
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Dealing With Concept Drifts in Process Mining
R. P. Jagadeesh Chandra Bose, Wil M. P. van der Aalst, Indrė Žliobaitė, and Mykola Pechenizkiy

Abstract— Although most business processes change over time,
contemporary process mining techniques tend to analyze these
processes as if they are in a steady state. Processes may change
suddenly or gradually. The drift may be periodic (e.g., because
of seasonal influences) or one-of-a-kind (e.g., the effects of
new legislation). For the process management, it is crucial to
discover and understand such concept drifts in processes. This
paper presents a generic framework and specific techniques to
detect when a process changes and to localize the parts of the
process that have changed. Different features are proposed to
characterize relationships among activities. These features are
used to discover differences between successive populations. The
approach has been implemented as a plug-in of the ProM process
mining framework and has been evaluated using both simulated
event data exhibiting controlled concept drifts and real-life event
data from a Dutch municipality.

Index Terms— Concept drift, flexibility, hypothesis tests,
process changes, process mining.

I. INTRODUCTION

BUSINESS processes are nothing more than logically
related tasks that use the resources of an organization to

achieve a defined business outcome. Business processes can be
viewed from a number of perspectives, including the control
flow, data, and the resource perspectives. In today’s dynamic
marketplace, it is increasingly necessary for enterprises to
streamline their processes so as to reduce cost and to improve
performance. In addition, today’s customers expect organiza-
tions to be flexible and adapt to changing circumstances. New
legislations such as the WABO act [1] and the Sarbanes–Oxley
Act [2], extreme variations in supply and demand, seasonal
effects, natural calamities and disasters, deadline escalations
[3], and so on, are also forcing organizations to change
their processes. For example, governmental and insurance
organizations reduce the fraction of cases being checked when
there is too much of work in the pipeline. As another example,
in a disaster, hospitals, and banks change their operating
procedures. It is evident that the economic success of an
organization is more and more dependent on its ability to
react and adapt to changes in its operating environment.
Therefore, flexibility and change have been studied in-depth
in the context of business process management (BPM). For

Manuscript received May 15, 2012; revised June 24, 2013; accepted
August 2, 2013.

R. P. J. C. Bose, W. M. P. van der Aalst, and M. Pechenizkiy
are with the Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven 5600 MB, The Nether-
lands (e-mail: j.c.b.rantham.prabhakara@tue.nl; w.m.p.v.d.aalst@tue.nl;
m.pechenizkiy@tue.nl).

I. Žliobaitė is with the Department of Information and Computer Science,
Aalto University, Aalto FI-00076, Finland (e-mail: indre.zliobaite@aalto.fi).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2013.2278313

example, process-aware information systems (PAISs) [4] have
been extended to be able to flexibly adapt to changes in the
process. State-of-the-art workflow management (WFM) and
BPM systems [5] provide such flexibility, e.g., we can easily
release a new version of a process. In addition, in processes
not driven by WFM/BPM systems (such as the usage of
medical systems) there is even more flexibility as processes
are controlled by people rather than information systems.

Many of today’s information systems are recording an
abundance of event logs. Process mining is a relatively young
research discipline aimed at discovering, monitoring, and
improving real processes by extracting knowledge from event
logs [6] (Section II-A for a brief introduction). Although
flexibility and change have been studied in-depth in the context
of WFM and BPM systems, contemporary process mining
techniques assume the processes to be in a steady state. For
example, when discovering a process model from event logs,
it is assumed that the process at the beginning of the recorded
period is the same as the process at the end of the recorded
period. Using ProM,1 we have analyzed processes in more
than 100 organizations. These practical experiences show that
it is very unrealistic to assume that the process being studied
is in a steady state. As mentioned earlier, processes may
change to adapt to changing circumstances. Concept drift
refers to the situation in which the process is changing while
being analyzed. There is a need for techniques that deal with
such second-order dynamics. Analyzing such changes is of
utmost importance when supporting or improving operational
processes and to obtain an accurate insight on process execu-
tions at any instant of time. When dealing with concept drifts
in process mining, the following three main challenges emerge.

1) Change point detection: The first and most fundamental
problem is to detect concept drift in processes, i.e., to
detect that a process change has taken place. If so, the
next step is to identify the time periods at which changes
have taken place. For example, by analyzing an event log
from an organization (deploying seasonal processes), we
should be able to detect that process changes happen and
that the changes happen at the onset of a season.

2) Change localization and characterization: Once a point
of change has been identified, the next step is to charac-
terize the nature of change, and identify the region(s) of
change (localization) in a process. Uncovering the nature
of change is a challenging problem that involves both
the identification of change perspective (e.g., control
flow, data, resource, sudden, gradual, and so on) and the
identification of the exact change itself. For instance, in
the example of a seasonal process, the change could be

1See www.processmining.org for more information.

2162-237X © 2013 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

X X

Change
Point

Detection

Change
Localization and
Characterization

Change
Process
Discovery

Online
Analysis

Offline
Analysis

Control-flow

Data

Resources

Fig. 1. Different dimensions of concept drift analysis in process mining.

that more resources are deployed or that special offers
are provided during holiday seasons.

3) Change process discovery: Having identified, localized,
and characterized the changes, it is necessary to put all of
these in perspective. There is a need for techniques/tools
that exploit and relate these discoveries. Unraveling the
evolution of a process should result in the discovery of
the change process describing the second-order dynam-
ics. For instance, in the example of a seasonal process,
we could identify that the process recurs every season.
In addition, we can show an animation on how the
process evolved over a period with annotations showing
several perspectives such as the performance metrics
(service levels, throughput time, and so on) of a process
at different instances of time.

We can differentiate between two broad classes of dealing
with concept drifts when analyzing event logs (Fig. 1).

1) Offline analysis: This refers to the scenario where the
presence of changes or the occurrence of drifts need
not be uncovered in a real time. This is appropriate in
cases where the detection of changes is mostly used
in postmortem analysis, the results of which can be
considered when designing/improving processes for later
deployment. For example, offline concept drift analysis
can be used to better deal with seasonal effects (hiring
less staff in summer or skipping checks in the weeks
before Christmas).

2) Online analysis: This refers to the scenario where
changes need to be discovered in near real time. This
is appropriate in cases where an organization would be
more interested in knowing a change in the behavior of
their customers or a change in demand as and when it is
happening. Such real-time triggers (alarms) will enable
organizations to take quick remedial actions and avoid
any repercussions.

In this paper, we focus on two of the challenges: 1) change
(point) detection and change localization and 2) characteriza-
tion in an offline setting (Fig. 1). We define different features
and propose a framework for dealing with these two problems
from a control-flow perspective. Initially, we show the promise
of the techniques proposed in this paper on a synthetic log and
later evaluate them on a real-life case study from a large Dutch
municipality.

The rest of this paper is organized as follows. Section II pro-
vides background on process mining and concept drifts in data

mining. Related work is presented in Section III. Section IV
describes the various aspects and nature of change, whereas
Section V presents the basic idea for change detection in
event logs. Section VI introduces various features that capture
the characteristics of event logs. Section VII illustrates the
significance of statistical hypothesis tests for detecting drifts.
Section VIII presents the framework for dealing with concept
drifts in process mining, whereas Section IX presents the
realization of the proposed approaches in the ProM framework.
Section X describes the effectiveness of the features and the
techniques proposed in this paper on a synthetic log as well as
a real-life case study. Finally, this paper is summarized with
a conclusion and an outlook on some of the open research
questions in Section XI.

II. BACKGROUND

In this section, we discuss the basic concepts in process
mining and concept drifts in data mining/machine learning.

A. Process Mining

Process mining serves a bridge between data mining and
business process modeling [6]. Business processes leave trails
in a variety of data sources (e.g., audit trails, databases, and
transaction logs). Process mining aims at discovering, moni-
toring, and improving real processes by extracting knowledge
from event logs recorded by a variety of systems (ranging from
sensor networks to enterprise information systems). The start-
ing point for process mining is an event log, which is a collec-
tion of events. We assume that events can be related to process
instances (often called cases) and are described by some activ-
ity name. The events within a process instance are ordered.
Therefore, a process instance is often represented as a trace
over a set of activities. In addition, events can have attributes
such as timestamps, associated resources (e.g., the person exe-
cuting the activity), transactional information (e.g., start, com-
plete, suspend, and so on), and data attributes (e.g., amount or
type of customer). For a more formal definition of event logs
used in process mining, the reader is referred to [6]. Fig. 2
shows a fragment of an example log. Event logs like in Fig. 2
are completely standard in the process mining community and
event log formats such as MXML [7] and XES [8] are used.

The topics in process mining can be broadly classified
into three categories: 1) discovery; 2) conformance; and
3) enhancement [6]. Process discovery deals with the discovery
of models from event logs. These models may describe control
flow, organizational aspects, time aspects, and so on. For
example, there are dozens of techniques that automatically
construct process models (e.g., Petri nets or BPMN mod-
els) from event logs [6]. Fig. 2 shows the basic idea of
process discovery. An event log containing detailed infor-
mation about events is transformed into a multiset of traces
L = [abcdjkln,aefjkmn,abgchdjkln, . . .]. Process
discovery techniques are able to discover process models such
as the Petri net shown in Fig. 2. Conformance deals with
comparing an a priori process model with the observed behav-
ior as recorded in the log and aims at detecting inconsisten-
cies/deviations between a process model and its corresponding
execution log. In other words, it checks for any violation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BOSE et al.: DEALING WITH CONCEPT DRIFTS 3

Fig. 2. Process discovery aims to learn a process model (in this case a Petri net) from event logs. An event log consists of events related to cases and
referring to activities. To discover control flow, traces are projected onto activity names.

between what was expected to happen and what actually has
happened. Enhancement deals with extending or improving
an existing model based on information about the process
execution in an event log. For example, annotating a process
model with performance data to show bottlenecks, throughput
times, and so on.

