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Desire Lines in Big Data
Synonyms

process mining, business process intelligence, distributed process mining, process dis-

covery

Glossary

Event log: multiset of traces.

Trace: sequence of events.

Event: occurrence of some discrete incident (e.g., completion of an activity).
Process mining: collection of techniques to discover, monitor and improve real pro-
cesses by extracting knowledge from event data.

Process discovery: extracting process models from an event log.

Conformance checking: monitoring deviations by comparing model and log.

Definition

Processes leave footprints in information systems just like people leave footprints in

grassy spaces. Desire lines, i.e., the tracks formed by erosion showing where people
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really walk, may be very different from the formal pathways. When people deviate
from the official path there is often a good reason and room for improvement. The goal
of process mining is to extract desire lines from event logs, e.g., to automatically infer
a process model from raw events recorded by some information system.

Process mining techniques and tools should be able to deal with huge heteroge-
neous event logs. For example, the increasing ability to record events (cf. sensor data,
internet of things, remote monitoring, and service orientation) may make it infeasible
to store all events over an extended period. Therefore, on-the-fly discovery techniques
have been developed, i.e., techniques to learn process models without storing excessive
amounts of events. Moreover, techniques to distribute process mining techniques over
a network consisting of many computing nodes are being developed. The techniques
exploit modern computing infrastructures and make process mining scalable. This way

it is possible to discover desire lines in Big Data.

Introduction

Desire lines refer to tracks worn across grassy spaces — where people naturally walk
— regardless of formal pathways (see Figure 1). A desire line emerges through ero-
sion caused by footsteps of humans (or animals) and the width and degree of erosion
of the path indicates how frequently the path is used. Typically, the desire line fol-
lows the shortest or most convenient path between two points. Moreover, as the path
emerges more people are encouraged to use it, thus stimulating further erosion. Dwight
Eisenhower is often mentioned as one of the persons that noted this emerging group
behavior. Before becoming the 34th president of the United States, he was the pres-
ident of Columbia University. When he was asked how the university should arrange
the sidewalks to best interconnect the campus buildings, he suggested letting the grass

grow between buildings and delay the creation of sidewalks. After some time the de-
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sire lines revealed themselves. The places where the grass was most worn by people’s

footsteps were turned into sidewalks.

Fig. 1: Desire lines reveal the actual and not the assumed behavior of people, machines,

and organizations.

The term “desire line” has been used for decades in urban planning. A desire
line shows where people naturally walk. The width and degree of erosion of such an
informal path indicates how frequently the path is used. Often the desire line is very
different from the formal pathway. Therefore, some planners simply let erosion tell were
the paths need to be. For example, the paths across Central Park in New York were
reconstructed using this approach [24, 26].

Good information systems do not show signs of erosion. Nevertheless, they often
contain a wealth of event data providing clues about the paths followed by the users
of the system. Therefore, it is possible to determine desire lines in organizations, sys-
tems, and products. Besides visualizing such desire lines, we can also investigate how

these desire lines change over time, characterize the people following a particular de-
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sire line, etc. There may also be desire lines that are “undesirable” (unsafe, inefficient,
unfair, etc.). Uncovering such phenomena is a prerequisite for process and product
improvement.

The potential value of desire lines in “big data” (say event logs containing mil-
lions of events) is enormous. The identification of such information can be used to
redesign procedures and systems (‘“reconstructing the formal pathways”), to recom-
mend people taking the right path (“adding signposts were needed”), or to build in
safeguards (“building fences to avoid dangerous situations”).

More and more information about (business) processes is recorded by informa-
tion systems in the form of so-called “event logs”. IT systems are becoming more and
more intertwined with these processes, resulting in an “explosion” of available data that
can be used for analysis purposes. Today’s information systems already log enormous
amounts of events. Classical workflow management systems (e.g. FileNet, TIBCO iPro-
cess Suite, Global 360), ERP systems (e.g. SAP, Oracle), case handling systems (e.g.
BPM|one), PDM systems (e.g. Windchill), CRM systems (e.g. Microsoft Dynamics
CRM, SalesForce), middleware (e.g., IBM’s WebSphere, Cordys), hospital information
systems (e.g., Chipsoft, Siemens Soarian), etc. provide very detailed information about
the activities that have been executed. Not just information systems record data; many
physical devices are connected to the Internet and objects (products and resources) are
tagged and monitored. Providers of high-tech systems (ASML, Philips Healthcare, etc.)
are recording terabytes of data on a daily basis. In fact, according to MGI, nearly all
sectors in the US economy have at least an average of 200 terabytes of stored data
per company (for companies with more than 1,000 employees) and many sectors have
more than 1 petabyte in mean stored data per company [21]. Until 2000 most data
was still stored in analog form (books, photos, etc.). Since 2000 data storage has grown

