
Chapter 1
Behavioral Service Substitution

Christian Stahl and Wil M. P. van der Aalst

Abstract Service-oriented design supports system evolution and encourages reuse
and modularization. A key ingredient of service orientation is the ability to substi-
tute one service by another without reconfiguring the overall system. This chapter
aims to give an overview of the state of the art and open challenges in the area of
service substitution. Thereby, we restrict ourselves to changes of the service behav-
ior. We present a formal model of service behavior, formalize service substitution,
study algorithms to decide service substitution, and provide rules to construct ser-
vices that are correct by design. Beside analysis at design time, we also investigate
analysis at runtime, where we measure the deviation of a running service (or collec-
tion of services) from its specification based on recorded event data (e.g., message
or transaction logs).

1.1 Introduction

Today’s enterprises are challenged to continuously change their systems to address
changes in their environment. On the one hand, systems are highly complex, run
in heterogeneous environments, and are often distributed over several enterprises.
On the other hand, because of the extensively growing acceptance of the Internet
and Internet-related technologies, enterprises consider themselves to be exposed to
intense competition and, therefore, have to act dynamically and to change and adapt
their systems whenever necessary. For example, when some new functionality is
added or some quality parameter of some functionality is improved, this causes a
change in system development. Instead of designing a system from scratch, existing
systems need to be redesigned and improved iteratively.

Christian Stahl and Wil M. P. van der Aalst
Dept. of Mathematics and Computer Science, Technische Universiteit Eindhoven,
PO Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: C.Stahl|W.M.P.v.d.Aalst@tue.nl

1

2 Christian Stahl and Wil M. P. van der Aalst

activity

channel channel

interface
service definition service definition

service definition

interface

activity
message

Fig. 1.1 An illustration showing the main terms used to describe services.

Service orientation [40] is a paradigm to design a complex distributed system
by composing it from smaller building blocks called services. A service is an au-
tonomous system that has an interface to interact with other services via message
passing. As services are composed into more complex services, a service is usually
stateful. The behavior of a service is described by a set of activities. An activity is
the atomic unit of work in a service. The execution of an activity is either internal
to the service or yields the sending or the receiving of a message. A service can
be executed; that is, an instance of this service is created. An instance can execute
activities. Figure 1.1 illustrates these terms.

An important property of a service composition is compositionality; that is, the
composition is again a service. To achieve compositionality, a service composition
must be compatible. The modular design of services enables enterprises to substitute
one service by another one rather than changing the entire system. Substituting one
service by another one should preserve compatibility of the overall system. Verifica-
tion of compatibility is challenging, as one wants to derive correctness of the overall
system from the correctness of the correctness of its services. Service substitution—
that is, deciding whether a service can substitute another service—is considered to
be one of the grand challenges [42].

In this chapter, we give an overview of the state of the art and open challenges
in the area of service substitution. We thereby restrict ourselves to changes of the
service behavior, which are also known as business protocol changes [41]. This
restriction implies that we assume that nonfunctional and semantical properties are
not violated when changing a service to another service; that is, we abstract from
resources and consider only data and message types and not their content. Figure 1.2
illustrates how we approach this topic.

First, in Sect. 1.2, we formalize service behavior according to the illustration in
Fig. 1.1. We introduce open nets, Petri nets extended with an interface, as a service
model and formalize terms such as compatibility. Suitability of this model has been
demonstrated by feature-complete open-net semantics for various languages such as
BPMN and WS-BPEL [29].

In Sect. 1.3, we present two variants of service substitution and formalize them
using a refinement relation between the specified (i.e., the old) service Spec and
the implemented (i.e., the new) service Impl. A naive way to ensure correctness
during service substitution is to compare the sets of all controllers (i.e., admissible
contexts) of Spec and Impl. Only if all controllers of Spec are included in the set

1 Behavioral Service Substitution 3

open net Spec open net Imp

Representation

of all controllers

of Spec

Representation

of all controllers

of Imp

Refinement

Decide

Substitution

 e.g., BPEL

service composition

specification

service composition

implementation

 e.g., BPMN

Measure

Runtime

Conformance

event

logs

Software

system

Fig. 1.2 Illustration of the proposed approach.

of controllers of Impl, compatibility is ensured. As these sets of controllers may be
infinite, we introduce a finite representation of these sets to decide substitution. We
also consider service substitution in a setting where a running instance of the old
service has to be migrated to the new service.

Besides checking whether a service can actually be substituted by another one,
one can also guide the construction of services that are correct by design. This ap-
proach can then be integrated in design tools and helps to speed up the design pro-
cess. We investigate such techniques in Sect. 1.4.

Compatibility and substitutability can be studied at design time under the as-
sumption that services behave as modeled. However, organizations may – deliber-
ately or accidently – implement a different service or services may evolve over time.
As a result, the real service behavior deviates from the modeled behavior. The avail-
ability of event logs of the actually implemented service Impl and the existence of
the specified service Spec enables us to check conformance at runtime; that is, we
investigate to what extent “the real Impl” deviates from Spec. In Sect. 1.5, we present
techniques for offline conformance checking (diagnosis of deviations based on his-
toric event data) and online conformance checking (generating alerts the moment a
deviation occurs).

Section 1.6 concludes the chapter by summarizing our main findings and by dis-
cussing open research challenges.

1.2 Formalizing Service Behavior

Petri nets have proven to be successful for the modeling of business processes and
workflows [8, 11]. In this section, we introduce our modeling formalism for ser-

4 Christian Stahl and Wil M. P. van der Aalst

vices, open nets. We focus on service behavior, and abstract from nonfunctional
properties, semantical information, and data. As the formalism of open nets refines
place/transition Petri nets, we first provide the basic definitions on Petri nets.

1.2.1 Basic Definition on Petri Nets

A Petri net [46] consists of two kinds of nodes, places and transitions, and a flow
relation on nodes. Whilst transitions represent dynamic elements, for example an
activity in a service, places represent static elements, such as causality between ac-
tivities or an interface port. Graphically, a circle represents a place, a box represents
a transition, and the directed arcs between places and transitions represent the flow
relation. A state of the Petri net is represented by a marking. A marking is a distri-
bution of tokens over the places. Graphically, a black dot represents a token.

Definition 1 (Net). A net N = (P,T,F,mN ,Ω) consists of

• a finite set P of places,
• a finite set T of transitions such that P and T are disjoint,
• a flow relation F ⊆ (P×T)∪ (T ×P),
• an initial marking mN , where a marking m ∈B(P) is a multiset over P, and
• a set Ω of final markings.

A labeled net is a net N together with an alphabet A of actions and a labeling
function l ∈ T →A ∪{τ}, where τ /∈A represents an invisible, internal action.

Let x ∈ P∪T be a node of a net N. As usual, •x = {y | (y,x) ∈ F} denotes the
preset of x and x•= {y | (x,y)∈F} the postset of x. We interpret presets and postsets
as multisets when used in operations also involving multisets.

A marking m∈B(P) is a multiset over the set P of places; for example, [p1,2p2]
denotes a marking m with m(p1) = 1, m(p2) = 2, and m(p) = 0 for p∈ P\{p1, p2}.
We define + and− for the sum and the difference of two markings and =,<,>,≤,≥
for comparison of markings in the standard way. If m1 ∈B(P1) and m2 ∈B(P2),
then m1 +m2 ∈B(P1 ∪P2) (i.e., the underlying set of elements is adjusted when
needed).

The behavior of a net N relies on changing the markings of N by firing transitions
of N. A transition t ∈ T is enabled at a marking m, denoted by m t−→ , if for all
p ∈ •t, m(p)> 0. If t is enabled at m, it can fire, thereby changing the marking m to
a marking m′ = m− •t+ t•. The firing of t is denoted by m t−→m′; that is, t is enabled
at m and firing it results in m′.

The behavior of N can be extended to sequences: m1
t1−→ . . .

tk−1−−→ mk is a run of
N if for all 0 < i < k, mi

ti−→ mi+1. A marking m′ is reachable from a marking m if
there exists a (possibly empty) run m1

t1−→ . . .
tk−1−−→mk with m = m1 and m′ = mk; for

w = 〈t1 . . . tk−1〉, we also write m w−→m′. Marking m′ is reachable if mN = m. The set

1 Behavioral Service Substitution 5

MN represents the set of all reachable markings of N, and the set of runs of N from
the initial marking to a final marking is Ru(N) = {w ∈ T ∗ | ∃m f ∈Ω : mN

w−→m f }.
In the case of labeled nets, we lift runs to traces: If m w−→ m′ and v is obtained

from w by replacing each transition by its label and removing all τ-labels, we write
m v
=⇒ m′. For example, if w = 〈t1, t1, t2, t1, t2, t3〉, l(t1) = a, l(t2) = τ , and l(t3) = b,

and m w−→ m′, then m v
=⇒ m′ with v = 〈a,a,a,b〉. We refer to v as a trace whenever

mN
v
=⇒ m f with m f ∈Ω and Tr(N) = {σ ∈A ∗ | ∃m f ∈Ω : mN

σ
=⇒ m f } is the set

of all traces of N.
A net N is bounded if there exists a bound b ∈ IN such that for all reachable

markings m ∈ MN and p ∈ P, m(p) ≤ b. A reachable marking m /∈ Ω of N is a
deadlock if no transition t ∈ T of N is enabled at m. Net N is deadlock free if at least
one transition of N is enabled at every reachable non-final marking.

1.2.2 Open Nets

A service consists of a control structure describing its behavior and an interface to
communicate asynchronously with other services. Thereby an interface consists of a
set of input and output ports. In order that two services can interact with each other,
an input port of the one service has to be connected with an output port of the other
service. These connected ports then form a channel.