Being a relatively young research discipline, several process
mining challenges remain to be addressed. The process mining
manifesto [9] lists 11 challenges. The fourth challenge is
dealing with concept drift and, thus far, a little work has been
done on this highly relevant topic [10], [11].

B. Concept Drift

Concept drift [12] in machine learning and data mining
refers to situations when the relation between the input data

and the target variable, which the model is trying to predict,
changes over time in unforeseen ways. Therefore, the accuracy
of the predictions may degrade over time. To prevent that,
predictive models need to be able to adapt online, i.e., to
update themselves regularly with new data. The setting is
typically looped over an infinite data stream as follows:
1) receive new data; 2) make a prediction; 3) receive feedback
(the true target value); and 4) update the predictive model.
While operating under such circumstances, predictive models
are required: 1) to react to concept drift (and adapt if needed)
as soon as possible; 2) to distinguish drifts from once-off noise
and adapt to changes, but be robust to noise; and 3) to operate
in less than data arrival time and use limited memory for
storage. In this setting, many adaptive algorithms have been
developed (e.g., overviews [13], [14]).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Concept drift is a relatively young research topic that
has gained popularity in data mining and machine learning
communities in the last 10 years. Concept drift research
primarily has been focusing on two directions: 1) how to detect
drifts (changes) online (e.g., [15]–[20]) and 2) how to keep
predictive models up to date (e.g., [21]–[23]). Concept drift
has been shown to be important in many applications (e.g.,
[24]–[26]). The basis for drift detection could be a raw data
stream, a stream of prediction errors, and, more rarely, a stream
of predictions or a stream of updated model parameters. Two
types of concept drift detection approaches have been used:
monitoring evolution of a stream [15], [17] or comparing data
distributions in two time windows [16], [18]. The cumulative
sum (CUSUM) approach [27] is a representative sequential
analysis technique for change detection, different extensions
to which have been proposed. One notable example is com-
putational intelligence-based CUSUM or CI-CUSUM [19]
that aims to detect a nonstationarity condition by monitoring
a multidimensional vector, i.e., multiple features. Adaptive
windowing [16] is a representative approach for online change
detection using an adaptive size sliding detection window.
In this paper, we consider offline change detection and its
localization and therefore focus on studying what features to
monitor and how to identify when these characteristics change.

III. RELATED WORK

Over the last two decades many researchers have been
working on process flexibility, e.g., making workflow systems
adaptive. In [28] and [29] collections of typical change patterns
are described. In [30] and [31] extensive taxonomies of the
various flexibility approaches and mechanisms are provided.
Ploesser et al. [32] have classified business process changes
into three broad categories: 1) sudden; 2) anticipatory; and
3) evolutionary. This classification is used in this paper, but
now in the context of event logs.

Despite the many publications on flexibility, most process
mining techniques assume a process to be in a steady state.
A notable exception is the approach in [33]. This approach
uses process mining to provide an aggregated overview of all
changes that have happened so far. This approach, however,
assumes that change logs are available, i.e., modifications of
the workflow model are recorded. At this point of time, very
few information systems provide such change logs. Therefore,
this paper focuses on concept drift in process mining assuming
only an event log as input.

The topic of concept drift is well studied in various branches
of the data mining and machine learning community. Concept
drift has been studied in both supervised and unsupervised set-
tings and has been shown to be important in many applications
[12], [14], [25], [26], [34]–[37]. The problem of concept drift,
however, has not been studied in the process mining setting.
Unlike in data mining and machine learning, where concept
drift focuses on changes in simple structures such as variables,
concept drift in process mining deals with changes to com-
plex artifacts such as process models describing concurrency,
choices, loops, and cancelation. Although experiences from
data mining and machine learning can be used to investigate

concept drift in process mining, the complexity of process
models and the nature of process change pose new challenges.
This paper extends the work presented in [10]. In this extended
paper, we introduce the topic of concept drift in process mining
and present the basic idea and the features capturing the
characteristics of traces in an event log in a more rigorous
manner. In addition, this extended paper provides a generic
framework for handling concept drifts in process mining and
presents details on the realization of the approach in the ProM
framework. Furthermore, this paper reports new experimental
results of the proposed approach. More specifically, in this
extended paper, we study the influence of population size on
change point detection and the applicability of the approach in
dealing with gradual drifts. In addition, we present the results
of applying the approach on a real-life case study from a large
Dutch municipality.

Recently, Carmona and Gavaldà [11] have proposed an
online technique for detecting process changes. They first
created an abstract representation of the process in the form
of polyhedra using the prefixes of some initial traces in the
event log. Subsequent traces are sampled and assessed whether
they lie within the polyhedra or not. If a sample lies within
the polyhedra, it is considered to be from the same process.
If significant number of samples lies outside the polyhedra,
a process change is said to be detected. This work differs
from our approach in several ways: 1) this approach constructs
an abstract representation of a process unlike ours where
we consider features characterizing the traces and 2) this
technique is applicable only for change detection whereas our
framework is applicable for both change (point) detection and
change localization. Furthermore, the tool support provided
by the authors has some limitations in its applicability. The
tool does not detect change points and does not work on
logs with multiple process changes, i.e., it does not detect
the presence/absence of multiple changes and does not report
when (the trace index) process changes have happened. The
tool just reports that a change exists and terminates (if changes
exist) and does not terminate if no changes exist. In contrast,
our tool can handle multiple process changes and can detect
both the presence of and the points of change in addition to
being able to assist in change localization.

IV. CHARACTERIZATION OF CHANGES

IN BUSINESS PROCESSES

In this section, we discuss the various aspects of
process change. Initially, we describe change perspectives
(control flow, data, and resource). Then, the different types of
drift (sudden, gradual, recurring, periodic, and incremental)
are discussed.

A. Perspectives of Change

There are three important perspectives in the context of
business processes: 1) control flow; 2) data; and 3) resource.
One or more of these perspectives may change over time.

1) Control flow/behavioral perspective: This class of
changes deals with the behavioral and structural changes
in a process model. Just like the design patterns in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BOSE et al.: DEALING WITH CONCEPT DRIFTS 5

Fig. 3. Different types of drifts. x-axis: time. y-axis: process variants. Shaded rectangles: process instances. (a) Sudden drift. (b) Gradual drift. (c) Recurring
drift. (d) Incremental drift.

software engineering, there exist change patterns cap-
turing the common control-flow changes [29]. Control-
flow changes can be classified into operations such
as insertion, deletion, substitution, and reordering of
process fragments. For example, an organization which
used to collect a fee after processing and acceptance of
an application can now change their process to enforce
payment of that fee before processing an application.
Here, the reordering change pattern had been applied
on the payment and the application processing process
fragments. As another example, with the addition of
new product offerings, a choice construct is inserted
into the product development process of an organization.
In the context of PAISs, various control-flow change
patterns have been proposed in [28], [29]. Most of these
control-flow change patterns are applicable to traditional
information/workflow systems as well.

Sometimes, the control-flow structure of a process
model can remain intact but the behavioral aspects of
a model change. For example, consider an insurance
agency that classifies claims as high or low depending
on the amount claimed. An insurance claim of e1000
which would have been classified as high last year is
categorized as a low insurance claim this year because
of the organization’s decision to increase the claim
limit. The structure of the process remains intact but
the routing of cases changes.

2) Data perspective: This class of changes refer to the
changes in the production and consumption of data and
the effect of data on the routing of cases. For example,
it may no longer be required to have a particular
document when approving a claim.

3) Resource perspective: This class deals with the changes
in resources, their roles, and organizational structure,
and their influence on the execution of a process. For
example, there could have been a change pertaining
to who executes an activity. Roles may change and
people may change roles. As another example, certain
execution paths in a process could be enabled (disabled)
upon the availability (nonavailability) of resources.
Furthermore, resources tend to work in a particular
manner and such working patterns may change over
time, e.g., a resource can have a tendency of executing
a set of parallel activities in a specific sequential order.
Such working patterns could be more prominent when
only few resources are available; the addition of new
resources can remove this bias.

B. Nature of Drifts

With the duration for which a change is active, we can
classify changes into momentary and permanent. Momentary
changes are short lived and affect only a very few cases,
whereas permanent changes are persistent and stay for a
while [31]. In this paper, we focus on permanent changes
as momentary changes often cannot be discovered because
of insufficient data.2 Momentary changes correspond to the
notion of outliers/noise in data mining. Changes are perceived
to induce a drift in the concept (process behavior). As shown
in Fig. 3, we identify four classes of drifts.

1) Sudden drift: This corresponds to a substitution of an
existing process M1 with a new process M2, as shown
in Fig. 3(a). M1 ceases to exist from the moment
of substitution. In other words, all cases (process
instances) from the instant of substitution emanate from
M2. This class of drifts is typically seen in scenarios
such as emergencies, crisis situations, and change of
law. As an example, a new regulation by the finance
ministry of India mandates all banks to procure and
report the customer’s personal account number in their
transactions.

2) Gradual drift: This refers to the scenario, as shown in
Fig. 3(b) where a current process M1 is replaced with
a new process M2. Unlike the sudden drift, here both
processes coexist for some time with M1 discontinued
gradually. For example, a supply chain organization
might introduce a new delivery process. This process is,
however, applicable only for orders taken henceforth. All
previous orders still have to follow the former delivery
process.