spectacularly, shifting markedly from analog to digital [18].
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Data will continue to grow at a spectacular rate. Moreover, the digital universe
and the physical universe are becoming more and more aligned, e.g., money has become
a predominantly digital entity. When booking a flight over the Internet, the customer is
interacting with many organizations (airline, travel agency, bank, and various brokers),
often without actually realizing it. If the booking is successful, the customer receives
an e-ticket. Note that an e-ticket is basically a number, thus illustrating the tight
coupling between the digital and physical universe. When the SAP system of a large
manufacturer indicates that a particular product is out of stock, it is impossible to sell
or ship the product even when it is available in physical form. Technologies such as
RFID (Radio Frequency Identification), GPS (Global Positioning System), and sensor
networks will stimulate a further alignment of data and reality, e.g., RFID tags make
it possible to track and trace individual items. Hence, there will be more and more
high-quality data that can be used to reveal desire lines in any industry.

Since we are interested in analyzing processes based on the data recorded, we
focus on events that can be linked to relevant activities. The order of such events is
important for deriving the actual process. Fortunately, most events have a timestamp
or can be linked to a particular date. Hence, the event data needed for process mining
are omnipresent.

Consider for example Philips Healthcare, a provider of medical systems that are
often connected to the Internet to enable logging, maintenance, and remote diagnostics.
For example, more than 1500 Cardio Vascular (CV) systems (i.e., X-ray machines) are
monitored by Philips. On average each CV system produces 15,000 events per day,
resulting in 22.5 million events per day for just their CV systems. The events are
stored for about three years and have many attributes. The error logs of ASML’s
lithography systems have similar characteristics and also contain about 15,000 events

per machine per day. These numbers illustrate the fact that many organizations are
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storing terabytes of event data. Earlier applications of process mining in organizations
such as Philips and ASML, show that there are various challenges with respect to
performance (response times), capacity (storage space), and interpretation (discovered
process models may be composed of thousands of activities).

Many organizations are using so-called Business Intelligence (BI) software, e.g.,
Business Objects (SAP), Cognos (IBM), Hyperion (Oracle), etc. Common functions
offered by these BI tools are reporting, online analytical processing, data mining, busi-
ness performance management, benchmarks, and predictive analysis. However, these
tools assume that the process is known and they typically look at data-related aspects
(e.g., correlations) or view the process at an aggregate level (e.g., a dashboard showing
the average response time). BI tools typically provide some form of data mining and
there are dedicated data mining tools such as Weka, SPSS Clementine, RapidMiner,
etc. Typical techniques supported are classification, clustering, association rules, etc.
However, these systems do not allow for the discovery of processes based on event
logs. In fact, an explicit process notion is missing. This led to the formation of a new

research domain: process mining.

Key Points

The spectacular growth of event data is providing opportunities and challenges for
process mining. Process discovery and conformance checking can be used to analyze and
improve operational business processes in any sector. However, as event logs are growing
in size it may be impossible to store, manage, and analyse event data using traditional
algorithms and tools. Moreover, process mining is increasingly used on online settings
where processes need to be analyzed on-the-fly. Process mining algorithms and tools

need to be adapted to this new reality.



case id event id properties

timestamp activity resource cost

35654423 |30-12-2011:11.02 A John 300

1 35654424 |30-12-2011:11.06 B John 400
35654425 |30-12-2011:11.12 C John 100

35654426 |30-12-2011:11.18 D John 400

35655526 |30-12-2011:16.10 A Ann 300

2 35655527 |30-12-2011:16.14 C John 450
35655528 |30-12-2011:16.26 B Pete 350

35655529 |30-12-2011:16.36 D Ann 300

Table 1: A fragment of some event log: each line corresponds to an event.
Process Mining

In this section, we first introduce process mining using a small example. Then we
elaborate on ways to deal with huge event sets.

