1

2
3

4
5

6
7

of traces

●

●

●
●

●
● ●

● preselection
race / resampling
race / enabl. memory
race / age memory

(c) MAPE of 1.moments
(using censored data)

Fig. 4: Effects of trace size on restored model accuracy. Mean average percentage
error (MAPE) of weights and MAPE of 1.moments of inferred distributions for timed
transitions of the model in Fig. 1. Number of traces drawn in log-scale.

Figure 4.a) shows the error of the transition weights between the original model and
the inferred model from the log. Note that weight errors of all race policies collapse,

10 A. Rogge-Solti, W. van der Aalst, M. Weske

as their weights are computed in the same way. However, the preselection policy has
more constraints on the weights, and random behavior of small event logs prohibits
discovering the true weights accurately. Fig. 4.b) shows the mean average percentage
error of the 1.moments, when a simple kernel density estimation is used for estimating
the duration of timed transitions. As expected, the preselection execution policy does
not suffer from bias due to censored data. The race with resampling method is the most
difficult to reconstruct, as many of the samples are discarded. The enabling memory
policy has less bias, and in the age memory policy, the algorithm can restore most of the
original sample durations. Fig. 4.c) depicts the error that remains, when the log-spline
density estimator [15] is used. Note that this method considers censored data and can
correct the bias well. It reduces the biases of the race execution policies significantly.

1.0 0.9 0.8 0.7 0.6 0.5

0
10

30
50

fitness between log and model

●
●

●

●

●

●

●

●

●
●

●
●

●
●

(a) MAPE of weights

1.0 0.9 0.8 0.7 0.6 0.5

0
20

40
60

fitness between log and model

● ● ● ● ● ● ● ● ● ● ●

●

●

●

● preselection
race / resampling
race / enabl. memory
race / age memory

(b) MAPE of 1.moments
(ignoring censored data)

1.0 0.9 0.8 0.7 0.6 0.5

0
20

40
60

80

fitness between log and model

● ●
● ● ●

●
●

●
●

●
●

●

●

●● preselection
race / resampling
race / enabl. memory
race / age memory

(c) MAPE of 1.moments
(using censored data)

Fig. 5: Mean average percentage errors between the model in Fig. 1 and the reconstructed
model with increasing amount of noise, i.e., reduced fitness.

For the second experiment, we keep the trace size at 1000 and run the discovery
algorithms with logs of varying degrees of artificial noise, i.e., random addition and
deletion of events. Fig. 5 depicts the same measures as before, i.e., the MAPE of relative
weights in the markings and the MAPE of the 1.moments of the distributions. Observe,
how in Fig. 5.b) the MAPE of the 1.moments increases non-linearly with lower fitness
values. The quality starts dropping rapidly below a fitness of 0.8 in this example. When
dealing with noisy logs, the Petri net models should be repaired first in a preprocessing
step, as described in Sect. 3.

As a concluding remark, we caution against drawing general conclusions from these
preliminary evaluations. Larger errors are expected for models with bigger state spaces.

5 Related Work

There exists already work on obtaining Petri net models with stochastic performance
characteristics from data. Hu et al. propose a method to mine exponentially distributed
SPN models from workflow logs in [6] focusing on firing rates of transitions. In contrast,
our work allows for generally distributed firing times. Another, quite different approach
was proposed by Anastasiou et al. [5] and uses location data to elicit generalized stochas-
tic Petri net (GSPN) [10] models for modeling flows of customers. They fit hyper-erlang

Discovering SPNs with Arbitrary Delay Distributions From Event Logs 11

distributions to transition durations representing waiting and service times and replace
the corresponding transitions with a GSPN subnet exhibiting the same characteristics of
the hyper-erlang distribution. They consider every transition in isolation though, which
poses no problems in serial processes but parallelism in the processes, especially multiple
parallel transitions in conflict, are not covered in that approach.

Also attempts at eliciting non-Markovian stochastic Petri nets exist. Leclercq et al.
investigate how to extract models of normally distributed data in [4]. Their work is
based on an expectation maximization algorithm that they run until convergence. In
comparison to our approach, they are not able to deal with missing data and do not
consider different execution policies. Reconstructing model parameters for stochastic
systems has also been investigated by Buchholz et al. in [16]. They address the problem
to find fixed model parameters of a partially observable underlying stochastic process. In
contrast to our work, the underlying process’s transition distributions need to be specified
beforehand, while our aim is to infer also transition distributions of a GDT_SPN model.
In a similar setting, i.e., with incomplete information, Wombacher and Iacob estimate
distributions of activities and missing starting times of processes in [17].