3) Recurring drift: This corresponds to the scenario where
a set of processes reappear after some time (sub-
stituted back and forth), as shown in Fig. 3(c). It
is quite natural to observe such a phenomenon with
processes having a seasonal influence. For example, a
travel agency might deploy a different process to attract
customers during Christmas period. The recurrence of
processes may be periodic or nonperiodic. An example
of a nonperiodic recurrence is the deployment of a
process subjected to market conditions. The point of
deployment and the duration of deployment are both
dependent on external factors (here, the market condi-
tions). Periodic drifts may be caused by seasonal effects,

2To analyze momentary changes we can also use standard conformance
checking techniques to discover deviations from some normative model [38].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

e.g., during the summer holidays there tends to be
less demand and fewer resources thus influencing the
process.

4) Incremental drift: This refers to the scenario where a
substitution of process M1 with MN is done via smaller
incremental changes, as shown in Fig. 3(d). This class of
drifts is more pronounced in organizations adopting an
agile BPM methodology and in processes undergoing
sequences of quality improvements (most total quality
management) initiatives are examples of incremental
change [39]).

Recurring and incremental drifts in Fig. 3 are shown as discrete
sudden changes. These two types of concept drift, however,
can also be gradual. Similar categorization of drifts have
been proposed in [40] in the context of machine learning.
Drifts in [40] are further classified based on the severity
of change into severe (and intersected). The categories of
severity, as defined in [40], are too coarse to be applied to
business process changes. Nonetheless, the degree of severity
in process changes and their impact on dealing with concept
drifts is an interesting topic for further research. In the rest, we
propose approaches to detect potential control-flow changes in
a process manifested as sudden/gradual drifts over a period.
Detecting drifts in the other perspectives are beyond the scope
of this paper. In addition, as already shown in Fig. 1, we focus
on offline concept drift analysis (although our techniques can
easily be adapted to the online setting). In practice, a mixture
of any or all of the drifts may happen.

V. BASIC IDEA OF DRIFT DETECTION IN EVENT LOGS

In this section, we present the basic idea for the detection
of changes by analyzing event logs. Initially, we introduce the
notations used in this paper.

1) A is the set of activities. A+ is the set of all nonempty
finite sequences of activities from A.

2) A process instance (i.e., case) is described as a trace
over A, i.e., a finite sequence of activities. Examples of
traces are abcd and abbbad.

3) Let t = t(1)t(2)t(3) . . . t(n) ∈ A+ be a trace over A.
|t| = n is the length of the trace t. t(k) is the kth activity
in the trace and t(i, j) is the continuous subsequence of
t that starts at position i and ends at position j . ti =
t(i, |t|) represents the suffix of t that begins at position
i .

4) An event log, L, corresponds to a multiset (or bag) of
traces from A+. For example, L = [abcd, abcd, abbbad]
is a log consisting of three cases. Two cases follow trace
abcd and one case follows trace abbbad.

5) N, N0, and R
+
0 are the set of all natural numbers, the

set of all natural numbers including zero, and the set of
all positive real numbers including zero, respectively.

We can consider an event log L as a time series of traces
(traces ordered based on the timestamp of the first event).
Fig. 4 shows such a perspective on an event log along with
change points in the sudden drift scenario. The basic premise
in handling concept drifts is that the characteristics of the
traces before the change point differ from the characteristics

Fig. 4. Event log visualized as a time series of traces along with change
points. The basic premise of change (point) detection is that characteristic
differences exist in the traces before and after the change.

of the traces after the change point. The problem of change
point detection is then to identify the points in time where the
process has changed, if any. Change point detection involves
two primary steps:

1) capturing the characteristics of the traces;
2) identifying when the characteristics change.

We refer to the former step as feature extraction and the latter
step as drift detection. The characteristics of the traces can
either be defined for each trace separately or can be done at a
sublog level. An event log can be split into sublogs of s traces
(s ∈ N is the split size). We can consider either overlapping or
nonoverlapping sliding windows when creating such sublogs.
Fig. 4 shows the scenario where two subsequent sublogs do
not overlap. In this case, we have k = � n

s � sublogs for an event
log of n traces. Thus, the logs processed to determine the char-
acteristics of traces can be observed as a data stream of feature
values where statistical tests can be used to detect changes.

As mentioned earlier, dealing with concept drifts in process
mining involves two primary steps. First, we need to capture
the characteristics of traces; we propose a few feature sets
that address this in Section VI. Second, we need to identify
when these characteristics change; we look at techniques that
address this in Section VII.

VI. FEATURE EXTRACTION

Event logs are characterized by the relationships between
activities. Dependencies between activities in an event log can
be captured and expressed using the follows (or precedes)
relationship, also referred to as causal footprints. For any pair
of activities a, b ∈ A, and a trace t = t(1)t(2)t(3) . . . t(n) ∈
A+, we say b follows a if and only if for all 1 ≤ i ≤ n
such that t(i) = a there exists a j such that i < j ≤ n
and t(j) = b. In temporal logic notation: �(a ⇒ (♦b)). We
say a precedes b if and only if for all 1 ≤ j ≤ n such that
t(j) = b there exists an i such that 1 ≤ i < j and t(i) = a,
i.e., ¬aWb where W is the weak until in linear temporal
logic notation. The follows and precedes relationships can be
lifted from traces to logs. If b follows a in all the traces
in an event log, then we say that b always follows a. If b
follows a only in some subset of the traces, then we say that
b sometimes follows a. If b does not follow a in all traces,
then we say that b never follows a. Consider an event log
L = [acaebfh, ahijebd, aeghijk] containing three traces defined
over A ={a, b, c, d, e, f, g, h, i, j, k}. The following relations
hold in L: e always follows a, e never follows b, and b
sometimes follows a. Fig. 5(a) shows the relationship between

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BOSE et al.: DEALING WITH CONCEPT DRIFTS 7

Fig. 5. Feature extraction (a) causal footprint matrix for all activity pairs
(b) relation type count (RC) and (c) relation entropy (RE) feature values. A:
always follows, N : never follows, and S: sometimes follows.

every pair of activities in A. The value in a cell (i, j) is either
A, S, or N corresponding to the relation whether the activity
represented by column j always, sometimes, or never follows
the activity represented by row i , respectively.

The variants of precedes relation can be defined along sim-
ilar lines. The follows/precedes relationship is rich enough to
reveal many control-flow changes in a process. We exploit this
relationship and define various features for change detection.

We distinguish between two classes of features: 1) global
and 2) local features. Global features are defined over an event
log, whereas local features can be defined at a trace level.
With the follows (precedes) relation, we propose two global
features: 1) relation type count (RC) and 2) relation entropy
(RE), and two local features: 1) window count (WC) and 2)
J measure. These features are defined as follows.

1) RC: The RC with respect to the follows (precedes) rela-
tion is a function, f LRC: A → N0 ×N0×N0, defined over
the set of activities A. f LRC of an activity, x ∈ A, with
respect to the follows (precedes) relation over an event
log L is the triple 〈cA, cS, cN 〉 where cA, cS, and cN

are the number of activities in A that always, sometimes,
and never follows (precedes) x, respectively, in the event
log L. For the event log L mentioned above, f LRC(a) =
〈2, 9, 0〉 because e and h always follows a while all
other activities in A \ {e, h} sometimes follows a.
f LRC(i) = 〈1, 4, 6〉 because only j always follows i; b,
d, e, and k sometimes follows i while a, c, f, g, h, and
i never follows i. Fig. 5(b) shows the RCs for all the
activities in A [the value in a row corresponds to the
RCs of the activity represented by that row in Fig. 5(a)].

For an event log containing |A| activities, this results
in a feature vector of dimension 3 × |A| (if either
the follows or the precedes relation is considered) or
2×3×|A| (if both the follows and the precedes relations
are considered).

2) RE: The RE with respect to the follows (precedes)
relation is a function, f LRE: A → R

+
0 , defined over the

Fig. 6. WC values for the relation b follows a for the different traces in the
event log.

set of activities. f LRE of an activity, x ∈ A with respect
to the follows (precedes) relation is the entropy of the
RC metric. In other words, f LRE(x) = −pA log2(pA) −
pS log2(pS) − pN log2(pN) where pA = cA/|A|, pS =
cS/|A|, and pN = cN /|A| and 〈cA, cS, cN 〉 = f LRC(x).

For the above example event log L, f LRE(a) = 0.684
(corresponding to f LRC(a) = 〈2, 9, 0〉) and f LRE(i) =
1.322 (corresponding to f LRC(i) = 〈1, 4, 6〉). Fig. 5(c)
shows the RE for all the activities in A [the value in
a row corresponds to the RE of the activity represented
by that row in Fig. 5(a)].

For an event log containing |A| activities, this results
in a feature vector of dimension |A| or 2 × |A| depend-
ing on whether either or both of the follows/precedes
relations are considered.

3) WC: Given a window of size l ∈ N, the WC with
respect to follows (precedes) relation is a function, f l,t

WC:
A×A → N0, defined over the set of activity pairs. Given
a trace t and a window of size l, let Sl,t(a) be the bag of
all subsequences t(i, i + l − 1), such that t(i) = a.3 Let
F l,t(a, b) = [s ∈ Sl,t(a) | ∃1<k≤|s| s(k) = b], i.e., the
bag of subsequences in t starting with a and followed by
b within a window of length l. The WC of the relation
b follows a, f l,t

WC(a, b) = |F l,t(a, b)|.
Fig. 6 shows the WC values for the relation b follows

a in the event log L using a window of length four.
4) J measure: Smyth and Goodman [41] have proposed a

metric called J measure based on [42] to quantify the
information content (goodness) of a rule. We adopt this
metric as a feature to characterize the significance of
relationship between activities. The basis lies in the fact
that we can consider the relation b follows a as a rule: if
activity a occurs, then activity b will probably occur. The
J measure with respect to follows (precedes) relation
is a function f l,t

J : A×A → R
+ defined over the set of

activity pairs and a given window of length l ∈ N. Let
pt(a) and pt(b) are the probabilities of occurrence of
activities a and b, respectively, in a trace t. Let pl,t(a, b)
be the probability that b follows a within a window of
length l, i.e., pl,t(a, b) = |F l,t(a, b)|/|Sl,t(a)|. Then,
the J measure for a window of length l is defined as
f l,t
J (a, b) = pt(a)CEl,t(a, b) where CEl,t(a, b) is the

cross entropy of a and b (b follows a within a window
of length l) and is defined as4

CEl,t(a, b) = pl,t(a, b) log2

(
pl,t(a, b)

pt(b)

)

3If i + l − 1 > |t|, then t(i, i + l − 1) = ti , i.e., the suffix of the trace t
starting at i .