Process mining techniques attempt to extract non-trivial and useful information
from event logs [1, 19]. One aspect of process mining is control-flow discovery, i.e., au-
tomatically constructing a process model (e.g., a Petri net or BPMN model) describing
the causal dependencies between activities [7, 9, 29]. The basic idea of control-flow
discovery is very simple: given an event log containing a set of traces, automatically
construct a suitable process model “describing the behavior” seen in the log. Such dis-
covered processes have proven to be very useful for the understanding, redesign, and
continuous improvement of business processes [1].

To illustrate the notion of process discovery, consider Table 1. The table shows a

small fragment of some larger event log. Only two traces are shown, both containing 4
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events. Each event has a unique id and several properties. For example, event 35654423
is an instance of activity A that occurred on December 30th at 11.02, was executed
by John, and costs 300 euros. The second trace starts with event 35655526 and also
refers to an instance of activity A. Note that each trace corresponds to a case, i.e., a

completed process instance.

1 <A02’ BOG, 012,D18>
2 <A10, 014’ 326, D36>
3 <A12,E22,D56>
4 <A15, BIQ’ 022, D28>
5 <A18, 322, 026,D32>
6 <A19,E28,D59>

7 <A20 025 BBG D44>

Table 2: A simplified event log. Each line corresponds to a trace represented as a

sequence of activities with timestamps.

The information depicted in Table 1 is the typical event data that can be ex-
tracted from today’s information systems. To make the example more manageable, we
now focus on the activities and their timestamps only. Table 2 shows another view on
the same event log. Now each line corresponds to a process instance, e.g., the first trace
(A% B% (12 D8 refers to a process instance where activity A was executed at time
2, activity B was executed at time 6, activity C' was executed at time 12, and activity
D was executed at time 18. Note that the first two traces in Table 2 correspond to the
fragment shown in Table 1 (using simplified timestamps).

Using existing process mining techniques it is possible to extract a process model
from Table 2. For example, by applying the « algorithm [9] we obtain the process model

shown in Fig. 2. This simple Petri net model [25] describes the process that starts with
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Fig. 2: A process model discovered from Table 2 using the a algorithm.

A and ends with D. In-between A and D either E or B and C' are executed (in any
order).

Clearly, process mining — in particular control-flow discovery — is related to
the classical work on inductive inference. However, there are also notable differences
because, unlike most of the classical work, process mining focuses on higher order
representations which explicitly model concurrency (e.g., Petri nets, UML ADs, EPCs,
BPMN, etc.) rather than lower level representations (e.g., Markov chains, finite state
machines, or regular expressions). Moreover, we do not assume negative examples (i.e.,
there are no events stating that an activity cannot happen) and deal with issues such
as incompleteness (i.e., if something did not happen, it may still be possible) and
exceptional behavior. See [1] for an overview of existing process discovery approaches.

Process mining is not limited to control-flow discovery [1]. First of all, besides
the control-flow perspective (“How?”), other perspectives such as the organizational
perspective (“Who?”) and the case/data perspective (“What?”) may be considered.
Second, process mining is not restricted to discovery. Typically three basic types of
process mining are considered: (a) discovery, (b) conformance, and (c) enhancement
[1]. In this article we will focus on process discovery, i.e., discovering a model from raw
events. Discovery serves as the starting point for the two other types of process mining.
The second type of process mining is conformance [27, 23]. Here, an existing process
model is compared with an event log of the same process. Conformance checking can be

used to check if reality, as recorded in the log, conforms to the model and vice versa. The
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third type of process mining is enhancement [8]. Here, the idea is to extend or improve
an existing process model using information about the actual process recorded in some
event log. Whereas conformance checking measures the alignment between model and
reality, this third type of process mining aims at changing or extending the a-priori
model. For instance, by using timestamps in the event log one can extend the model
to show bottlenecks, service levels, throughput times, and frequencies.

For example, the event log in Table 2 shows timestamps. When replaying the
event log on the process model shown in Fig. 2, we can measure the time spent in the
places in-between the various activities. This can be used to identify bottlenecks and

predict the remaining flow time for running cases [1, §].

IE
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(a) hospital (b) housing agency

Fig. 3: Two process models discovered using conventional process discovery techniques.
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As input we assume an event log in XES format. In 2010, the IEEE Task Force
on Process Mining standardized XES (www.xes-standard.org), a standard logging
format that is extensible and supported by the OpenXES library (www.openxes.org)
and by tools such as PROM, XESAME, Disco, NITRO, etc. XES is the successor of
the MXML format and we will also support this older format.