The control structure of a service can be adequately modeled as a net. We use the
set of final markings of a net to model the states, in which a service may success-
fully terminate. In addition, it is necessary to model ports. To this end, we add an
interface to our model. The service interface is reflected by two disjoint sets of in-
put and output places. Thereby, each interface place corresponds to a port. An input
place has an empty preset and is used for receiving messages from a distinguished
channel, whereas an output place has an empty postset and is used for sending mes-
sages via a distinguished channel. In the model, we abstract from data and identify
each message by the label of its message channel. The resulting service models are
open nets [28, 53].

Definition 2 (Open net). An open net N is a tuple (P,T,F,mN , I,O,Ω) with

• (P∪ I∪O,T,F,mN ,Ω) is a net such that P, I, O are pairwise disjoint;
• for all p ∈ I∪O, mN(p) = 0, and for all m ∈Ω and p ∈ I∪O, m(p) = 0;
• the set I of input places satisfies for all p ∈ I, •p = /0; and
• the set O of output places satisfies for all p ∈ O, p• = /0.

If I = O = /0, then N is a closed net. The net inner(N) results from removing the in-
terface places and their adjacent arcs from N. Two open nets are interface equivalent
if they have the same sets of input and output places.

A closed net can be used to model a service choreography, whereas the inner of
an open net reflects the interior of a service. Graphically, we represent an open net

6 Christian Stahl and Wil M. P. van der Aalst

t1

p1

s

b

e

c

n

t2

p2

t3

t4

t5 t6

p3

t7

p4

(a) Customer NC

t8

p5

t9

p6

t10

p8

s

b

e

c

n

t11 t12

t13

p7

(b) Translator NT

t14

p9

t15

p10 p11

p13

s

b

e

c

n

t16 t17

t18

p12

t19

t20

(c) Translator NB

Fig. 1.3 Open nets modeling a customer (ΩC = {[p1], [p4]}) and two translation services (ΩT =
{[p5], [p8]} and ΩB = {[p9], [p13]}).

like a net with a dashed frame around it. The interface places are depicted on the
frame.

Figure 1.3 depicts our running example. It is a simplified (behavioral) model of a
translation service. The example is inspired by the translation APIs offered by Bing
and Google. The service in Fig. 1.3(b) receives a text file that must be translated.
Our example allows customers to send a small or a large file, modeled by messages
s and b, respectively. Depending on the pricing model used, the service asks for a
cheap or a normal price (messages c and n). Sometimes the service may not work
properly, for example, if too many requests are sent. In this case, the service sends
an error message e. After having successfully translated a text file, the service enters
a final state. In addition, also the initial state is a final state to allow customers to stop
at any time if the translation service does not work properly. Figure 1.3(a) depicts
the open net of a customer who may send small and large file and, in the case of an
error, may send the file again or terminate (final marking [p1]).

Communication between two services takes place by connecting pairs of ports
using a channel and exchanging messages via these channels. We model this by
composing the respective open nets, thereby merging shared interface places and
turn these places into internal places. Such a merged interface place models a chan-
nel and a token on such a place corresponds to a pending message in the respective
channel.

For the composition of open nets, we assume that the sets of transitions are pair-
wise disjoint and that no internal place of an open net is a place of any other open
net. In contrast, the interfaces intentionally overlap. We require that all communi-
cation is bilateral and directed; that is, every shared place p has only one open net
that sends into p and one open net that receives from p. We refer to open nets that
fulfill these properties as composable.

1 Behavioral Service Substitution 7

Fig. 1.4 Open net modeling a
contract.

t8

p5

t9

p6

t10

p8

s

b

e

c

n

t11 t12

t13

t1

p1

t2

p2

t3

t4

t5 t6

p3

t7

p4

p7

Definition 3 (Open net composition). Open nets N1 and N2 are composable if (P1∪
T1 ∪ I1 ∪O1)∩ (P2 ∪T2 ∪ I2 ∪O2) = (I1 ∩O2)∪ (I2 ∩O1). The composition of two
composable open nets N1 and N2 is the open net N1⊕N2 = (P,T,F,mN , I,O,Ω)
where

• P = P1∪P2∪ (I1∩O2)∪ (I2∩O1);
• T = T1∪T2;
• F = F1∪F2;
• mN = mN1 +mN2 ;
• I = (I1∪ I2)\ (O1∪O2);
• O = (O1∪O2)\ (I1∪ I2); and
• Ω = {m1 +m2 | m1 ∈Ω1∧m2 ∈Ω2}.

Ignoring the dotted line along the former interface places, Fig. 1.4 shows the
composition of the two open nets NC and NT of Fig. 1.3.

Open net composition models asynchronous message passing. Asynchronous
message passing means that communication is nonblocking; that is, after a service
has sent a message it can continue its execution and does not have to wait until this
message is received. Furthermore, messages can ‘overtake’ each other; that is, the
order in which the messages are sent is not necessarily the order in which they are
received.

We want the composition of a set of services to be compatible. There exist a mul-
titude of compatibility notions in the literature, making it is impossible to list them
all. However, almost all of these notions can be classified into three dimensions:

• the composition terminates (e.g., deadlock freedom or the possibility to always
reach a final marking, i.e., weak termination);

• the composition fulfills a scenario (e.g., a client must always pay by credit card);
and

• the communication schema used by the composition (beside asynchronous com-
munication following the idea of SOA, in practice also synchronous, queued, or
mixed communications are implemented).

8 Christian Stahl and Wil M. P. van der Aalst

Throughout this chapter, compatibility refers deadlock freedom or weak termina-
tion. It will always be clear from the context, which of the two notions we consider.
Compatibility is only of interest for a service choreography, which is modeled by a
closed net. A user that communicates with a service, such that the composition is
compatible, can also be seen as a controller of the service. In addition, we restrict
ourselves to finite state services—more precisely, a composition with a controller
must be bounded. The motivation for this restriction is that we model the control
flow of service compositions and assume finitely many control states and a (finite)
capacity of the message channels. For a reasonable concept of a service, we assume
the inner of an open net, modeling the service interior, to be finite state. To ensure
boundedness in the composition, controllers must not send a message if there the
bound in the respective message channel has been reached already. Technically, this
enforces that the composition has a finite number of reachable states. Pragmatically,
it could either represent a reasonable buffer size in the middleware—for example,
the result of a static analysis of the communication behavior of a service—or be
chosen sufficiently large.

Definition 4 (Controllability). An open net C is a controller of an open net N if the
composition N⊕C is closed, compatible (i.e., deadlock free or weakly terminating),
and bounded. If such a C exist, then N is controllable.

If N is not controllable, then N is obviously ill-designed because it cannot prop-
erly interact with any other open net.

The contract in Fig. 1.4 is closed, 1-bounded, and weakly terminating (i.e., it
is always possible to reach a final marking). As a consequence, open net NC is a
controller of open net NT , and vice versa.

Later in this chapter, we want to analyze the behavior of a service modeled as
an open net. The behavior of an open net is basically the reachability graph of its
inner. To highlight which transitions are sending and receiving actions and which
are only internal actions, we label each transition of an open net. The idea is to
add to each transition adjacent to an interface place the respective place label and
to all other transitions the label τ (denoting the internal action). To simplify the
labeling, we restrict ourselves to open nets where each transition is connected to at
most one interface place. We refer to those open nets as elementary communicating.
That way, a transition is labeled by a single label rather than a set. This restriction is
not significant as every open net can be transformed into an equivalent elementary
communicating open net [28]. The respective inner is a labeled net to which we refer
as the synchronous environment.

The behavior of an open net N can now be defined by the reachability graph
RG(envs(N)) of its synchronous environment. This graph has reachable markings
Menvs(N) as its nodes and a l(t)-labeled edge from m to m′ whenever m t−→ m′.

Figure 1.5 depicts the synchronous environment envs(NC) of the customer service
and its behavior described by the reachability graph of envs(NC).

We introduced open nets as a formal model for service behavior. Open nets can be
used to model service compositions, asynchronous communication, and proper ter-
mination. Open nets abstract from data and identify each message by the label of its

1 Behavioral Service Substitution 9

Fig. 1.5 Synchronous envi-
ronment of the customer and
its reachability graph. Symbol
“?” denotes a receiving and
“!” a sending event of NC .

t1

p1

sb

e

cn

t2

p2

t3

t4

t5 t6

p3

t7

p4

τ

τ

(a) envs(NC)

?n ?c?e

[p1]

[p2]

[p3] [p4]τ

!s !b

τ

(b) RG(envs(NC))

message channel. This abstraction is necessary, because the analysis techniques that
shall be introduced in the forthcoming sections are only applicable for finite state
models. However, our approach allows to deal with finite data domains as those do-
mains can be unfolded—for example, if a message returns a Boolean, then we could
unfold this domain yielding two channels, one for exchanging value true and the
other for value false. There also exist techniques to derive a finite abstraction from
an infinite data domain, but they are out of scope for this chapter. To simplify our
analysis techniques, open nets also abstract from time information. Moreover, open
nets are a well-suited model for service behavior due to their link to workflows [8].
Nevertheless, also other modeling techniques have been successfully applied, for
example, transition systems, finite automata, process algebra, and session types.

1.3 Service Substitution

In this section, we formalize multiparty contracts, introduce two substitutability no-
tions and algorithms to decide these notions, and present variants of service substi-
tution.