4log2(0/x) and log2(x/0) for any x ∈ R
+
0 is taken as 0.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 7. Basic idea of detecting drifts using hypothesis tests. The dataset of
feature values is considered as a time series for hypothesis tests. P1 and P2
are two populations of size w.

+ (1 − pl,t(a, b)) log2

(
1 − pl,t(a, b)

1 − pt(b)

)
.

The J measure of a relation, b follows a, captures
the dissimilarity between the a priori and a posteriori
beliefs about b. In other words, it measures the
difference between the a priori distribution of b (i.e.,
probability that b occurs in a trace and the probability
that b does not occur), and the posteriori distribution
of b (i.e., probability that b occurs in a trace given that
a occurred and the probability that b does not occur in
a trace given that a occurred).

The J measures for the relation b follows a using a
window of length four for the three traces in the event
log L in our previous example are 0.147, 0.032, and 0,
respectively.

Normally, the window size is chosen to be the average trace
length, i.e., the average number of events in a process instance,
if no a priori information about the process is known. In case,
we have some a priori information about the process, we
can use the process characteristics to choose an appropriate
window size. Having defined the features, we next look at the
second step in change point detection, i.e., drift detection.

VII. HYPOTHESIS TESTS FOR DRIFT DETECTION

An event log can be transformed into a data stream/sequence
D by choosing one of the feature sets defined in the previous
section. The dataset D of feature values can be considered as
a time series of m values, as shown in Fig. 7. Each di ∈ D
corresponds to the feature value(s) for a trace (or sublog)
and can be a scalar or a vector (depending on the choice
of feature).5 Comparing with Fig. 4, m = n or m = k
depending on whether the feature values are computed for each
trace or for each sublog, respectively. As mentioned earlier,
we expect a characteristic difference in the manifestation of
feature values in the traces (sublogs) before and after the
change points with the difference being more pronounced at
the boundaries. To detect this, we can consider a series of
successive populations of values (of size w) and investigate
if there is a significant difference between two subsequent
populations. The premise is that differences are expected to be
perceived at change points provided appropriate characteristics
of the change are captured as features. A moving window
of size w is used to generate the populations. Fig. 7 shows
a scenario where two populations P1 = 〈d1, d2, . . . , dw〉

5The RE, WC, and J measure feature sets proposed in Section VI generate
univariate (scalar) and multivariate (vector) data depending on whether we
consider an individual activity/activity pair or a set of activities/activity pairs,
respectively. The RC feature set always generates multivariate data.

and P2 = 〈dw+1, dw+2, . . . , d2w〉 of size w are consid-
ered. In the next iteration, the populations correspond to
P1 = 〈d2, d3, . . . , dw+1〉 and P2 = 〈dw+2, dw+3, . . . , d2w+1〉.
Given a dataset of m values, the number of population pairs
(iterations) will be m − 2w + 1.

We propose the use of statistical hypothesis testing
to discover these change points. Hypothesis testing is a
procedure in which a hypothesis is evaluated on a sample
data. One of the important uses of hypothesis testing is to
evaluate and compare groups of data. Numerous varieties of
hypothesis tests exist [43]. The choice of a particular test is
largely dependent on the nature of the data and the objectives
of an experiment. For example, hypothesis tests can be
classified into parametric and nonparametric tests. Parametric
tests assume that the data have a particular distribution, e.g.,
normal, whereas the nonparametric tests do not make any
assumption with regards to the data distribution. Because we
do not know the a priori distribution of the feature values in
an event log, we consider only nonparametric tests. Another
perspective of classification is based on the number of
samples (populations) on which the hypothesis is defined. We
can classify the hypothesis tests into 1) one-sample; 2) two-
sample; and 3) multisample tests. Because we need to analyze
two populations for detecting drifts, we are interested in two-
sample hypothesis tests. Another classification of hypothesis
tests is concerned with the dimensionality of each data
element in a sample. Tests dealing with scalar data elements
are called univariate tests while those dealing with vector
data elements are called multivariate tests. If only a particular
activity or activity pair is considered, then every data item
di ∈ D is a scalar value corresponding to the trace/sublog i . If
we, however, consider sets of activities or activity pairs, then
each data item is a vector. Therefore, we need to consider
both univariate and multivariate hypothesis tests.

We will use the univariate two-sample Kolmogorov–
Smirnov test (KS test) and Mann–Whitney U test (MW test)
as hypothesis tests for univariate data, and the two sample
Hotelling T 2 test for multivariate data. The KS test evaluates
the hypothesis “Do the two independent samples represent
two different cumulative frequency distributions?” whereas the
MW test evaluates the hypothesis “Do the two independent
samples have different distributions with respect to the rank
ordering of the values?”. The multivariate Hotelling T 2 test is
a generalization of the t-test and evaluates the hypothesis “Do
the two samples have the same mean pattern?”. All of these
tests yield a significance probability assessing the validity of
the hypothesis on the samples. We refer [43] for a classic
introduction to various hypothesis tests.

VIII. FRAMEWORK

We propose the framework shown in Fig. 8 for analyzing
concept drifts in process mining. The framework identifies the
following steps:

1) Feature extraction and selection: This step pertains in
defining the characteristics of the traces in an event log.
In this paper, we have defined four features that charac-
terize the control-flow perspective of process instances

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BOSE et al.: DEALING WITH CONCEPT DRIFTS 9

Fig. 8. Framework for handling concept drifts in process mining.

in an event log. Depending on the focus of analysis, we
may define additional features, e.g., if we are interested
in analyzing changes in organizational/resource perspec-
tive, we may consider features derived from social
networks as a means of characterizing the event log.
In addition to feature extraction, this step also involves
feature selection. Feature selection is important when the
number of features extracted is large. We may consider
dimensionality reduction techniques [44], [45] such as
PCA [46] or random projection [47] to deal with high
dimensionality.

2) Generate populations: An event log can be transformed
into a data stream based on the features selected in
the previous step. This step deals with defining the
sample populations for studying the changes in the
characteristics of traces. Different criteria/scenarios may
be considered for generating these populations from
the data stream. In Section VII, we have considered
nonoverlapping, continuous, and fixed-size windows
for defining the populations. We may also consider,
for example, noncontinuous windows (there is a gap
between two populations), adaptive windows (windows
can be of different lengths) [16], and so on, which are
more appropriate for dealing with gradual and recurring
drifts.

3) Compare populations: Once the sample populations are
generated, the next step is to analyze these populations
for any change in characteristics. In this paper, we advo-
cate the use of statistical hypothesis tests for comparing
populations. The null hypothesis in statistical tests states
that distributions (or means, or standard deviations) of
the two sample populations are equal. Depending on
desired assumptions and the focus of analysis, different
statistical tests can be used.

4) Interactive visualization: The results of comparative
studies on the populations of trace characteristics can
be intuitively presented to an analyst. For example, the
significance probabilities of the hypothesis tests can be
visualized as a drift plot. Troughs in such a drift plot
signify a change in the significance probability thereby
implying a change in the characteristics of traces.

5) Analyze changes: Visualization techniques such as the
drift plot can assist in identifying the change points.

Fig. 9. Visualization of the drift plot in the concept drift plug-in in ProM.

Having identified that a change had taken place, this
step deals with techniques that assist an analyst in char-
acterizing and localizing the change and in discovering
the change process.

The framework can be used for designing new change detec-
tion approaches.

IX. IMPLEMENTATION

The concepts presented in this paper have been realized
as the concept drift plug-in in the ProM6 framework. ProM
is a plug-able environment for process mining envisioned to
provide a common basis for all kinds of process mining tech-
niques ranging from importing, exporting, and filtering event
logs (process models) to analysis and visualization of results.
Over years, ProM has emerged to be the de facto standard for
process mining. The concept drift plug-in implements all of the
steps in the proposed framework and can be easily extended
with additional elements (e.g., new features can be easily
added). The plug-in supports visualization of the significance
probability for the hypothesis tests as a drift plot. Fig. 9 shows
a drift plot from the plug-in.

X. EXPERIMENTAL RESULTS AND DISCUSSION

Now, we put the ideas proposed for handling concept
drifts in practice. Initially, we illustrate the effectiveness of
the proposed approaches using a synthetic example of an
insurance claim process and later discuss the results from a
real-life case study in a large Dutch municipality.

A. Synthetic Log-Insurance Claim Process

This process corresponds to the handling of health insurance
claims in a travel agency. Upon registration of a claim, a
general questionnaire is sent to the claimant. In parallel, a
registered claim is classified as high or low. For low claims,
two independent tasks: 1) check insurance and 2) check
medical history need to be executed. For high claims, three
tasks need to be executed: 1) check insurance; 2) check
medical history; and 3) contact doctor/hospital for verification.
If one of the checks shows that the claim is not valid, then
the claim is rejected; otherwise, it is accepted. A cheque and
acceptance decision letter is prepared in cases where a claim is
accepted while a rejection decision letter is created for rejected
claims. In both cases, a notification is sent to the claimant.

6See www.processmining.org for more information and to download ProM.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 10. Variants of an insurance claim process of a travel agency represented
in YAWL notation. Dashed rectangles: regions of change from its previous
model. (a) Model 1. (b) Model 2. (c) Model 3. (d) Model 4. (e) Model 5.