Fig. 3 shows two example models discovered using PROM’s heuristic miner
[1, 28]. The model in Fig. 3a was discovered based on event data of a group of 627
gynecological oncology patients treated in the AMC hospital in Amsterdam. All diag-
nostic and treatment activities have been recorded for these patients. The event log
contains 24331 events referring to 376 different activities. The process model shows all
376 activities and the paths followed by patients. The model looks Spaghetti-like, but
can be simplified by looking at homogeneous groups of patients and/or by focusing
on the frequent activities. The model in Fig. 3b was discovered using an event log
extracted from the database of a large Dutch housing agency. The event log contains
5987 events relating to 208 cases and 74 activity names. Each case corresponds to a
housing unit (accommodation such as a house or an apartment). The process starts
when the tenant leasing the unit wants to stop renting it. The process ends when a

new tenant moves into the unit after handling all formalities.

Process Mining Challenges and Evaluation Criteria

Traditional process discovery techniques suffer from the following limitations:

° Process discovery is done offline, i.e., it is assumed that there is a representative
event log. In some applications this assumption is unrealistic because it is im-

possible or too costly to store all event data. Recently, process mining techniques
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have been developed for predictions and recommendations. However, also these
techniques do not discover process models on-the-fly.

° It is impossible to discover process models for extremely large event logs (i.e.,
terabyte logs or logs with thousands of different activities). Algorithmic tech-
niques such as heuristic mining [28], fuzzy mining [17], and the a-algorithm [9]
are fast, but as data sets continue to grow even these techniques will not be able
to keep up. Region-based techniques [7, 12, 29] are more precise but also time
consuming. Genetic process mining algorithms [22] can be distributed easily,
but are extremely inefficient.

° Most process discovery techniques assume the process to be in steady-state. It is
assumed to be irrelevant whether a case occurs at the beginning of the log or
towards the end. As a result, these techniques do not capture concept drift [14].
Processes may exhibit seasonal patterns (e.g., due to the increasing workload in
December some checks are skipped), sudden abrupt changes (e.g., a disaster or
a new law), or gradual changes (e.g., an increasing market share).

° The same process may exist within different organizations or different parts of
the same organization. Within a process there may be homogeneous groups of
cases that share common characteristics. Several authors proposed techniques to
cluster similar cases [13, 16]. These techniques focus on producing simple models
for subsets of cases. However, the resulting process models are not related and

cannot be folded easily into an overall configurable process model.

To evaluate process models discovered using process mining, we need to align
event log and model. Suppose that an event log contains cases that can be char-
acterized by the following three traces: o1 = (A, B,C,D), oo = (A,C,D), and

o3 = (A,C, D, B, D). Example alignments for these three traces are (based on Fig. 2):
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A|B|C|D A|C|>|D A|C|D|B|D

M= Vo= Y3= Ya=

A|B|C|D A|C|B|D A|C|>|B|D A|C|B|D[> >

The top row of each alignment corresponds to “moves in the log” and the bottom row
corresponds to “moves in the model”. If a move in the log cannot be mimicked by a
move in the model, then a “>” (“no move”) appears in the bottom row. If a move in
the model cannot be mimicked by a move in the log, then a “>" (“no move”) appears
in the top row. For example, in 7; the trace in the log (07) and the model (Fig. 2) are
aligned perfectly as every move in the log is mimicked by a move in the model and vice
versa. In 7, trace oy is aligned with Fig. 2. Since C'is followed by D and no B occurred,
the model makes a B move without a corresponding move in the log. In 3, trace o3
is aligned with Fig. 2. Now the log makes a D move without a corresponding move
in the model. Given a trace in the event log, there may be many possible alignments.
The goal is to find the alignment with the least number of > elements, e.g., 73 seems
better than v,. Finding a optimal alignment can be viewed as an optimization problem
as shown in [5, 10].

The number of > elements can be used to quantify fitness. Model and log have
a perfect fitness if all traces in the log can be replayed by the model from beginning
to end. Fitness is just one of the four basic conformance dimensions defined in [1].
Other quality dimensions for comparing model and log are simplicity, precision, and
generalization.

The simplest model that can explain the behavior seen in the log is the best
model. This principle is known as Occam’s Razor. There are various metrics to quantify
the complexity of a model (e.g., size, density, etc.).