1.3.1 Multiparty Contracts and Accordance of Services

The service-oriented paradigm enables enterprises to publish their services via the
Internet. These services can then be automatically found and used by other enter-
prises. However, this approach has not become accepted in practice, mainly because
enterprises usually cooperate only with enterprises they already know. Therefore,
in practice, a more pragmatic approach is used instead. The parties that will partici-
pate in an interorganizational cooperation specify together an abstract description of
the overall service. This description is a choreography. The choreography consists

10 Christian Stahl and Wil M. P. van der Aalst

of a set of activities. Each activity is assigned to one party. A connection between
two activities is either internal—that is, both activities belong to the same party—or
external—that is, both activities belong to different parties. A party’s share of the
choreography (i.e., its public view) is then the projection of the choreography to the
party’s activities. The choreography serves as a common contract among the parties
involved in the cooperation.

The challenge of the contract approach is to balance the following two conflicting
requirements: On the one hand, there is a strong need for coordination to optimize
the flow of work in and among the different parties. On the other hand, the parties
involved in the cooperation are essentially autonomous and have the freedom to
create or modify their services at any point in time. Furthermore, the parties do not
want to reveal their trade secrets. Therefore, it has been proposed to use a contract
that defines “rules of engagement” without describing the internal services executed
within each party [2, 13].

After the parties have specified the contract, each party will implement its public
view on its own. The implementation, the private view, will usually deviate signif-
icantly from its public view. Obviously, these local modifications have to conform
to the agreed contract. This is, in fact, a nontrivial task, because it may cause global
errors, such as deadlocks. As all parties are autonomous, none of them owns the
overall service (i.e., the implemented contract). Therefore, none of the parties can
verify the overall service. As a result, an approach is needed such that each party can
check locally whether its private view guarantees global correctness of the overall
service.

The basic idea of the contract approach can be seen in Fig. 1.2. The starting point
is the specification on the top left which serves as a contract. It is partitioned into
four parties, each illustrated as a fragment of the specification. By substituting each
fragment by its implementation, we obtain the implementation on the top right.

Basically, we see a contract as a closed net N, where every transition is assigned
to one of the involved parties X1, . . . ,Xk. We impose only one restriction: If a place is
accessed by more than one party, it should act as a directed bilateral communication
place. This restriction reflects the fact that a party’s public view of the contract is a
service again. A contract N can be cut into parts N1, . . . ,Nk, each representing the
agreed public view of a single party Xi (1 ≤ i ≤ k). Hence, we define a contract as
the composition of the open nets N1, . . . ,Nk.

Definition 5 (Multiparty contract). Let X = {X1, . . . ,Xk} be a set of parties. Let
{N1, . . . ,Nk} be a set of pairwise interface compatible open nets such that N = N1⊕
·· ·⊕Nk is a closed net. Then, N is a contract for X . For i = 1, . . . ,k, open net Ni is
the public view of Xi in N.

Figure 1.4 shows a multiparty contract involving only two parties: a customer
and a translation service. The dotted line is used to divide the composition into the
two shares, open nets NC and NT .

As previously mentioned, we want that every party involved in the contract can
independently substitute its public view Ni with a private view N′i . Clearly, this sub-
stitution should not violate compatibility of the contact. Informally spoken, all the

1 Behavioral Service Substitution 11

other services forming the environment of Ni must not distinguish between Ni and
N′i . This can be achieved if every controller of Ni is also a controller of N′i . This
relation between the two open nets forms a refinement relation to which we refer as
accordance.

Definition 6 (Accordance). Let Spec and Impl be interface equivalent open nets.
Open net Impl accords with open net Spec, denoted by Impl vacc Spec, if every
controller C of Spec is also a controller of Impl.

The main result for multiparty contracts is that each party can substitute its public
view by a private view independently. If each of the private views accords with
the corresponding public view, then compatibility (here deadlock freedom) of the
implemented contract is guaranteed.

Theorem 7 (Implementation of a contract). Let N be a contract between parties
{X1, . . . ,Xk} where N is compatible. If, for all i ∈ {1, . . . ,k}, N′i accords with Ni,
then N′ = N′1⊕·· ·⊕N′k is compatible.

Figure 1.3(c) depicts a private view NB of the translation service NT . This service
implements a more concrete pricing model compared to NT : Translating a small file
is cheap whereas for large files a normal price is asked for. If we consider deadlock
freedom as a compatibility notion, then NB accords with NT . With Theorem 7, we
conclude that substituting NT by NB preserves deadlock freedom. Next we show,
how we can decide accordance for two open nets.

1.3.2 Deciding Accordance Using Operating Guidelines

An algorithm to decide accordance for two open nets Spec and Impl must decide
whether every controller of Spec is also a controller of Impl. As an open net has
potentially infinitely controllers, we must check inclusion of two infinite sets. For
deadlock freedom, we can overcome this problem, because the set of all controllers
of open nets can be represented in a finite manner using a data structure called
operating guideline [28].

An operating guideline OG(N) of a service N describes how a user should suc-
cessfully communicate with N; technically, it characterizes the behavior of the pos-
sibly infinite set of controllers of N in a finite manner. It is based on the observation
that there exists a behavior that has the least restrictions, the most permissive behav-
ior. The most permissive behavior is a deterministic transition system TS∗ and serves
as the first ingredient for our operating guideline. Every behavior of any controller is
then just a restriction of TS∗. We can specify those restrictions by annotating every
state of TS∗ with a Boolean formula, specifying which of the outgoing transitions
must be present. Thus, a literal of such a Boolean formula is a transition label of N
or the literal final, specifying that N is in a final state. The Boolean formula are the
second ingredient of an operating guideline. Technically, an operating guideline is
an annotated automaton.

12 Christian Stahl and Wil M. P. van der Aalst

q1: !s !b final

q2: ?c ?n ?e

q4: final

!s

q3: ?c ?n ?e

!b

?c ?n

?e ?e

qÃ: true

?c ?n?c
?n

?e

?c
?n

?e

*

(a) OG(NT)

r1: !s !b final

r2: ?c ?e

r4: final

!s

r3: ?n ?e

!b

?c

?e ?e

rÃ: true

?n

?c

?c
?n

?e

?c
?n

?e

*

?n

(b) OG(NB)

Fig. 1.6 Operating guidelines for the two translator services. Symbol ∗ is a short hand for every
element of the alphabet.

Figure 1.6(a) shows the operating guideline of open net NT . It is a finite automa-
ton with five annotated states and can be read as follows. Initially, a controller of NT
either sends a (small or large) file or is in a final state. After sending for example, a
small file (state q2), the controller must be able to receive messages f ,c, and n. The
conjunction thereby emphasizes that any of these three messages can be sent and
hence has to be received. Receiving f yields the initial state; receiving any of the
other messages yields state q4, where the controller must terminate. State q /0 denotes
a nonreachable state: It does not harm if a controller can receive more messages than
the service will send. For example, initially NT will not send the translated file but
it is not wrong if a controller can receive such a message.

To determine whether an open net C is a controller of an open net N, we check
whether the behavior TSC = RG(envs(C)) of C matches with the operating guideline
of N. Matching consists of two steps. First, we check whether TSC is a potential
restriction of TS∗ by applying a procedure similar to a weak simulation relation—
the difference is, whenever a τ-labeled transition can be performed in TSC, then TS∗

remains in the same state. Second, for each pair (qC,q∗) of states in the relation, we
verify whether the outgoing transitions of qC and the information whether qC is a
final state or not evaluate the Boolean formula φ assigned to q∗ to true. That way,
we check whether TSC is a valid restriction of TS∗.

Matching the behavior of the customer NC with the operating guideline of NT
yields relation {([p1],q1),([p2],q2),([p2],q3),([p3],q1),([p4],q1),([p4],q4)}. For
example, in ([p1],q1), [p1] assigns true to all three literals of φ(q1), thereby evaluat-
ing this formula to true. Similar, in ([p2],q2), [p2] assigns true to all three literals of
φ(q2), thereby evaluating this formula to true. The same holds for all other elements
of this relation, and therefore we conclude that NC matches with OG(NT)—which
must be the case because NC is a controller of NT .

An operating guideline OG(N) of an open net N is the annotated automaton that
represents all controllers of N [28]. With the operating guidelines OG(Spec) and
OG(Impl) of two open nets Spec and Impl, we can decide whether Impl accords
with Spec.

Theorem 8 (Deciding accordance [50]). For open nets Spec and Impl, with op-
erating guidelines OG(Spec) and OG(Impl), we have that Impl vacc Spec iff there

1 Behavioral Service Substitution 13

exists a minimal simulation ρ of OG(Spec) by OG(Impl) and, for each pair of nodes
(qSpec,qImpl) ∈ ρ , φ(qSpec) implies φ(qImpl) is a tautology.

Intuitively, the existence of the minimal simulation relation [33] guarantees that
OG(Impl) simulates the behavior of every controller of Spec, and the implication
of the formulae ensures that whenever a service deadlocks with Impl it does so
with Spec. The operating guideline algorithm has been implemented in the tool
Wendy [30] and the accordance check in the tool Cosme [31].

Consider the operating guidelines OG(NT) and OG(NC). The minimal simulation
relation is ρ = {(q1,r1),(q2,r2),(q3,r3),(q4,r4),(q /0,r /0)}. For each element of ρ ,
the tautology holds; for example, for (q2,r2) we have ?c∧?n∧? f implies ?c∧? f is a
tautology. Thus, NB accords with NT .

1.3.3 Substitution in a Less Restrictive Setting

One of the main drivers for service evolution is that organizations have to increase
their profit and therefore continuously improve their services. Service improvement
includes figuring out bottlenecks and unprofitable lines of business. On the level of
the service behavior, service improvement leads to restructuring the process. Re-
structuring may also result in excluding some business functionality. For example,
the translation service may stop offering the translation of large files if this is not
profitable. As a consequence, the improved service may have fewer controllers than
the current service. Thus, another refinement notion than accordance is necessary to
cope with this scenario. To this end, we introduce preservation, a refinement rela-
tion in which the implementation preserves only a subset of the controllers of the
specification.