Three modes of notification are supported by: 1) email;
2) telephone (fax); and 3) postal mail. The case should be
archived upon notifying the claimant. This can be done with

or without the response for the questionnaire. The decision of
ignoring the questionnaire, however, can only be made after
a notification is sent. The case is closed upon completion of
archiving task.

Fig. 10 shows five variants of this process represented
in YAWL [48] notation. Dashed rectangles: a change has
been done in the process model with respect to its previous
variant. The changes can have various reasons. For example,
in Fig. 10(a), the different checks for high insurance claims are
modeled using a parallel (AND) construct. A claim, however,
can be rejected if any one of the checks fail. In such cases,
the time and resources spent on other checks go waste.
To optimize this process, the agency can decide to enforce
an order on these checks and proceed on checks only if
the previous check results are positive. In other words, the
process is modified with a knockout strategy [49] adopted for
the process fragment involving the different checks for high
insurance claims, as shown in Fig. 10(b). As another example,
the OR-construct pertaining to the sending of notification to
claimants in Fig. 10(c) has been modified to an exclusive-or
(XOR) construct in Fig. 10(d). The organization could have
taken a decision to reduce their workforce as a cost-cutting
measure. Because of the availability of limited resources,
they would like to minimize the redundancy of sending the
notification through different modes of communication and
restrict it to only one of the modes. Considering an event
log containing cases that belong to such a mix of process
variants, the objective of change point detection is to detect
when the processes have changed. In this section, we illustrate
the handling of concept drifts in the context of sudden and
gradual drifts. We have modeled each of these five process
variants in CPN tools [50] and simulated 1200 traces for each
model.

1) Sudden Drift Change (Point) Detection: To simulate the
sudden drift phenomenon, we created an event log L consisting
of 6000 traces by juxtaposing each set of the 1200 traces. The
event log contains 15 activities or event classes (i.e., |A| = 15)
and 58 783 events (which is the total number of events in the
log for all the traces). Given this event log L, our first objective
is to detect the four change points pertaining to these five
process variants, as shown in Fig. 11(a). Global features can
be applied only at the log level; to facilitate this, we have
split the log into 120 sublogs using a split size of 50 traces.
In this scenario, the four change points corresponding to the
five process variants are, as shown in Fig. 11(b). We have
computed the follows RC of all 15 activities thereby generating
a multivariate vector of 45 features for each sublog. We have
applied the Hotelling T 2 hypothesis test on this multivariate
dataset using a moving window population of size, w = 10.
For this hypothesis test, we have randomly chosen 12 of the
45 features with a 10-fold cross validation.7 Fig. 12(a) shows
the average significance probability of the Hotelling T 2 test
for the 10 folds on this feature set. The troughs in the plot
signify that there is a change in the distribution of the feature

7The random selection of a subset of features is primarily for two reasons:
1) to deal with the curse of dimensionality and 2) the changes being centered
around a few activities are prominently reflected only in those features
corresponding to these activities.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BOSE et al.: DEALING WITH CONCEPT DRIFTS 11

Fig. 11. Event log with traces from each of the five models juxtaposed. Also shown are change points between models both at the trace and sublog levels.
The event log is split into 120 sublogs, each containing 50 traces. (a) Trace level. (b) Sub-log level.

Fig. 12. (a) Significance probability of Hotelling T 2 test on relation counts. Average significance probability (over all activity pairs) of (b) KS test on J
measure and (c) MW test on J measure. The event log is split into sublogs of 50 traces each. x-axis: sublog index. y-axis: significance probability of the
test. Troughs: change points. Vertical grid lines: the actual (sudden) change points.

values in the log. In other words, they show that there is a drift
(change) in the concept, which here corresponds to the process.
It is interesting to observe that the troughs are observed around
indexes 24, 72, and 96 which are indeed the points of change
(remember that, we have split the log into 120 sublogs with
the change points at indexes 24, 48, 72, and 96). The change at
index 48 corresponding to the transition from M2 to M3 could
not be uncovered using this feature set because the RCs would
be alike for logs generated from these two process variants.

We have considered the J measure for each sublog and for
every pair of activities, a and b in A (b follows a within a
window of length l = 10). The univariate KS and the MW
tests using a population of size w = 10 are applied on the
J measure of each activity pair. Fig. 12(b) shows the average
significance probability of the KS test on all activity pairs,
whereas Fig. 12(c) shows the same for the MW test. We
can observe that significant troughs are formed at indexes
24, 48, 72, and 96 which correspond to the actual change
points. Unlike the RC feature, the J measure feature is able
to capture all the four changes in the models. This can be
attributed to the fact that the J measure uses the probability of
occurrence of activities and their relations. In M2, there could
be cases where all the modes of notification are skipped (XOR

construct). In M3 at least one of the modes, however, needs
to be executed (OR construct). This results in a difference in
the distribution of activity probabilities and their relationship
probabilities, which is elegantly captured by the J measure.
Our experiences showed that KS test is more robust than the
MW test. Henceforth, we report our results only using the
KS test.

We have considered the J measure for each trace separately
instead of at the sublog level. Each activity pair generates a
vector of dimension 6000 corresponding to the J measure
of that activity pair in each trace. The univariate KS test
using a population size of w = 400 is applied to the vector

Fig. 13. Average significance probability (over all activity pairs) of KS test
on the J measure and WC feature sets estimated for each trace. x-axis: trace
index. y-axis: significance probability of the test. Troughs: change points.
Vertical grid lines: actual (sudden) change points. (a) J-measure. (b) WC.

corresponding to each activity pair in A×A. Fig. 13(a) shows
the average significance probability of KS test on all activity
pairs, whereas Fig. 13(b) shows the average significance
probability of KS test on all activity pairs using the WC feature
set. We can observe that significant troughs are formed at
indexes 1200, 2400, 3600, and 4800. These are indeed the
points where the models have been changed.

Influence of Population Size: It is imperative to note that
the goodness of the results of hypothesis tests depends on
the population size. The statistical analysis assumes that each
population is independent. A good population size is largely
dependent on the application and the focus of analysis. To
study the influence of population size, we have considered the
J measure for every pair of activities and the univariate KS
test for change point detection. Fig. 14 shows the results for
varying sizes of the population. We observe a lot of noise
for small populations and the drift tends to be smooth as the
population size increases. This can be attributed to the fact
that as the population size increases (i.e., as we consider more
cases), the variability in the nature of cases reduces and attains

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 14. Average significance probability (over all activity pairs) for different population sizes of KS test on the J measure estimated over all activity pairs
in each trace. x-axis: trace index. y-axis: significance probability of the test. Troughs: change points. Vertical grid lines: actual (sudden) change points. (a) w
= 150, (b) w = 300, (c) w = 450, and (d) w = 600.

a stability, e.g., there can be a flux of low-insurance claims
initially and after a certain time the proportion stabilizes.

2) Sudden Drift Change Localization: Our second objective
in handling concept drifts is that of change localization. To
localize the changes (identify the regions of change), we need
to consider activity pairs individually or subsets of activity
pairs. For example, the change from M1 to M2 is localized
in the region pertaining to high insurance claim checks. We
expect characteristic changes in features pertaining to these
activities and other activities related to these activities. For
example, in M1, the activities High Medical History Check and
Contact Hospital always follow the activity Register whenever
a claim is classified as high. In contrast, in M2, these activities
need not always follow Register because both these activities
are skipped if High Insurance Check fails while Contact
Hospital is skipped if High Medical History Check fails.
During simulation, we have set the probability of success of
a check to 90%. We have considered the WC feature for
the activity relation Contact Hospital follows Register on a
window length of l = 10 in each trace separately. Fig. 15(a)
shows the significance probability of the univariate KS test
using a population size of w = 400 on this feature. We can
observe that one dominant trough is formed at index 1200
showing that there exists a change in the region between
Register and Contact Hospital. No subsequent changes with
respect to this activity pair can be noticed, which is indeed
the case in the sequence of models used.

As another example, we have considered the activity
Prepare Notification along with all the three Send Notifi-
cation activities. There exists a change pertaining to these
activities between models M2 and M3, M3 and M4, and
M4 and M5. More specifically, we have considered the WC
feature on the activity relations: Send Notification By Phone
follows Prepare Notification, Send Notification By email fol-
lows Prepare Notification, and Send Notification By Post
follows Prepare Notification. Fig. 15(b) shows the average
significance probability of the univariate KS tests using a
population size of w = 400 on the WC feature for various
modes of send notification follows prepare notification. We
observe three dominant troughs around indexes 2400, 3600,
and 4800 signifying the changes in the models. Certain false
alarms (minor troughs) can also be noticed in this plot.
One means of alleviating this is to consider only those alarms
with an average significance probability less than a thresh-
old, δ. Another means is to consider a larger population size.
In this fashion, by considering activities (and/or activity pairs)

of interest, we can localize the regions of change. Furthermore,
using this approach, we can obtain answers to diagnostic
questions such as Is there a change with respect to activity
a in the process at time period t?

The WC feature performs better in change localization
in comparison with the J measure. This is because the J
measure uses the probability of activities which can be affected
because of changes anywhere in the process irrespective of our
region of focus. For example, consider the J measure for the
relation Contact Hospital follows Register. The probability of
occurrence of both Register and Contact Hospital is affected
by the changes in the process model corresponding to the
sending of notifications as well, e.g., in M3 because all the
modes of send notification can be executed, the probability of
Contact Hospital in a trace is smaller than a corresponding
trace (Contact Hospital is executed) in M4 where only one
of the notifications is possible. Fig. 15(c) shows the signifi-
cance probability of the univariate KS test on the J measure
for the activity relation Contact Hospital follows Register,
whereas Fig. 15(d) shows the average significance probability
of the univariate KS tests on the J measure of various
Send Notification modes following Prepare Notification using
a population size of w = 400. Although the J measure
can identify changes, it has problems localizing the change
regions. Therefore, we recommend the use of WC feature for
change localization.