The precision dimension is related to the desire to avoid “underfitting”. It is

very easy to construct an extremely simple Petri net (“flower model”) that is able to



14

replay all traces in an event log (but also any other event log referring to the same set
of activities). See [5, 23, 27] for metrics quantifying this dimension.

The generalization dimension is related to the desire to avoid “overfitting” [1, 5].
In general it is undesirable to have a model that only allows for the exact behavior
seen in the event log. Remember that the log contains only example behavior and that
many traces that are possible may not have been seen yet.

Conformance checking can be done for various reasons, e.g., to evaluate the
results of process discovery. However, it may also be used to audit processes to see
whether reality conforms to some normative of descriptive model [6]. Deviations may

point to fraud, inefficiencies, and poorly designed or outdated procedures.

Dealing With Big Data

Figure 4 shows an overall approach for dealing with “big event data” in a compre-
hensive manner. Starting point are event logs that may be huge (millions of events).
Events may come from different data sources that change over time. The goal is to
be able to discover reliable models under these difficult circumstances. It should be
possible to discover processes while storing a minimal amount of information. More-
over, for performance reasons, it should be possible to utilize a network of computers
by distributing challenging process mining tasks. Processes may change over time and
may vary from one organization to the other. Moreover, groups of cases may exhibit
different behaviors. Therefore, it is vital to find out when and how a process changes,
and how different variants of the process can be discovered and compared.

One can consider two basic approaches for on-the-fly process discovery: sampling
and aggregation (see Fig. 4). For sampling we retain a representative subset of cases,
e.g., based on a time window. Techniques based on aggregation do not store cases, but

only aggregate information, e.g., the frequency of direct successions (with smoothing to



15

on-the-fly process discovery concept drift analysis
) —— aggregate o) @*Dig g;D’O ® D@@D o
\ | esse 7 5
| 0009 | =
| o0® N - = )
| sample o = O o
0 ! = > °©
Q Cea I 59 5] > 2
@ A Sw 3 time o
) oo o 2 \—’/ €
oo ©
—o—o dlstributed :
oo

configurable
- > process rocess models
time discovery P
‘big” event data @ ’ ’ @ &D%:ﬂﬂ

Fig. 4: Towards a more comprehensive approach to process mining supporting on-

%

the-fly and/or distributed process mining while considering concept drift and process

variability.

give more weight to recent observations). The challenge is to apply the best approach
given characteristics of the log and desirable quality levels. For example, there are
various tradeoffs between saving storage space and preserving model quality [15, 11].
Today, there are many different types of distributed systems, i.e., systems com-
posed of multiple autonomous computational entities communicating through a net-
work. Grid computing, multicore CPU systems, manycore GPU systems, cluster com-
puting, and cloud computing all refer to systems where different resources are used
concurrently to improve performance and scalability. We consider three basic types of

distribution [4]. This classification is based on the way the log is partitioned.

° Replication. If the process mining algorithm is non-deterministic (e.g., a genetic
algorithm), then the same task can be executed on all nodes and in the end the
best result can be taken. In this case, the event log can be simply replicated,
i.e., all nodes have a copy of the whole event log.

° Vertical partitioning. Event logs are composed of cases. There may be thousands

or even millions of cases. These can be distributed over the nodes in the network,



16

i.e., each case is assigned to one computing node. All nodes work on a subset of
the whole log and in the end the results need to be merged.

° Horizontal partitioning. Cases are composed of multiple events. Therefore, we
can also partition cases, i.e., part of a case is analyzed on one node whereas
another part of the same case is analyzed on another node. In principle, each
node needs to consider all cases. However, the attention of one computing node

is limited to a particular subset of events per case.

Process mining algorithms are typically linear in the size of the log and exponential
in the number of activities. Using a vertical partitioning it is easy to achieve a linear
speedup. A horizontal partitioning may be used to achieve a super linear speedup,
because the time needed to solve “many smaller problems” tends to be less than the
time needed to solve “one big problem” [3, 2]. This is only possible if the set of activities
can be partitioned in localized process fragments. In this case, decomposition can (most
likely) be used to speed up process mining algorithms even if the smaller problems are
solved sequentially on just one computing node.