Definition 9 (Preservation). Let Spec and Impl be interface equivalent open nets
and C be a set of controllers of Spec. Open net Impl accords with open net Spec
under preservation of C , denoted by Implvacc,C Spec, if every controller C ∈ C is
also a controller of Impl.

If Implvacc,C Spec and thus preserves C ⊆ Con(Spec), then Impl controls every
C ∈ C . This, however, is equivalent to Impl matches with the operating guideline
for any C. For a finite set C , we can represent the intersection of the individual sets
of services represented by these operating guidelines as one operating guideline.
Technically, this operating guideline has the synchronous product of the underlying
transition systems as its structure and to every synchronized state we assign the
conjunction of the respective Boolean formulae. The following theorem formalizes
the informally sketched decision procedure.

Theorem 10 (Deciding preservation [50]). Let Spec and Impl be interface equiv-
alent open nets and C = {C1, . . . ,Ck} be a set of controllers of Spec. Let OG(Ci),
1 ≤ i ≤ k, be the operating guideline of Ci, and let OG⊗ denote the product of all
OG(Ci). Then, Implvacc,C Spec iff Impl matches with OG⊗.

14 Christian Stahl and Wil M. P. van der Aalst

The limitation of this result is that set C must be finite. However, it is also possi-
ble to constrain the set of controllers of a service by excluding or enforcing certain
scenarios. The idea is similar: A constraint can be modeled as an (annotated) au-
tomaton. By constructing the product of this automaton and the operating guideline
of Spec, we can constrain the controllers of Spec; see [27, 50]. In addition, [52]
shows how certain activities of a service (i.e., transitions in the respective open net)
can be covered.

1.3.4 Accordance in a Purely Service-Oriented Setting

In this section, we investigate service substitution in a purely service-oriented set-
ting where services are composed from other published services. We want to de-
cide when a service Spec published by some party can be substituted by a modified
version Impl. Clearly, service Impl must accord with Spec. The actual challenge
is that the party (i.e., a service provider) does not even know in which environ-
ment its service is executed. To illustrate that this fact matters, consider a closed net
N⊕N1⊕Spec with N shares interface places with N1 and Spec but N1 and Spec do
not share interface places. In the contract setting, the provider of Spec knows the
public views of N1 and N and hence can substitute Spec by an accordant Impl. In the
current setting, the provider of Spec does not know N nor N1, but the refinement of
Spec must be compositional in the sense that an accordant Impl must guarantee that
also the composition Impl⊕N accords with Spec⊕N. This argumentation is more
difficult, because the two latter open nets are not closed. A refinement relation, such
as accordance, that satisfies this property is a precongruence. A precongruence is
a preorder such that if two open nets Spec and Impl are related by the precongru-
ence so are Impl⊕N and Spec⊕N for any composable open net N. In contrast, the
refinement relation necessary for ensuring Theorem 7, does not need to be a precon-
gruence but only a preorder. For more details on this setting and a precongruence
result for accordance, we refer to [51].

1.3.5 Service Instance Migration

So far, we have considered service substitution on the level of the service definition.
However, running services may have long running instances. An example is the
service of a life insurance company. A new legal regulation may cause a service to
change, while instances of this service have been running for decades. In this case,
each running instance of the old service has to be migrated to an instance of the new
service. This problem is known as service instance migration.

Given a running instance in a state qSpec of Spec, instance migration is the task of
finding some state qImpl of Impl such that resuming the execution in state qImpl does
not affect any controller of Spec. We call the transition from qSpec to qImpl a jumper

1 Behavioral Service Substitution 15

transition. Clearly, there may be states qSpec for which there does not exist a jumper
transition to a state qImpl. Sometimes it might be necessary to continue the instance
on Spec until a state is reached, where a migration is then possible.

In [26], an algorithm based on operating guidelines has been proposed to cal-
culate jumper transitions for accordance in the case of deadlock freedom. The al-
gorithm has been implemented in the tool Mia. For the translation services NT
and NB, the following pairs (mT ,mB) would be calculated: ([p5], [p9]), ([p6], [p10]),
([p6], [p11]), ([p7], [p12]), and ([p8], [p13]). For example, if the old instance is in
marking [p7], then it can be migrated to marking [p12], thereby ensuring that no
controller of NT is affected by this migration.

1.3.6 Discussion and Related Work

We introduced two refinement relations, accordance and preservation, and a data
structure to decide these relations. The algorithmic solutions are tailored to deadlock
freedom, but in recent (yet unpublished) work the procedure has been lifted to weak
termination. Case studies in [26,30] show that our approach is applicable for service
models of industrial size. To improve the efficiency of the accordance check, a more
compact operating guideline representation has been proposed in [31]. An operating
guideline can also be encoded as an automaton without annotations, called the max-
imal controller in [34]. This allows for another decision procedure for accordance:
the composition of the maximal controller of service Spec and service Impl must be
deadlock free. Kaschner and Wolf [23] showed that all noncontrollers of a service
can be represented in a finite manner. This result (i.e., controller negation) together
with the product of operating guidelines (i.e, intersection of sets of controllers) and
an emptiness check yields an algebra on sets of controllers that generalizes the tech-
niques for deciding preservation [23]. An approach to tackle preservation for more
general properties has been proposed in [39, 43].

Closest to our work is the work of Vogler [53] who considers a more general
notion of composition. Different refinement relations in a process-algebraic setting
have been investigated, for example, in [17,20,25]. The termination criterion is usu-
ally stronger than deadlock freedom but the communication schema is mostly syn-
chronous. Bravetti and Zavattaro [18] consider different communications schemes
for weak termination. Benatallah et al. [16] investigate accordance and preservation
in a synchronous setting and in [44], results for a timed model are presented. Du-
mas et al. [19] investigate accordance and preservation using the more expressive
π-calculus.

Instance migration has been studied by many researchers, in particular, in the
field of workflows; see [5, 45, 47] for an overview. For services, several variants of
this problem have been investigated in [49].

16 Christian Stahl and Wil M. P. van der Aalst

1.4 Constructing Substitutable Services

In the previous section, we presented an algorithm to decide for two given open
nets Spec and Impl whether Impl accords with Spec and thus can substitute Spec
without violating any controller of Spec. However, designing Impl is a nontrivial
and error-prone task even for experienced service designers. In order to support
service designers, we introduce an approach to construct open nets that are correct
by design.

1.4.1 Approach

Given an open net Spec, we want to incrementally transform Spec to an open net
Impl such that every transformation step preserves accordance by construction. To
this end, fragments of Spec are incrementally substituted by other fragments. In this
approach, a fragment Z of Spec is substituted by another fragment Z′ yielding the
open net Impl. We prove that if Z′ accords with Z, then Impl accords with Spec.

An open net Z is a fragment of an open net N if there is an open net Nrest and
the composition of Z and Nrest is the open net N. The set of interface places of Z is
divided into two sets: some interface places of N and some internal places R∪S of
N. We use R to denote these input places and S to denote these output places. For
technical reasons, we require that the initial marking of Z is the empty marking and
the set of final markings is the singleton set with the empty marking.

Definition 11 (Fragment). Let Z be an open net with mZ = 0 and Ω = {[]}. Open
net Z is a fragment of an open net N if there exists an open net Nrest such that
N = Z⊕Nrest.

If an open net N has a fragment Z and there is another fragment Z′ that accords
with Z, then we can substitute Z by Z′ without affecting any controller of N. Such
transformations can be applied incrementally and thus refine a service specification
to an implementation by applying transformation steps. The resulting implementa-
tion is correct by construction; that is, it preserves all controllers of the specification.

Theorem 12 (Justification [9]). Let N1⊕N2 be a weakly terminating open net com-
position. Let Z be a fragment of N1, and let Nrest be an open net such that N1 =
Z⊕Nrest. For any open net Z′ that accords with Z, the composition (Z′⊕Nrest)⊕N2
is weakly terminating.

1.4.2 Transformation Rules

The first three rules correspond to design patterns for extending a service to incorpo-
rate new behavior: (1) adding an internal loop, (2) putting a new internal transition in

1 Behavioral Service Substitution 17

p4

p3 p3

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a
Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

(a) Z0.

p4

p3 p3

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a
Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

(b) Z1: Adding a
loop to Z0.

p4

p3 p3

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a
Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

(c) Z2: Putting transition
d in parallel to b.

p4

p3 p3

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a
Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

(d) Z3: Inserting transition d
in-between a and b.

Fig. 1.7 Transformation rules to change internal transitions: transition d is added (when applied
left to right) or removed (when applied right to left).

parallel with existing transitions, and (3) inserting an internal transition in-between
existing transitions. These rules have been introduced in [5].

We exemplify these rules in Fig. 1.7. Figure 1.7(a) represents a fragment Z0 of an
open net N. Z0 contains transitions a, b and c. By Definition 11, there are no other
connections of a, b, c, p1 and p2 than those shown in Fig. 1.7(a). Each transition
is connected to an input and an output place. However, as indicated by the capital
letters, each interface place may correspond to a set of places. Further, Ai, Ao, Bi, Bo,
Ci, Co do not need to be disjoint. Places R and S denote the input and output places
to N. Again, R and S may be sets of places. Similar remarks hold for the other three
fragments Z1, Z2, and Z3. For example, Z1 is obtained by adding transition d to Z0.