3) Gradual Drift Change (Point) Detection: Now, we assess
the accuracy of the proposed framework in handling gradual
drifts. Recall that in gradual drifts, one concept fades gradually
while the other takes over. This phenomenon of gradual
change can be modeled in many ways. In this paper, we
consider the scenario where the change is linear between
two sources, as shown in Fig. 16(a). In this figure, we
observe the fading of one concept M1 and the taking over
of another concept M2 happen linearly. Within this setup,
we can alter the extent to which the two concepts coexist.
For the insurance claim example, we generated two event
logs exhibiting gradual drifts by varying the duration of
change. In the first case, the process variants M1 and M2
coexist between trace indexes 1000 and 1400, the variants
M2 and M3 coexist between indexes 2200 and 2600, the
variants M3 and M4 coexist between indexes 3400 and
3800, and the variants M4 and M5 coexist between indexes
4600 and 5000, as shown in Fig. 16(b). The point of cross
over is still retained at indexes 1200, 2400, 3600, and
4800.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BOSE et al.: DEALING WITH CONCEPT DRIFTS 13

Fig. 15. (a) Significance probability of KS test for the relation, Contact Hospital follows Register using the WC feature. (b) Average significance probability
(over activity pairs) of KS test estimated for the various modes of Send Notification follows Prepare Notification relation using the WC feature. (c) Significance
probability of KS test for the relation, Contact Hospital follows Register using the J measure. (d) Average significance probability (over activity pairs) of KS
test estimated for the various modes of Send Notification follows Prepare Notification relation using the J measure. Troughs: change point with respect to
these activities. x-axis: trace index. y-axis: significance probability of the test.

Fig. 16. Experimental setup for gradual drifts. (a) Generic scenario of
linear gradual change between different process variants. (b) Linear gradual
change with an overlapping window of 400 instances between any two process
variants.

Fig. 17. Average significance probability (over all activity pairs) of KS test
on the J measure for linear gradual change with an overlapping window of
(a) 400 instances between any two process variants and (b) 900 instances
between any two process variants. Dashed vertical grid lines: actual onset of
gradual change. Corresponding solid vertical grid lines: actual end points of
gradual change.

Fig. 17(a) shows the average significance probability of the
univariate KS test over all activity pairs on the J measure using
a population of size 300. We can observe that the proposed
approach is able to detect the change points. It is, however,
noteworthy that the width of the troughs is wider (at the top)
in the gradual drift scenario when compared with the sudden
drift scenario [compare Figs. 14(b) and 17(a)] signifying an
earlier onset of change in the gradual drift phenomenon. We
generated another event log with a linear gradual drift but with
a longer duration of change. In this case, the process variants
M1 and M2 coexist between trace indexes 750 and 1650, the
variants M2 and M3 coexist between indexes 1950 and 2850,
the variants M3 and M4 coexist between indexes 3150 and
4050, and the variants M4 and M5 coexist between indexes
4350 and 5150. Fig. 17(b) shows the average significance
probability of the univariate KS test over all activity pairs on
the J measure using a population of size 450. Even in this
case, we can clearly identify the points and the duration of
change is captured as a much wider trough when compared
with the sudden drift scenario [compare Figs. 14(c) and 17(b)].

4) Gradual Drift Change Localization: Similar to sudden
drift change localization, we have considered the WC feature

Fig. 18. (a) Significance probability of KS test for the relation, Contact
Hospital follows Register using the WC feature. (b) Average significance
probability (over activity pairs) of KS test estimated for the various modes of
Send Notification follows Prepare Notification relation using the WC feature.

for the activity relation Contact Hospital follows Register on
a window length of l = 10 in each trace separately on the
gradual drift log with a longer duration of graduality (i.e., a
log with linear gradual change with an overlapping window of
900 instances between any two process variants.). Fig. 18(a)
shows the significance probability of the univariate KS test
using a population size of w = 400 on this feature. We can
observe that one dominant trough is formed at index 1200
showing that there exists a change in the region between
Register and Contact Hospital. No subsequent changes with
respect to this activity pair can be noticed, which is indeed the
case in the sequence of models used. Unlike the sudden drift
scenario, the onset of change, however, happens much earlier
[compare it with Fig. 15(a)]. Fig. 18(b) shows the average
significance probability of the univariate KS tests using a
population size of w = 400 on the WC feature for various
modes of send notification follows prepare notification. Even
here, we observe three dominant troughs around indexes 2400,
3600, and 4800 signifying the changes in the models with
earlier onsets of change [compare it with Fig. 15(b)].

B. Real-Life Log: Advertisement Permit Process
of a Dutch Municipality

The synthetic event data created through simulation allow
us to compare the controlled (ground truth) changes with the
detected changes. We, however, have also applied our concept
drift analysis techniques to various real-life event logs. Here,
we report on a case study where we analyzed concept drifts
in processes within a large Dutch municipality. Municipalities
are interested in obtaining insights into their processes, e.g.,
the way they are planned to be executed vis-a-vis the way

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

they are actually executed. Recently, different municipalities
in the Netherlands have evinced interest in comparing their
processes and learning from each other (the interested reader is
referred to the CoSeLog project [51] for further information).
Their vision is to have a form of standardization through
a centrally managed process management system [52]–[55].
When analyzing event logs, we need to factor in the possibility
of process changes, i.e., concept drifts, that could have taken
place. In this section, we present the results of analysis of
concept drifts in event logs pertaining to one of the processes
related to permits for advertisements. If a person/organization
wants to advertise on a building in the Netherlands, for exam-
ple, on a billboard or an illuminated sign, a permit is needed
usually, which can be obtained from the local municipality.

We considered an event log containing 116 cases and 2335
events referring to 25 activities. The cases pertain to permit
requests for placing advertisements spanning over the period
between July 7, 2003 and March 18, 2008. We considered the
J measure feature on the follows relation for all activity pairs
using a window of size 10. This choice of window size was
made based on the characteristics of the process. The process
has four high-level subprocesses: 1) application and initial
checks; 2) regulation compliance checks; 3) decision and
administration; and 4) enforcement, with clear dependencies
between them. One subprocess cannot start until the previous
one finished. Therefore, the dependencies between activities
are primarily manifested between one subprocess and the
initial few activities of its immediate successor. The event
log contains 25 event classes (distinct activities) with each
subprocess on an average defined over six activities. Because
the dependencies are mostly reflected in one subprocess and
the initial few activities of the next subprocess, a window size
of 10 is deemed appropriate. In fact, we have tried using other
window sizes larger than 10 as well; however, we did not
notice any difference in performance with respect to change
detection and change localization. Because a smaller window
size is computationally efficient, we report the results on
window size of 10.

The J measure values of each activity pair define a vector
of size 116, corresponding to the traces in the event log.
The univariate KS test is applied on each of these vectors
using a population size of 10. Fig. 19 shows the average
significance probability of the KS test on all activity pairs.
We observe four troughs formed at indexes 42, 74, 84, and
103. These troughs signify a change in behavior in the traces
preceding and succeeding them. Among the four troughs, the
one at index 42 is particularly significant. Fig. 19 also shows
the start timestamps (October 4, 2004, October 27, 2005,
February 13, 2006, and August 31, 2006, respectively) of the
cases corresponding to these troughs.

With the four change points, we split the log into five
partitions, the first, L1, containing the traces from the
beginning until the first change point (i.e., traces 1–42), the
second, L2, containing the traces between the first and second
change points (i.e., traces 43–74) and so on. Fig. 20 shows the
process model discovered using the Heuristic miner [56] on
the event log L1. The process can be divided into four high-
level subprocedures, as shown in the figure, and are listed as

Fig. 19. Average significance probability (over all activity pairs) of KS test
on J measure. The population size for the KS test is 10. There are four
troughs signifying a change in behavior.

follows.

1) Upon submission of an application, the municipality
acknowledges the receipt of documents and (optionally)
tests for its completeness.

2) Then, the municipality proceeds with a follow-up
procedure that verifies whether the application and
submitted documents are in compliance with the
regulations.

3) With the investigations, then the municipality makes a
decision on the application and informs the applicant
with the decision along with a fee letter.

4) Finally, the municipality registers the advertisements
placed and enforces them.

Fig. 20(b) shows the process model discovered using the
Heuristic miner [56] on the event log L2. The figure highlights
regions that differ from the process model in Fig. 20(a). There
are two changes in this model with respect to the previous one.
The first change is related to the checking for completeness
of the registered documents. In the initial process model
[Fig. 20(a)], this check was not mandatory (only two of the 43
applications were checked for completeness). The municipality
changed this process by making the checks mandatory before
proceeding. The second change is the introduction of a new
activity ‘End procedure; enforcement is next,’ as shown in
Fig. 20(b). The initial process model had only the activity
‘End procedure, possibly choose enforcement’ where as the
new model has both these activities. Similar changes have
been observed in the rest of the models. We do not provide
them here because of space constraints. For a more detailed
discussion on this case study refer [57].

The experiments demonstrate that the features and the
framework proposed in this paper for handling concept drifts
show significant promise in detecting behavioral changes by
analyzing event logs.

C. Time Complexity

In this section, we assess the time complexity of the pro-
posed approach. The feature extraction is dependent on the size
of the event log (i.e., the number of events). The feature values
for all of the features proposed in this paper can be extracted in
linear time with respect to the size of the event log. Fig. 21(a)
shows the average time along with 95% confidence intervals
(over five independent runs) for extracting the J measure

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BOSE et al.: DEALING WITH CONCEPT DRIFTS 15

Fig. 20. Heuristic net of the permit process for advertisements discovered using the event log L1 (a) marked regions: high-level subprocedures in this process
and (b) dashed rectangles: regions of change with respect to the previous model in (a). For a more detailed discussion on this case study refer to [57].