Processes often change while being analyzed. Therefore, concept drift is men-
tioned as one of the challenges in the Process Mining Manifesto [19]. Concept drift
was been investigated in the context of various data mining problems [30, 20]. In [14]
the problem is investigated in the context of process mining thereby producing some
initial results. However, many challenges remain. For example, classical conformance
notions such as fitness, generalization, and precision cannot be applied to processes
that change [1, 5]. One needs to judge the result with respect to a moving time window

of suitable length.
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Key Applications

Process mining can be used to improve processes in a wide variety of organizations. A

few examples of the industries were process mining has been applied.

The healthcare industry includes hospitals and other care organizations. Most
events are being recorded (blood tests, MRI scans, appointments, etc.) and cor-
relation is easy because each event refers to a particular patient. The closer
processes get to the medical profession, the less structured they become. For
instance, most diagnosis and treatment processes tend to be rather Spaghetti-
like. Medical guidelines typically have little to do with the actual processes. On
the one hand, this suggests that these processes can be improved by structur-
ing them. On the other hand, the variability of medical processes is caused by
the different characteristics of patients, their problems, and unanticipated com-
plications. Patients are saved by doctors deviating from standard procedures.
However, some deviations also cost lives. Clearly, hospitals need to get a better
understanding of care processes to be able to improve them. Process mining can
help as event data is readily available.

Governments range from small municipalities to large organizations operating
at the national level, e.g., institutions managing processes related to unemploy-
ment, customs, taxes, and traffic offences. Both local and national government
agencies can be seen as “administrative factories” as they execute regulations
and the “products” are mainly informational or financial. Processes in larger
government agencies are characterized by a high degree of automation. Con-
sider, for example, tax departments that need to deal with millions of tax dec-
larations. Processes in smaller government agencies (e.g., small municipalities)

are typically not automated and managed by office workers rather than BPM
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systems. However, due to the legal requirements, all main events are recorded in
a systematic manner. Typical use cases for process mining in governments (local
or non-local) are flow time reduction (e.g., shorten the time to get a building
permit), improved efficiency, and compliance. Given the role of governments in
society, compliance is of the utmost importance.

Banking and insurance are two industries where BPM technology has been
most effective. Processes are often automated and all events are recorded in
a systematic and secure manner. Examples are the processing of loans, claims
management, handling insurance applications, credit card payments, and mort-
gage payments. Most processes in banking and insurance are Lasagna processes,
i.e., highly structured. Hence, all of the techniques presented in this book can be
applied. Process discovery is less relevant for these organizations as most pro-
cesses are known and documented. Typical uses cases in these industries involve
conformance checking, performance analysis, and operational support.

The transportation industry is also recording more and more information about
the movement of people and products. Through tracking and tracing function-
ality the whereabouts of a particular parcel can be monitored by both sender
and receiver. Although controversial, smartcards providing access to buildings
and transportation systems can be used to monitor the movement of people. For
example, the Dutch “ov-chipkaart” can be used to travel by train, subway, and
bus. The traveler pays based on the distance between the entry point and exit
point. The recorded information can be used to analyze traveling behavior. The
booking of a flight via the Internet also generates lots of event data. In fact,
the booking process involves only electronic activities. Note that the traveler

interacts with one organization that contacts all kinds of other organizations in
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the background (airlines, insurance companies, car rental agencies, etc.). All of

these events are being recorded, thus enabling process mining.

These examples illustrate that there are numerous opportunities for process mining in
various industries. Moreover, in all of these industries the volumes of event data will
grow exponentially and there is the need to present analysis results instantly. Hence,

there is a need for the distributed and on-the-fly process mining.

Future Directions

Despite the applicability of process mining there are many interesting challenges; these
illustrate that process mining is a young discipline. Process discovery is probably the
most important and most visible intellectual challenge related to process mining: it is
far from trivial to construct a process model based on event logs that are incomplete
and noisy. Still extensive research is needed to improve existing techniques or to come
up with completely new techniques. Moreover, extensive research is needed to deal with
“Big Data” challenges, i.e., handling event logs with millions of cases, billions of events,

and thousands of different activities.

Cross References

° Data Mining

° Evolution of Social Networks

° Network Representations of Complex Data
° Role Discovery

° Service Discovery

° Temporal Networks

° Web Log Analysis
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Recommended Reading

To get started with process mining, the reader is advised to read the book “Process
Mining: Discovery, Conformance and Enhancement of Business Processes” [1] and the

Process Mining Manifesto [19].