The three transformation rules only add (or remove if applied in reverse direc-
tion) internal transitions of an open net. However, there are also transformation rules
that directly impact the interface behavior. We present four example transformation
rules that affect transitions that are adjacent to an interface place.

Rule 4 is depicted in Fig. 1.8(a) and specifies that a sequence of receiving tran-
sitions can be merged, and the messages can be sent simultaneously. It is also pos-
sible to reorder a sequence of receiving transitions or to execute them concurrently
(not shown). The same rule holds for a sequence of sending transitions. Rule 5 in
Fig. 1.8(b) combines sending and receiving transitions. A receiving transition fol-
lowed by a sending transition can be executed simultaneously. Due to Rule 4, Rule 5
can be generalized to a sequence of receiving transitions followed by a sequence of
sending transitions. Rule 6, depicted in Fig. 1.8(c), specifies that first sending and
then receiving a message can also be executed concurrently, and vice versa. Rules 4–
6 preserve accordance in both directions.

This is in contrast to Rule 7 which specifies a way to add an alternative branch to
a fragment Z10 depicted on the left hand side of Fig. 1.8(d). The fragment Z10 first
receives a and then enters either the left or the right branch. In the left (right) branch,

18 Christian Stahl and Wil M. P. van der Aalst

a

b

S

R

p

t2

t1 a

b

S

R

t12=

Z4 Z5

a

b

S

R

p

t2

t1 a

b

S

R

t12=

M6 M7

(a) Rule 4: Con(Z4) = Con(Z5)

p1

p3

t4

a

b

S

R

p

t2

t1 a

b

S

R

t12=

Z6 Z7

a

b

S

R

p

t2

t1

=

Z8

a

b

S

R

p2

t3

t1

Z9

t2

p4

(b) Rule 5: Con(Z6) = Con(Z7)

p1

p3

t4

a

b

S

R

p

t2

t1 a

b

S

R

t12=

Z6 Z7

a

b

S

R

p

t2

t1

=

Z8

a

b

S

R

p2

t3

t1

Z9

t2

p4

(c) Rule 6: Con(Z8) = Con(Z9)

p4

b

d

p2

t4

t2

S

at1

p1

p3

t3

R

c

t5

e

b

d

p2

t4

t2

S

at1

p1

p3

t3

R

c

t5

e

t6

Í

Z10 Z11

f

t7

f

(d) Rule 7: Con(Z10)⊆ Con(Z11)

Fig. 1.8 Transformation rules to change interface transitions.

message b (c) is sent, and then message d (e) is received. The fragment M10 can be
transformed into M11 by adding an alternative branch. In this branch, d is received,
and then a message f is sent. Rule 7 preserves accordance in one direction only. The
intuition behind this rule is that a controller of Z10 has to wait for the decision of Z10
which branch it will enter. Otherwise, it could happen that an environment sends d,
but Z10 enters the left branch and waits for message e.

For an overview of all these rules and additional antipatterns, we refer to [9, 10].

1.4.3 Discussion and Related Work

We presented seven accordance-preserving transformation rules. Six of these rules
preserve accordance in both directions and one rule preserves accordance only in
one direction. Although these transformation rules are sound (i.e., correctness pre-
serving), they are not complete, meaning they do not cover all possible service im-
plementations. This is actually the weak point when dealing with transformations.

1 Behavioral Service Substitution 19

Refinement of Petri nets has been addressed by many researchers. However, most
of the results require restricted Petri net classes or Petri nets without interfaces.
The Murata rules [38] also maintain accordance, if we consider every input place
as a place with some additional incoming arcs, and every output place as a place
with some additional outgoing arcs. Refinement of places and transitions in Petri
nets that preserves compatibility of the whole net is studied in [53]. These results
could be applied in our setting. Soundness preserving transformation rules have
been proposed in [1, 5, 54]. The rules proposed by Van Hee et al. [22] refine sets
of places in service compositions, but they require additional reachability checks.
In [24], the authors show how the presented rules can be translated into BPEL.
That way, BPEL processes can directly be refined without transforming them into a
formal service model.

1.5 Conformance Checking of Services Based on Observed
Behavior

Thus far, we only considered modeled service behavior. For example, we described
requirements linking the public view of one party in the multiparty contract to the
corresponding private view (implementation view). The analysis techniques did not
consider actually observed behavior. However, in the context of services it is often
not realistic to assume that all parties will indeed execute their processes as agreed
upon at design time. Services may have been implemented incorrectly or change
over time. Therefore, we now focus on conformance checking based on events logs
(i.e., recorded behavior).

Process mining is a relatively young research discipline that sits between com-
putational intelligence and data mining on the one hand, and process modeling and
analysis on the other hand. Process mining research resulted in mature conformance
checking techniques and tools that are able to align observed and modeled behav-
ior [3, 4]. As a result it is possible to detect and quantify deviations.

In the remainder, we first introduce some basic process mining terminology.
Then, we show how event log and model can be aligned. Based on this, we show
how conformance checking techniques can be used to compare observed behavior
(i.e., event data) with the public view of one or more parties in the multiparty con-
tract. We also define conformance checking problems in a less restrictive setting
where, from a behavioral point of view, parties may deviate from the contract as
long as it does not harm the overall choreography.

Initially, we focus on conformance checking based on historic data (“offline”
conformance checking). However, all techniques can be applied on-the-fly (“online”
conformance checking); that is, streaming event data can be monitored at runtime
and deviations can be detected immediately.

20 Christian Stahl and Wil M. P. van der Aalst

t8

p5

t9

p6

t10

p8

s b

e

c n

t11 t12

t13

p7

τ

(a) envs(NT)

t8

p5

t9

p6

t10

p8

e

t11 t12

t13

p7

τ τ

τ

τ τ

τ

s

b

e

c

n

s

b

c

n

s
i

b
i

e
o

c
o

n
o

(b) enva(NT)

t14

p9

t15

p10 p11

p13

s b

ec

n

t16 t17

t18

p12

t19

t20

τ τ

(c) envs(NB)

Fig. 1.9 Synchronous and asynchronous environment for open net NT in Fig. 1.3(b) (Ω =
{[p5], [p8]}) and synchronous environment for open net NB in Fig. 1.3(c) (Ω = {[p9], [p13]}).

1.5.1 Process Mining

Process mining aims to discover, monitor and improve real processes by extract-
ing knowledge from event logs readily available in today’s information systems [3].
Starting point for process mining is an event log. Each event in such a log refers to
an activity (i.e., a well-defined step in some process) and is related to a particular
case (i.e., a process instance). The events belonging to a case are ordered and can
be seen as one “run” of the process. An event log contains only example behavior;
that is, we cannot assume that all possible runs have been observed. In fact, an event
log often contains only a fraction of the possible behavior.

In this chapter, we define an event log as a multiset of traces. Each trace describes
the life-cycle of a particular case in terms of the activities executed.

Definition 13 (Event, Trace, Event log). Let A be a set of activities. σ ∈A ∗ is a
trace, i.e., a sequence of events. L∈B(A ∗) is an event log, i.e., a multiset of traces.

In this simple definition of an event log, an event refers to just an activity. Often
event logs may store additional information about events. For example, many pro-
cess mining techniques use extra information, such as the resource (i.e., person or
device) executing or initiating the activity, the timestamp of the event, or data ele-
ments recorded with the event (e.g., the size of an order). In this paper, we abstract
from such information. An example log is L = [〈b,c〉10,〈s,e,s,c〉5,〈s,e,b,n〉5]. L
contains information about 20 cases, e.g., 10 cases followed trace 〈b,c〉. There are
10×2+5×4+5×4 = 60 events in total.

To relate event logs to process models, we use labeled nets. The behavior of such
a model is described by the set Tr(N) of traces which is computed from the set
Ru(N) of runs leading from the initial marking to a final marking; see Sect. 1.2.1
for a definition.

1 Behavioral Service Substitution 21

Figure 1.9(c) shows the labeled Petri net envs(NB). The set of runs of envs(NB) is
the set Ru(envs(NB)) = {〈t14, t18〉,〈t15, t20〉,〈t14, t16, t19, t15, t20〉,〈t15, t17, t19, t14, t18〉,
. . .}. Every of these runs starts in [p9] and ends in [p13]. The labeled net in Fig. 1.9(c)
is weakly terminating, because all partial runs can be extended into a run in
Ru(envs(NB)). If the labeled net has deadlocks or livelocks, then the problematic
traces are simply discarded by Ru(envs(NB)).

Each trace in Tr(envs(NB)) corresponds to one or more runs in Ru(envs(NB)). A
transition t is removed from the sequence if l(t) = τ , otherwise it is replaced by l(t).
Therefore, Tr(envs(NB))= {〈s,c〉,〈b,n〉,〈s,e,b,n〉,〈b,e,s,c〉, . . .} for the labeled net
in Fig. 1.9(c). In Tr(envs(NB)), transitions are mapped onto their corresponding la-
bels and τ transitions are not recorded; that is, t16 and t17 do not leave a trail in
Tr(envs(NB)).

Event logs can be used to discover, monitor and improve services based on ob-
servations rather than hand-made models. There are three main types of process
mining:

• Discovery: Take an event log and produce a model without using any other a-
priori information. There are dozens of techniques to extract a process model
from raw event data. For example, the classical α algorithm can discover a la-
beled net by identifying basic process patterns in an event log [12]. This algo-
rithm takes an event log L ∈B(A ∗) and produces a labeled net N. For many
organizations it is surprising to see that existing techniques are indeed able to
discover real processes based on merely example executions recorded in event
logs. Process discovery is often used as a starting point for other types of analy-
sis.