Fig. 21. Time complexity analysis: average time along with 95% confidence intervals (over five independent runs) for feature extraction and hypothesis tests.
(a) J-measure. (b) Influence of number of traces. (c) Influence of population size.

feature for varying sizes of event log. For this experiment, we
considered the first 1000, 2000, 3000, 4000, 5000, and 6000
traces in the juxtaposed event log (of the insurance claim
example used in Section X-A). Because the average number
of events is the same in each of these logs, we depict the
number of traces in the x-axis. We can observe that time
complexity varies linearly with respect to the size of the
log. The hypothesis tests on the other hand depend on the
population size and the number of traces in the event log

(because the data stream of feature values is dependent on
the number of traces). The number of hypothesis tests to be
performed for a given data stream of n values (i.e., n traces)
using a population size of p is n − 2 ∗ p + 1. The time for
each hypothesis test is dependent on the specific hypothesis
test adopted and the population size. Fig. 21(b) shows the
average time along with the 95% confidence intervals (over
five independent runs) for the KS and MW tests using a
population size of 300 over all activity pairs on the J measure

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

feature for varying number of traces. Fig. 21(c) shows the
average time along with the 95% confidence intervals (over
five independent runs) for the KS and MW tests over all
activity pairs on the J measure feature for varying population
sizes (we have used the event log with 6000 traces for this
experiment). We can observe that the time complexity of the
hypothesis tests varies linearly with respect to both the number
of traces and the population size. Because our approach is
primarily intended for offline use, the overall time for change
detection is reasonable. Furthermore, we have considered
all activity pairs as features and the average significance
p-values over them for this experiment. The overall compu-
tation time can be further reduced by robust feature selection
techniques.

XI. CONCLUSION

In this paper, we have introduced the topic of concept
drift in process mining, i.e., analyzing process changes based
on event logs. We proposed feature sets and techniques to
effectively detect the changes in event logs and identify the
regions of change in a process. Our initial results show that
heterogeneity of cases arising because of process changes can
be effectively dealt with by detecting concept drifts. Once
change points are identified, the event log can be partitioned
and analyzed. This is the first step in the direction of dealing
with changes in any process monitoring and analysis efforts.
We have considered changes only with respect to the control-
flow perspective manifested as sudden and gradual drifts.
Therefore, our analysis should only be observed as the starting
point for a new subfield in the process mining domain and
there are lots of challenges that still need to be addressed.
Some of these challenges include.

1) Change-pattern specific features: In this paper, we pre-
sented very generic features (based on follows/precedes
relation). These features are neither complete nor suf-
ficient to detect all classes of changes. An important
direction of research would be to define features catering
to different classes of changes and investigate their effec-
tiveness. A taxonomy/classification of change patterns
and the appropriate features for detecting changes with
respect to those patterns are needed.

2) Feature selection: The feature sets presented in this
paper result in a large number of features. For example,
the activity relation count feature type generates 3×|A|
features whereas the WC and J measure generate |A|2
features (corresponding to all activity pairs). On the
one hand, such high dimensionality makes analysis
intractable for most real-life logs. On the other hand,
changes being typically concentrated in a small region
of a process make it unnecessary to consider all features.
There is a need for tailored dimensionality reduction
techniques [44], [45] that can efficiently select the most
appropriate features.

3) Holistic approaches: In this paper, we discussed ideas
on change detection and localization in the context
of sudden and gradual changes to the control-flow
perspective of a process. As mentioned in Section IV,

the data and resource perspectives are also, however,
equally important. Features and techniques that
can enable the detection of changes in these other
perspectives need to be discovered. Furthermore, there
could be instances where more than one perspective
(e.g., both control and resource) change simultaneously.
Hybrid approaches considering all aspects of change
holistically need to be developed.

4) Recurring drifts: When dealing with recurring drifts,
in addition to change point detection and change
localization, it is important to identify the variant(s)
that recur. This requires robust metrics to assess the
similarity between process variants and/or event logs.

5) Change process discovery: As mentioned earlier, after
detecting the change points and the regions of change,
it is necessary to put them together in perspective.
Organizations would be interested in discovering the
evolution of change (e.g., as an animation depicting
how the process has changed/evolved over time). In
addition, there are other applications such as deriving
a configurable model for the process variants. A
configurable process model describes a family of
similar process models [58]. The process variants
discovered using concept drift can be merged to derive
a configurable process model.

6) Sample complexity: Sample complexity refers to the
number of traces (size of the event log) needed
to detect, localize, and characterize changes within
acceptable error bounds. This should be sensitive to the
variability in processes (in the manifestation of various
process model constructs used), nature of changes, their
influence and manifestation in traces, and the feature
space and algorithms used for detecting drifts. On a
broader note, the topic of sample complexity is relevant
to all facets of process mining and is hardly addressed.
For example, it would be interesting to know the lower
bound on the number of traces required to discover a
process model with a desired fitness.

7) Online (on-the-fly) drift detection: In this paper, we have
looked at detecting drifts in an offline setting, i.e., for
postmortem analysis. Although detecting concept drifts
is important for offline analysis, it is more interesting
and appropriate for online analysis. We believe the
proposed framework to be applicable even for online
analysis. Few new challenges, however, emerge, e.g.,
the number of samples required remains an issue. In
addition, we need additional computational power and
efficient techniques to do such analysis in near real time.

REFERENCES

[1] (2010). All-in-one Permit for Physical Aspects: (Omgev-
ingsvergunning) in a Nutshell [Online]. Available: http://www.
answersforbusiness.nl/regulation/all-in-one-permit-physical-aspects

[2] United States Code. (2002, Jul.). Sarbanes-Oxley Act of 2002,
PL 107-204, 116 Stat 745 [Online]. Available: http://files.findlaw.
com/news.findlaw.com/cnn/docs/gwbush/sarbanesoxley072302.pdf

[3] W. M. P. van der Aalst, M. Rosemann, and M. Dumas, “Deadline-based
escalation in process-aware information systems,” Decision Support
Syst., vol. 43, no. 2, pp. 492–511, 2011.

http://www.answersforbusiness.nl/regulation/all-in-one-permit-physical-aspects
http://www.answersforbusiness.nl/regulation/all-in-one-permit-physical-aspects
http://files.findlaw.com/news.findlaw.com/cnn/docs/gwbush/sarbanesoxley072302.pdf
http://files.findlaw.com/news.findlaw.com/cnn/docs/gwbush/sarbanesoxley072302.pdf

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BOSE et al.: DEALING WITH CONCEPT DRIFTS 17

[4] M. Dumas, W. M. P. van der Aalst, and A. H. M. Ter Hofstede, Process-
Aware Information Systems: Bridging People and Software Through
Process Technology. New York, NY, USA: Wiley, 2005.

[5] W. M. P. van der Aalst and K. M. van Hee, Workflow Management:
Models, Methods, and Systems. Cambridge, MA, USA: MIT Press,
2004.

[6] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes. New York, NY, USA: Springer-
Verlag, 2011.

[7] B. F. van Dongen and W. M. P. van der Aalst, “A meta model for process
mining data,” in Proc. CAiSE Workshops (EMOI-INTEROP Workshop),
vol. 2. 2005, pp. 309–320.

[8] C. W. Günther, (2009). XES Standard Definition [Onlilne]. Available:
http://www.xes-standard.org

[9] F. Daniel, S. Dustdar, and K. Barkaoui, “Process mining manifesto,” in
BPM 2011 Workshops, vol. 99. New York, NY, USA: Springer-Verlag,
2011, pp. 169–194.

[10] R. P. J. C. Bose, W. M. P. van der Aalst, I. Žliobaitė, and M. Pechenizkiy,
“Handling concept drift in process mining,” in Proc. Int. CAiSE, 2011,
pp. 391–405.

[11] J. Carmona and R. Gavaldà, “Online techniques for dealing with concept
drift in process mining,” in Proc. Int. Conf. IDA, 2012, pp. 90–102.

[12] J. Schlimmer and R. Granger, “Beyond incremental processing: Tracking
concept drift,” in Proc. 15th Nat. Conf. Artif. Intell., vol. 1. 1986,
pp. 502–507.

[13] A. Bifet and R. Kirkby. (2011). Data Stream Mining: A Practical
Approach, University of Waikato, Waikato, New Zealand [Online].
Available: http://www.cs.waikato.ac.nz/~abifet/MOA/StreamMining.pdf

[14] I. Žliobaitė, “Learning under concept drift: An Overview,”
CoRR, vol. abs/1010.4784, 2010 [Online]. Available:
http://arxiv.org/abs/1010.4784

[15] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in Proc. SBIA, 2004, pp. 286–295.

[16] A. Bifet and R. Gavaldà, “Learning from time-changing data with
adaptive windowing,” in Proc. 7th SIAM Int. Conf. Data Mining (SDM),
2007, pp. 443–448.

[17] G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand, “Exponentially
weighted moving average charts for detecting concept drift,” Pattern
Recognit. Lett., vol. 33, no. 2, pp. 191–198, 2012.

[18] K. Nishida and K. Yamauchi, “Detecting concept drift using statistical
testing,” in Proc. 10th Int. Conf. Discovery Sci.. 2007, pp. 264–269.

[19] C. Alippi and M. Roveri, “Just-in-time adaptive classifiers–Part I:
Detecting nonstationary changes,” IEEE Trans. Neural Netw., vol. 19,
no. 7, pp. 1145–1153, Jul. 2008.

[20] C. Alippi, G. Boracchi, and M. Roveri, “Just-in-time classifiers for
recurrent concepts,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24,
no. 4, pp. 620–634, Apr. 2013.