In [3], Rozinat et al. investigate how to gather information for simulation models, but
rather try to identify data dependencies for decisions and mean durations and standard
deviations and do manual replay, which is not guaranteed to find an optimal alignment
between model and log. The approach proposed in this paper is capable to deal with noise
in a more robust way, by building on the notion of alignments [8,11], which identify an
optimal path through the model for a noisy trace. In conclusion, we are not aware of
existing work that allows for generally distributed duration distributions, and different
execution policies. Moreover, unlike existing approaches our approach is supported
by a publicly available ProM plug-in and can thus be combined with a wide range of
control-flow discovery approaches.

6 Conclusion

This paper addresses the challenges that arise when mining performance characteristics
for models that can capture distributions other than the memoryless distributions. Unlike
earlier work, the paper makes very little assumptions on the event data and underlying
process to be mined. Accurate models of process performance are crucial for what-if
analysis, predictions, recommendations, etc.

The stochastic model used in this paper extends the popular GSPN modeling tech-
nique. To analyze discovered GDT_SPN models, we need to resort to simulation due to
the expressiveness of the class of models considered. We discussed different execution
policies of GDT_SPN models and have shown how these different semantics can be
taken into account when eliciting models. The preselection firing policy is the simplest
case, which can be learned without problems. All other cases need sophisticated den-
sity estimation techniques that are able to cope with randomly right censored data. An
implementation producing initial results is made available open source in the ProM
framework.

Our next steps include comparing these mined models with other approaches and
compare the model accuracy based on a specific use case, such as predicting the duration

12 A. Rogge-Solti, W. van der Aalst, M. Weske

of a process. Future work also includes extending the alignment approach to align event
logs probabilistically to a given GDT_SPN model, such that we can find the alignment
with the highest probability.

References

1. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer (2011)

2. Lohmann, N., Verbeek, E., Dijkman, R.: Petri net transformations for business processes - a
survey. In: Transactions on Petri Nets and Other Models of Concurrency II. Volume 5460 of
LNCS. Springer Berlin Heidelberg (2009) 46–63

3. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.: Discovering simulation models.
Information Systems 34(3) (May 2009) 305–327

4. Leclercq, E., Lefebvre, D., Ould El Mehdi, S.: Identification of timed stochastic petri net
models with normal distributions of firing periods. In: Information Control Problems in
Manufacturing. Volume 13. (2009) 948–953

5. Anastasiou, N., Horng, T., Knottenbelt, W.: Deriving Generalised Stochastic Petri Net
Performance Models from High-Precision Location Tracking Data. In: VALUETOOLS’11,
ICST (2011) 91–100

6. Hu, H., Xie, J., Hu, H.: A Novel Approach for Mining Stochastic Process Model from
Workflow Logs. Journal of Computational Information Systems 7(9) (2011) 3113–3126

7. Marsan, M.A., Balbo, G., Bobbio, A., Chiola, G., Conte, G., Cumani, A.: The effect of
execution policies on the semantics and analysis of stochastic petri nets. IEEE Transactions
on Software Engineering 15 (1989) 832–846

8. Adriansyah, A., van Dongen, B., van der Aalst, W.: Conformance Checking using Cost-Based
Fitness Analysis. In: EDOC 2011, IEEE (2011) 55–64

9. Ciardo, G., German, R., Lindemann, C.: A Characterization of the Stochastic Process
Underlying a Stochastic Petri Net. IEEE Transactions on Software Engineering 20(7) (1994)
506–515

10. Marsan, M., Conte, G., Balbo, G.: A Class of Generalized Stochastic Petri Nets for the
Performance Evaluation of Multiprocessor Systems. ACM TOCS 2(2) (1984) 93–122

11. van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying History on Process Models for
Conformance Checking and Performance Analysis. In: WIREs: Data Mining and Knowledge
Discovery. Volume 2., Wiley Online Library (2012) 182–192

12. Fahland, D., van der Aalst, W.: Repairing Process Models to Reflect Reality. In: BPM.
Volume 7481 of LNCS., Springer (2012) 229–245

13. Buijs, J.C., La Rosa, M., Reijers, H., van Dongen, B., van der Aalst, W.: Improving business
process models using observed behavior. In: Post-Proceedings of SIMPDA 2012. LNBIP,
Springer (2013) (to appear)

14. Padgett, W., McNichols, D.T.: Nonparametric density estimation from censored data. Com-
munications in Statistics-Theory and Methods 13(13) (1984) 1581–1611

15. Kooperberg, C., Stone, C.J.: Logspline density estimation for censored data. Journal of
Computational and Graphical Statistics 1(4) (1992) 301–328

16. Buchholz, R., Krull, C., Horton, G.: Reconstructing model parameters in partially-observable
discrete stochastic systems. In: Analytical and Stochastic Modeling Techniques and Applica-
tions. Springer (2011) 159–174

17. Wombacher, A., Iacob, M.E.: Start time and duration distribution estimation in semi-structured
processes. Technical report, Centre for Telematics and Information Technology, University of
Twente (2012)

	Discovering Stochastic Petri Nets with Arbitrary Delay Distributions From Event Logs