• Conformance: An existing process model is compared with an event log of the
same process. For example, an event log L ∈B(A ∗) is compared with the traces
of some labeled net N. Ideally, any trace in L also appears in Tr(N). Confor-
mance checking reveals where the real process deviates from the modeled pro-
cess. Moreover, it is possible to quantify the level of conformance and differ-
ences can be diagnosed. Conformance checking can be used to check if reality,
as recorded in the log, conforms to the model, and vice versa.

• Enhancement: Take an event log and process model and extend or improve the
model using the observed events. Whereas conformance checking measures the
alignment between model and reality, this third type of process mining aims at
changing or extending the a-priori model. For instance, by using timestamps
in the event log one can extend the model to show bottlenecks, service levels,
throughput times, and frequencies [3].

In the remainder, we focus on the second type of process mining: conformance
checking.

22 Christian Stahl and Wil M. P. van der Aalst

1.5.2 Conformance Checking Approaches

Conformance checking techniques investigate how well an event log L∈B(A∗) and
a model—in our case a labeled net—fit together. Conformance checking can be done
for various reasons; for example, it may be used to audit processes to see whether
reality conforms to some normative or descriptive model [4,6,7,48]. Deviations may
point to fraud, inefficiencies, and poorly designed or outdated procedures. In the
services setting, the different parties should operate in accordance with their public
views. Therefore, we elaborate on conformance checking techniques and show how
they can be used to check the conformance of running services.

There are four quality dimensions for comparing model and log: (1) fitness, (2)
simplicity, (3) precision, and (4) generalization [3, 4]. A model with good fitness
allows for most of the behavior seen in the event log. A model has a perfect fitness
if all traces in the log can be replayed by the model from beginning to end. The
simplest model that can explain the behavior seen in the log is the best model. This
principle is known as Occam’s Razor. Fitness and simplicity alone are not sufficient
to judge the quality of a discovered process model. For example, it is very easy to
construct an extremely simple labeled net (“flower model”) that can replay all traces
in an event log (but also any other event log referring to the same set of activities).
Similarly, it is undesirable to have a model that only allows for the exact behavior
seen in the event log. Remember that the log contains only example behavior and
that many traces that are possible may not have been seen yet. A model is precise if it
does not allow for “too much” behavior. Clearly, the “flower model” lacks precision.
A model that is not precise is “underfitting”. Underfitting is the problem that the
model over-generalizes the example behavior in the log (i.e., the model allows for
behaviors very different from what was seen in the log). At the same time, the model
should generalize and not restrict behavior to just the examples seen in the log.
A model that does not generalize is “overfitting”. Overfitting is the problem that
a very specific model is generated whereas it is obvious that the log only holds
example behavior (i.e., the model explains the particular sample log, but there is a
high probability that the model is unable to explain the next batch of cases).

In the remainder, we will focus on fitness. Ideally, all traces in the log correspond
to a possible run of the model.

Definition 14 (Perfectly fitting log). Let L ∈B(A∗) be an event log and let N be a
labeled net. L is perfectly fitting N if {σ ∈ L} ⊆ Tr(N).

Consider the event log L = [〈b,c〉20,〈s,e,s,c〉10,〈s,e,b,n〉10]. Clearly, L is per-
fectly fitting the labeled net envs(NT) in Fig. 1.9(a) but it is not perfectly fitting the
labeled net envs(NB) in Fig. 1.9(c).

There are various ways to quantify fitness [3, 4, 15, 21, 32, 36, 37, 48], typically
on a scale from 0 to 1, where 1 means perfect fitness. A naive approach would
be to simply count the fraction of fitting traces. However, such an approach is too
simplistic for two reasons:

1 Behavioral Service Substitution 23

• Whether traces in the log “almost” fit the model or not is irrelevant for such a
metric. Traces σ1 = 〈e,b,c〉 and σ2 = 〈e,e,e,b,c〉 both do not fit the model in
Fig. 1.9(c). However, it is obvious that σ1 fits “better” than σ2.

• It is important to also map the non-fitting behavior onto the model in order to do
further analysis (performance analysis, predictions, etc.).

To address these issues, we need to align traces in the event log to traces of the
process model. Some example alignments for L and the labeled net envs(NB) are:

γ1 =
b c �
b � n

t15 t20

γ2 =
b � � � c
b τ e s c

t15 t17 t19 t14 t18

γ3 =
s � e s c
s τ e s c

t14 t16 t19 t14 t18

γ4 =
s � e b n
s τ e b n

t14 t16 t19 t15 t20

The top row of each alignment corresponds to “moves in the log” and the bottom two
rows correspond to “moves in the model”. There are two bottom rows because there
may be multiple transitions having the same label. If a move in the log cannot be
mimicked by a move in the model, then a “�” (“no move”) appears in the bottom
row. For example, in γ1 the model cannot do the c move. If a move in the model
cannot be mimicked by a move in the log, then a “�” (“no move”) appears in the
top row. For example, all “silent steps” in the model (occurrences of τ transitions)
cannot be mimicked by the event log. Moreover, in γ2 the log did not do an “e move”
whereas the model has to make this move to reach the end. Given a trace in the event
log there may be many possible alignments. The goal is to find an alignment with
the least number of� elements, e.g., γ1 is better than γ2.

To establish an alignment between process model and event log, we need to relate
“moves” in the log to “moves” in the model. However, as shown, there may be
some moves in the log that cannot be mimicked by the model, and vice versa. For
convenience, we introduce the set AL = A ∪ {�} where x ∈ AL \ {�} refers to
“move x in log” and�∈ AL refers to “no move in log”. Similarly, we introduce the
set AM = {(a, t) ∈A ×T | l(t) = a}∪{�} where (a, t) ∈ AM refers to “move a in
model” and�∈ AM refers to “no move in model”.

One step in an alignment is represented by a pair (x,y) ∈ AL×AM such that

• (x,y) is a move in log if x ∈A and y =�,
• (x,y) is a move in model if x =� and y ∈ AM \{�},
• (x,y) is a move in both if x ∈A and y ∈ AM \{�}, and
• (x,y) is an illegal move x =� and y =�.

ALM = {(x,y) ∈ AL×AM | x 6=� ∨ y 6=�} is the set of all legal moves.
Let σL ∈ L be a trace in the event log and let σM ∈ Ru(N) be a run from the

initial to a final marking of labeled net N. An alignment of σL and σM is a sequence
γ ∈ ALM

∗ such that the projection on the first element (ignoring �) yields σL and
the projection on the second element (again ignoring� and only considering transi-
tions and not the corresponding labels) yields σM . Consider again the four example
alignments based on the labeled net envs(NB). We represent the moves vertically,
e.g., the first move of γ1 is (b,(b, t15)) indicating that both the log and the model

24 Christian Stahl and Wil M. P. van der Aalst

make a b move. γ1 is an alignment of σL = 〈b,c〉 and σM = 〈t15, t20〉. γ2 is an align-
ment of σL = 〈b,c〉 and σM = 〈t15, t17, t19, t14, t18〉.

To qualify the quality of an alignment, one can define a distance function on
legal moves: δ ∈ ALM → IN. The distance function associates costs to moves in an
alignment:

• δ (a,�) is the cost of “move a in log” (with a ∈A),
• δ (�,(b, t)) is the cost of “move b in model” (with t ∈ T and l(t) = b), and
• δ (a,(b, t)) is the cost of “move a in log and move b in model” (with a∈A , t ∈ T

and l(t) = b).

Distance function δ can be generalized to alignments by taking the sum of the costs
of all individual moves: δ (γ) = ∑(x,y)∈γ δ (x,y).1

We define a standard distance function δS. For a ∈ A , t ∈ T , and b = l(t):
δS(a,�) = 1, δS(�,(b, t)) = 1 if b 6= τ , δS(�,(b, t)) = 0 if b = τ , δS(a,(b, t)) = 0
if a = b, and δS(a,(b, t)) = ∞ if a 6= b. Only moves where log and model agree
on the activity or internal τ moves of the model have no associated costs. Moves
in just the log or model have cost 1. δS associates high costs to moves where both
log and model make a move but disagree on the activity. In “δS(a,(b, t)) = ∞”, ∞

should be read as a number large enough to discard the alignment (see below). Us-
ing the standard distance function δS: δS(γ1) = 2, δS(γ2) = 2 (note that the move in
model involves a τ transition), δS(γ3) = 0, and δS(γ4) = 0. So the sum of the costs is
δS(γ) = 4 for envs(NB) and δS(γ) = 0 for envs(NT) (because L is a perfectly fitting
log for envs(NT)). Note that δS is just an example; various cost functions can be
defined.

Thus far we considered a specific run (from the initial to a final marking) in the
model. However, our goal is to relate traces in the model to the best matching run in
the model. Therefore, we define the notion of an optimal alignment. Let σL ∈ L be a
trace in event log L and let N be a labeled net. ΓσL,N = {γ ∈ ALM

∗ | ∃σM∈Ru(N) γ is an
aligment of σL and σM}. An alignment γ ∈ΓσL,N is optimal for log trace σL ∈ L and
model N if for any γ ′ ∈ ΓσL,N : δ (γ ′)≥ δ (γ).

If Ru(N) is not empty, there is at least one (optimal) alignment for any given log
trace σL. However, there may be multiple optimal alignments for σL. Since our goal
is to align traces in the event log to traces of the model, we deterministically select
an arbitrary optimal alignment. Therefore, we can construct a function λM that pro-
vides an “oracle”: Given a log trace σL, λM produces one best matching run from
the initial to a final marking and hence to a best matching trace λM(σL) ∈ Tr(N).
In [14, 15], various approaches are given to create an optimal alignment with re-
spect to some predefined distance function. These approaches are based on the A∗

algorithm; that is, an algorithm originally invented to find the shortest path between
two nodes in a directed graph. The A∗ algorithm can be adapted to find an optimal
alignment between model and log. The process mining framework ProM supports
various techniques to create such an alignment and use this for conformance check-
ing and other types of log-based analysis [4].

1 Summation is generalized to sequences; that is, if the same step occurs k times in γ its costs are
counted k times.

1 Behavioral Service Substitution 25

The alignments produced by the “oracle” λM can be used to quantify fitness
(typically a number between 0 and 1). If a trace appears multiple times in the event
log, the associated costs are also counted multiple times. Moreover, once an optimal
alignment has been established for every trace in the event log, these alignments can
be used as a basis to quantify precision and generalization [4, 37]. Such alignments
are also a prerequisite for other types analysis (e.g., performance analysis) [3].

In the remainder, we assume a function conf that computes the fitness of an event
log and a model based on an optimal alignment; that is, conf (L,N) yields a number
between 0 (poor fitness) and 1 (perfect fitness).

1.5.3 Conformance Checking of the Public View

Earlier we defined a multiparty contract as a set of pairwise interface compatible
open nets {N1, . . . ,Nk} such that N = N1 ⊕ ·· · ⊕Nk is a closed net. Each of the
open nets Ni represents the public view of one of the parties. Party i can substitute
its public view Ni by a private view N′i . N′i may refine Ni but may also change the
ordering of some of the activities (see Fig. 1.8). However, ideally, the environment
of Ni must not distinguish between Ni and N′i .

For conformance checking, we need to compare observed behavior (i.e., recorded
events in some log L) with modeled behavior (Ni or N′i). In order to align observed
behavior and modeled behavior, we need as input an event log L ∈B(A ∗) and a
labeled net N = (P,T,F,mN ,Ω , l). We cannot simply take some public view Ni as
input for conformance checking. The public view is an open net with input places I
and output places O. Transitions consuming from I are dead when checking the pri-
vate view Ni in isolation. Tokens produced on places in O cannot be removed by Ni.
Hence, Tr(Ni) cannot contain sequences involving interface transitions. Moreover,
events need to be related to transitions rather than places.

This triggers the question “What kinds of events can be observed?”. Obviously,
relevant events are related to the interface places I ∪O. However, given the asyn-
chronous nature of open nets, we can take two viewpoints depending on what/when
events are actually recorded.

If events are recorded when party i consumes a message from I or produces a
message for O, then we can use the synchronous environment envs(Ni) of Ni. As
before, we assume (without loss of generality) that a transition is connected to at
most one interface place.

However, the environment of party i may be unable to see when a message is
consumed from I or produced for O. For example, the environment can put a token
in input place p ∈ I, but this does not imply that the token is immediately consumed
by party i. Hence, we can only record the event of producing a token for input place
p, but not the actual consumption. To this end, we we construct the asynchronous
environment enva(N) of an open net N by adding to each interface place p of N a
p-labeled transition in enva(N) and renaming the place p to pI (pO) if p is an input
(output) place in N. Figure 1.9(b) illustrates this construction for open net NT .

26 Christian Stahl and Wil M. P. van der Aalst

To illustrate the difference between both types of environments, consider Fig. 1.9
showing the synchronous environment envs(NT) and the asynchronous environment
enva(NT) for public view NT in Fig. 1.3(b). Which of the two labeled nets is most
suitable, depends on the events that are recorded. Consider for example a message
passed via input place s. If the event of consuming a message from interface place s
is recorded, then envs(NT) is more suitable. If the event of producing a message for
interface place s is recorded, then enva(NT) is more suitable.

The choice of environment matters. Consider for example trace 〈s,b,e,c〉 which
is impossible according to envs(NT) but allowed by enva(NT). For any labeled net N:
Tr(envs(N))⊆ Tr(enva(N)); that is, the asynchronous environment allows for more
behavior and will be more “forgiving” under conformance checking. However, the
proper choice of environment depends on what is actually logged. In the remainder,
we will often abstract from these subtle differences and simply write env(N).

Definition 15 (Public view conformance). Let N = N1⊕ ·· ·⊕Nk be a multiparty
contract and i ∈ {1, . . . ,k} is one of the parties with public view Ni and event log Li.
conf (Li,env(Ni)) is the public view conformance for party i.

This discussion thus far assumed that the environment of party i wants to check
whether i conforms to its public view Ni. However, it is also possible to reverse
roles in the multiparty contract N = N1⊕ ·· ·⊕Nk and check whether the partners
of i conform to N−1

i =
⊕

j 6=i N j. Depending what is actually logged on the interface
between i and the other parties, one can use synchronous environment envs(N−1

i) or
asynchronous environment enva(N−1

i).
Once an event log L and suitably labeled net N (e.g., envs(Ni), enva(Ni),

envs(N−1
i), or enva(N−1

i)) have been determined, we can align each trace in the
log with the best fitting execution path of the service(s) under investigation. As
discussed earlier, such an alignment can be used to compute a conformance value
conf (L,N).

1.5.4 Conformance Checking of the Private View

In the previous section, we showed that it is possible to check whether the observed
behavior of party i (or its collaborators) is consistent with the behavior specified
in the multiparty contract. However, such a check may be too strict in a services
setting.

Theorem 7 shows that each party can substitute its public view Ni by a private
view N′i as long as N′i accords to Ni. Rules 4, 5 and 6 in Fig. 1.8 illustrate that
the notion of accordance is different from classical equivalence notions (e.g., trace
equivalence). Parties may reorder activities without necessarily jeopardizing accor-
dance. Therefore, it may be inappropriate to directly compare the observed behav-
ior with the contract composed of public views. One party may have changed its
behavior without jeopardizing compatibility. Therefore, we can also try to check
conformance using some private view N′i rather than the public view Ni.

1 Behavioral Service Substitution 27

Definition 16 (Private view conformance). Let N = N1⊕·· ·⊕Nk be a multiparty
contract and i ∈ {1, . . . ,k} is one of the parties with public view Ni and event log Li.

• P(Ni) = {N | N vacc Ni} is the set of all private views that accord with Ni,
• N ∈P(Ni) is a best matching private view for Ni and Li if for any N′ ∈P(Ni):

conf (Li,env(N))≥ conf (Li,env(N′)),
• conf (Li,env(N)) is the private view conformance for party i where N ∈P(Ni)

is a best matching private view for Ni and Li.

Definition 16 cannot easily be transformed into an algorithm. The process mining
tool ProM provides excellent support for computing optimal alignments between log
and model while allowing a variety of distance functions [4,15]. However, there may
be many (if not infinitely many) private views that accord with Ni. Definition 16 pro-
vides a well-defined conformance notation that can be parameterized with different
compatibility notions (e.g., deadlock freedom versus weak termination) and differ-
ent environments (e.g., envs(N) or enva(N)). First results to select a best matching
private view have been presented in [35].

1.5.5 Beyond Conformance Checking

Conformance can computed by establishing an optimal alignment between an event
log and a service model (public view or best matching private view). Moreover, such
an alignment can also be used for various other purposes. If conformance is good,
alignments will have a high proportion of “move in both” steps. This means that
attributes of events can be mapped onto model elements. For example, in most event
logs each event has a timestamp. These timestamps can be mapped onto transitions
in the corresponding Petri net and can be used to compute how much time tokens
spend in places. Since log and model are aligned, waiting times, response times,
and service times can be measured easily. This may be used to discover bottlenecks,
analyze service-level-agreements, etc. Some logs also contain information about
costs, resource usage, errors, etc. Attributes at the level of individual events—just
like timestamps—can be associated to model elements using the “move in both”
steps.

In this section, we focused on offline conformance checking. For example, we as-
sume a model Ni and an event log Li containing historic data. However, alignments
can be computed on-the-fly; that is, even partially executed traces can be aligned
with a model (partial alignments do not need to end in a final marking, but a final
marking should remain reachable). This enables online conformance checking; that
is, streaming event data can be monitored at runtime and deviations can be detected
immediately. Similarly, partially aligned traces can be used for predictions and rec-
ommendations at runtime. For example, for a partially handled case we can predict
the remaining flow time, predict the probability of a deviation, or recommend a next
activity that minimizes costs [3].

28 Christian Stahl and Wil M. P. van der Aalst

1.6 Conclusion

The shift toward service-oriented systems enables enterprises to decompose their
systems into several smaller services. That way, service orientation enables for faster
changes, because an individual service can be substituted by another service rather
than changing the overall system. Service substitution, however, also imposes new
challenges as it should not effect compatibility of the overall system. As systems
may be distributed over several enterprises, system correctness has to be derived
from the correctness of its parts, which is nontrivial.

In this chapter, we have surveyed service substitution at design time and at run-
time, thereby restricting ourselves to the service behavior. We have investigated this
problem on the level of service models. For design-time support, we introduced sev-
eral variants of service substitution and illustrated that the problem is parameterized
w.r.t. the compatibility notion used. To decide that a service Impl can substitute a
service Spec, we must compare the infinitely many admissible contexts of Spec and
Impl. We proposed decision algorithms based on a finite representation of these sets.
In addition, we proposed rules to construct substitutable services that are correct by
design. Research challenges are to generalize these techniques to other compatibility
notions and, in addition, to incorporate data, time, and resources. Other directions
are diagnosing why a service cannot serve as a substitute and ideally propose how
it can be repaired.

In this chapter, we did not limit ourselves to comparing models of services but
also considered the actual behavior recorded in message and transaction logs. The
actual service implementation may deviate from its model or the behavior of a ser-
vice may change over time. We showed that conformance checking techniques can
be used to detect and diagnose deviations between observed service behavior (i.e.,
event logs) and modeled service behavior. As shown, we can define conformance
at the level of the public view (contractual level) and at the level of the private
view (implementation level). For the public view, we can apply existing confor-
mance checking techniques. However, checking conformance with respect to some
unknown implementation is more challenging and requires further research. More-
over, the lion’s share of attention has gone to fitness analysis whereas the analysis
of “underfitting” and “overfitting” of services is equally important.

References

1. Aalst, W.M.P.v.d.: Workflow Verification: Finding Control-Flow Errors using Petri-net-based
Techniques. In: Business Process Management: Models, Techniques, and Empirical Studies,
LNCS, vol. 1806, pp. 161–183. Springer (2000)

2. Aalst, W.M.P.v.d.: Inheritance of interorganizational workflows: How to agree to disagree
without loosing control? Information Technology and Management Journal 4(4), 345–389
(2003)

3. Aalst, W.M.P.v.d.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer (2011)

1 Behavioral Service Substitution 29

4. Aalst, W.M.P.v.d., Adriansyah, A., Dongen, B.v.: Replaying History on Process Models for
Conformance Checking and Performance Analysis. WIREs Data Mining and Knowledge
Discovery 2(2), 182–192 (2012)

5. Aalst, W.M.P.v.d., Basten, T.: Inheritance of Workflows: An Approach to Tackling Problems
Related to Change. Theoretical Computer Science 270(1-2), 125–203 (2002)

6. Aalst, W.M.P.v.d., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, H.: Conformance Checking
of Service Behavior. ACM Transactions on Internet Technology 8(3), 29–59 (2008)

7. Aalst, W.M.P.v.d., Hee, K., Werf, J.v.d., Verdonk, M.: Auditing 2.0: Using Process Mining to
Support Tomorrow’s Auditor. IEEE Computer 43(3), 90–93 (2010)

8. Aalst, W.M.P.v.d., Hee, K.M.v.: Workflow Management: Models, Methods, and Systems. The
MIT Press, Cambridge, MA (2004)

9. Aalst, W.M.P.v.d., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: From public views to pri-
vate views - correctness-by-design for services. In: WS-FM 2007, LNCS, vol. 4937, pp. 139–
153. Springer (2008)

10. Aalst, W.M.P.v.d., Mooij, A.J., Stahl, C., Wolf, K.: Service interaction: Patterns, formalization,
and analysis. In: SFM 2009, LNCS, vol. 5569, pp. 42–88. Springer (2009)

11. Aalst, W.M.P.v.d., Stahl, C.: Modeling Business Processes – A Petri Net-Oriented Approach.
The MIT Press, Cambridge, MA (2011)

12. Aalst, W.M.P.v.d., Weijters, A., Maruster, L.: Workflow Mining: Discovering Process Models
from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142
(2004)

13. Aalst, W.M.P.v.d., Weske, M.: The P2P approach to interorganizational workflows. In: CAiSE
2001, LNCS, vol. 2068, pp. 140–156. Springer (2001)

14. Adriansyah, A., Dongen, B.F.v., Aalst, W.M.P.v.d.: Towards Robust Conformance Checking.
In: BPI 2010, LNBIP, vol. 66, pp. 122–133. Springer (2011)

15. Adriansyah, A., Dongen, B.v., Aalst, W.M.P.v.d.: Conformance Checking using Cost-Based
Fitness Analysis. In: EDOC 2011, pp. 55–64. IEEE Computer Society (2011)

16. Benatallah, B., Casati, F., Toumani, F.: Representing, Analysing and Managing Web Service
Protocols. Data Knowl. Eng. 58(3), 327–357 (2006)

17. Bravetti, M., Zavattaro, G.: Contract Based Multi-party Service Composition. In: FSEN 2007,
LNCS, vol. 4767, pp. 207–222. Springer (2007)

18. Bravetti, M., Zavattaro, G.: Contract-based discovery and composition of web services. In:
SFM 2009, LNCS, vol. 5569, pp. 261–295. Springer (2009)

19. Dumas, M., Yang, Y., Zhang, L.: Towards a formalization of contracts for service substitution.
In: SERVICES 2010, pp. 423–430. IEEE Computer Society (2010)

20. Fournet, C., Hoare, C.A.R., Rajamani, S.K., Rehof, J.: Stuck-Free Conformance. In: CAV
2004, LNCS, vol. 3114, pp. 242–254. Springer (2004)

21. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust Process Discovery with Arti-
ficial Negative Events. Journal of Machine Learning Research 10, 1305–1340 (2009)

22. Hee, K.M.v., Sidorova, N., Werf, J.M.E.M.v.d.: Refinement of synchronizable places with
multi-workflow nets - weak termination preserved! In: PETRI NETS 2011, LNCS, vol. 6709,
pp. 149–168. Springer (2011)

23. Kaschner, K., Wolf, K.: Set algebra for service behavior: Applications and constructions. In:
BPM 2009, LNCS, vol. 5701, pp. 193–210. Springer (2009)

24. König, D., Lohmann, N., Moser, S., Stahl, C., Wolf, K.: Extending the compatibility notion
for abstract ws-bpel processes. In: WWW 2008, pp. 785–794. ACM (2008)

25. Laneve, C., Padovani, L.: The must preorder revisited. In: CONCUR 2007, LNCS, vol. 4703,
pp. 212–225. Springer (2007)

26. Liske, N., Lohmann, N., Stahl, C., Wolf, K.: Another approach to service instance migration.
In: ICSOC 2009, LNCS, vol. 5900, pp. 607–621. Springer (2009)

27. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In: BPM 2007,
LNCS, vol. 4714, pp. 271–287. Springer (2007)

28. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services. In:
ICATPN 2007, LNCS, vol. 4546, pp. 321–341. Springer (2007)

30 Christian Stahl and Wil M. P. van der Aalst

29. Lohmann, N., Verbeek, H.M.W., Dijkman, R.: Petri net transformations for business processes
– a survey. In: ToPNoC II, LNCS 5460, pp. 46–63. Springer (2009)

30. Lohmann, N., Weinberg, D.: Wendy: A tool to synthesize partners for services. Fundam.
Inform. 113, 1–17 (2011)

31. Lohmann, N., Wolf, K.: Compact representations and efficient algorithms for operating guide-
lines. Fundam. Inform. 108(1-2), 43–62 (2011)

32. Medeiros, A.K.A.d., Weijters, A., Aalst, W.M.P.v.d.: Genetic Process Mining: An Experimen-
tal Evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)

33. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)
34. Mooij, A.J., Parnjai, J., Stahl, C., Voorhoeve, M.: Constructing replaceable services using

operating guidelines and maximal controllers. In: WS-FM 2010, LNCS, vol. 6551, pp. 116–
130. Springer (2011)

35. Müller, R., Aalst, W.M.P.v.d., Stahl, C.: Conformance checking of services using the best
matching private view. In: WSFM 2012, LNCS. Springer (2012). Accepted for publication

36. Munoz-Gama, J., Carmona, J.: A Fresh Look at Precision in Process Conformance. In: BPM
2010, LNCS, vol. 6336, pp. 211–226. Springer (2010)

37. Munoz-Gama, J., Carmona, J.: Enhancing Precision in Process Conformance: Stability, Con-
fidence and Severity. In: CIDM 2011. IEEE (2011)

38. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE 77(4),
541–580 (1989)

39. Oster, Z.J., Basu, S.: Extending substitutability in composite services by allowing asyn-
chronous communication with message buffers. In: ICTAI 2009, pp. 572–575. IEEE Com-
puter Society (2009)

40. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson - Prentice Hall, Essex
(2007)

41. Papazoglou, M.P.: The challenges of service evolution. In: CAiSE 2008, LNCS, vol. 5074, pp.
1–15. Springer (2008)

42. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: a re-
search roadmap. Int. J. Cooperative Inf. Syst. 17(2), 223–255 (2008)

43. Pathak, J., Basu, S., Honavar, V.: On Context-Specific Substitutability of Web Services. In:
ICWS 2007, pp. 192–199. IEEE Computer Society (2007)

44. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Analysis and applications of timed service
protocols. ACM Trans. Softw. Eng. Methodol. 19(4) (2010)

45. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information systems.
LNCS ToPNoC 5460(II), 115–135 (2009)

46. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models, Advances in Petri
Nets, LNCS, vol. 1491. Springer (1998)

47. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in workflow
systems - a survey. Data Knowl. Eng. 50(1), 9–34 (2004)

48. Rozinat, A., Aalst, W.M.P.v.d.: Conformance Checking of Processes Based on Monitoring
Real Behavior. Information Systems 33(1), 64–95 (2008)

49. Ryu, S.H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R.: Supporting the dynamic
evolution of web service protocols in service-oriented architectures. TWEB 2(2) (2008)

50. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with operating
guidelines. In: ToPNoC II, LNCS 5460, pp. 172–191. Springer (2009)

51. Stahl, C., Vogler, W.: A trace-based service semantics guaranteeing deadlock freedom. Acta
Inf. 49(2), 69–103 (2012)

52. Stahl, C., Wolf, K.: Deciding service composition and substitutability using extended operat-
ing guidelines. Data Knowl. Eng. 68(9), 819–833 (2009)

53. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets, LNCS, vol. 625.
Springer (1992)

54. Wynn, M.T., Verbeek, H.M.W., Aalst, W.M.P.v.d., Hofstede, A.H.M.t., Edmond, D.:
Soundness-preserving Reduction Rules for Reset Workflow Nets. Information Sciences
179(6), 769–790 (2009)