[21] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: An
ensemble method for drifting concepts,” J. Mach. Learn. Res., vol. 8,
pp. 2755–2790, Jan. 2007.

[22] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Trans. Neural Netw., vol. 22, no. 10,
pp. 1517–1531, Oct. 2011.

[23] G. Widmer and M. Kubat, “Learning in the presence of concept
drift and hidden contexts,” Mach. Learn., vol. 23, no. 1, pp. 69–101,
Apr. 1996.

[24] S. J. Delany, P. Cunningham, A. Tsymbal, and L. Coyle, “A case-based
technique for tracking concept drift in spam filtering,” Knowl. Based
Syst., vol. 18, nos. 4–5, pp. 187–195, Aug. 2005.

[25] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, “Han-
dling local concept drift with dynamic integration of classifiers: Domain
of antibiotic resistance in nosocomial infections,” in Proc. 19th IEEE
Int. Symp. CBMS, Nov. 2006, pp. 679–684.

[26] M. Pechenizkiy, J. Bakker, I. Žliobaitė, A. Ivannikov, and T. Kärkkäinen,
“Online mass flow prediction in CFB boilers with explicit detec-
tion of sudden concept drift,” SIGKDD Explorations, vol. 11, no. 2,
pp. 109–116, 2009.

[27] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41,
nos. 1–2, pp. 100–115, 1954.

[28] N. Mulyar, “Patterns for process-aware information systems: An
approach based on colored Petri nets,” Ph.D. dissertation, Dept. Comput.
Sci., Univ. Technol., Eindhoven, The Netherlands, 2009.

[29] B. Weber, S. Rinderle, and M. Reichert, “Change patterns and change
support features in process-aware information systems,” in Proc. 19th
Int., 2007, pp. 574–588.

[30] G. Regev, P. Soffer, and R. Schmidt, “Taxonomy of flexibility in business
processes,” in Proc. 7th Workshop BPMDS, 2006, pp. 1–4.

[31] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. M. P. van der
Aalst, “Process flexibility: A survey of contemporary approaches,” in
Proc. Adv. Enterprise Eng. I, 2008, pp. 16–30.

[32] K. Ploesser, J. C. Recker, and M. Rosemann, “Towards a classification
and lifecycle of business process change,” in Proc. BPMDS, vol. 8. 2008,
pp. 1–9.

[33] C. W. Günther, S. Rinderle-Ma, M. Reichert, and W. M. P. van der
Aalst, “Using process mining to learn from process changes in evolu-
tionary systems,” Int. J. Business Process Integr. Manag., vol. 3, no. 1,
pp. 61–78, 2008.

[34] M. van Leeuwen and A. Siebes, “StreamKrimp: Detecting change in
data streams,” in Proc. Mach. Learn. Knowl. Discovery Databases, 2008,
pp. 672–687.

[35] I. Žliobaitė and M. Pechenizkiy. (2010). Handling Con-
cept Drift in Information Systems [Online]. Available:
http://sites.google.com/site/zliobaite/CD_applications_2010.pdf

[36] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data
streams using ensemble classifiers,” in Proc. 9th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining. 2003, pp. 226–235.

[37] D. Brzezinski and J. Stefanowski, “Reacting to different types of concept
drift: The accuracy updated ensemble algorithm,” IEEE Trans. Neural
Netw. Learn. Syst., Apr. 2013, doi: 10.1109/TNNLS.2013.2251352.

[38] W. M. P. van der Aalst, A. Adriansyah, and B. Dongen, “Replay-
ing history on process models for conformance checking and perfor-
mance analysis,” WIREs Data Mining Knowl. Discovery, vol. 2, no. 2,
pp. 182–192, 2012.

[39] M. Hammer, Beyond Reengineering: How the Process-Centered Orga-
nization is Changing Our Work and Our Lives. New York, NY, USA:
Harper business, 1996.

[40] L. L. Minku, A. P. White, and X. Yao, “The impact of diver-
sity on online ensemble learning in the presence of concept drift,”
IEEE Trans. Knowl. Data Eng., vol. 22, no. 5, pp. 730–742,
May 2010.

[41] P. Smyth and R. M. Goodman, Rule Induction Using Information
Theory. Washington, DC, USA: AAAS Press, 1991, pp. 159–176.

[42] N. M. Blachman, “The amount of information that y gives about X ,”
IEEE Trans. Inf. Theory, vol. 14, no. 1, pp. 27–31, Jan. 1968.

[43] D. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures. London, U.K.: Chapman & Hall/CRC, 2004.

[44] I. K. Fodor, “A survey of dimensionality reduction techniques,” in
Proc. Center Appl. Sci. Comput., Lawrence Livermore Nat. Lab., 2002,
pp. 1–24.

[45] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Mar. 2003.

[46] I. T. Jolliffe, Principal Component Analysis, 2nd ed., New York, NY,
USA: Springer-Verlag, 2002.

[47] E. Bingham and H. Mannila, “Random projection in dimensionality
reduction: Applications to image and text data,” in Proc. 7th ACM
SIGKDD Int. Conf. Mining, 2001, pp. 245–250.

[48] W. M. P. van der Aalst and A. H. M. ter Hofstede, “YAWL: Yet another
workflow language,” Inf. Syst., vol. 30, no. 4, pp. 245–275, 2005.

[49] W. M. P. van der Aalst, “Re-engineering knock-out processes,” Decision
Support Syst., vol. 30, no. 4, pp. 451–468, 2001.

[50] K. Jensen and L. M. Kristensen, Colored Petri Nets: Modeling and
Validation of Concurrent Systems. New York, NY, USA: Springer-
Verlag, 2009.

[51] CoSeLog, (2013). Configurable Services for Local Governments, Ger-
many [Online]. Available: http://www.win.tue.nl/coselog

[52] W. M. P. van der Aalst, “Configurable services in the cloud: Supporting
variability while enabling cross-organizational process mining,” in On
the Move to Meaningful Internet Systems (OTM 2010), LNCS 6426.
New York, NY, USA: Springer-Verlag, Jan. 2010, pp. 8–25.

[53] W. M. P. van der Aalst, “Intra- and inter-organizational process mining:
Discovering processes within and between organizations,” in Proc.
Pract. Enterprise Model., 2011, pp. 1–11.

[54] J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst,
“Towards cross-organizational process mining in collections of process
models and their executions,” in Proc. Int. Workshop PMC, 2011,
pp. 1–14.

[55] J. J. C. L. Vogelaar, H. M. W. Verbeek, and W. M. P. van der
Aalst, “Comparing business processes to determine the feasibility of
configurable models: A case study,” in Proc. Int. Workshop PMC, 2011,
pp. 1–12.

[56] A. J. M. M. Weijters and W. M. P. van der Aalst, “Rediscovering
workflow models from event-based data using little thumb,” Integr.
Comput. Aided Eng., vol. 10, no. 2, pp. 151–162, 2003.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[57] R. P. J. C. Bose, W. M. P. van der Aalst, I. Žliobaitė, and M. Pechenizkiy,
“Dealing with concept drifts in process mining: A case study in a Dutch
municipality,” BPM Center, Univ. Technol., Singapore, Tech. Rep. BPM-
13-13, 2013.

[58] W. M. P. van der Aalst, N. Lohmann, and M. L. Rosa, “Ensuring
correctness during process configuration via partner synthesis,” Inf. Syst.,
vol. 37, no. 6, pp. 574–592, 2012.

R. P. Jagadeesh Chandra Bose received the Ph.D.
(cum laude) degree in process mining from Technis-
che Universiteit Eindhoven, Eindhoven, The Nether-
lands.

He is a Research Scientist with Xerox Research
Center India, Bangalore, India. He has over eight
years of research experience in the industry, and
he has executed projects in the areas of software
engineering, health care, business analytics, and
knowledge management. He has co-authored over
30 publications and five patent filings. His current

research interests include process mining, business process management,
business intelligence (analytics), machine learning, data mining, and bioin-
formatics.

Dr. Bose has received various awards for excellence in academics.

Wil M. P. van der Aalst received the Doctor Hon-
oris Causa degree from Hasselt University, Diepen-
beek, Belgium, in 2012.

He is a Full Professor of information systems with
the Technische Universiteit Eindhoven (TU/e), Eind-
hoven, The Netherlands. He is the Academic Super-
visor of the International Laboratory of Process-
Aware Information Systems, National Research
University, Higher School of Economics, Moscow,
Russia. Since 2003, he has held a part-time appoint-
ment with the Queensland University of Technology,

Queensland, Australia. His ideas have influenced researchers, software devel-
opers, and standardization committees working on process support. In 2013, he
was a Distinguished University Professor at TU/e. His papers are highly cited
(he has an H-index of more than 103 according to Google Scholar, making him
the European computer scientist with the highest H-index). He has published
more than 160 journal papers, 17 books (as author or editor), 300 refereed
conference/workshop publications, and 50 book chapters. His current research
interests include workflow management, process mining, Petri nets, business
process management, process modeling, and process analysis.

Dr. van der Aalst is a member of the Royal Holland Society of Sciences
and Humanities (Koninklijke Hollandsche Maatschappij der Wetenschappen)
and the Academy of Europe (Academia Europaea).

Indrė Žliobaitė is a Research Scientist with Aalto
University, Aalto, Finland. Her current research
interests include predictive modeling from evolving
streaming data, change detection, and predictive
analytics applications. For further information see
http://zliobaite.googlepages.com.

Mykola Pechenizkiy received the Ph.D. degree
in computer science and information systems from
the University of Jyvaskyla, Jyvaskyla, Finland, in
2005.

He is an Assistant Professor with the Department
of Computer Science, Eindhoven University of Tech-
nology, Eindhoven, The Netherlands. He has co-
authored over 70 peer-reviewed publications and has
been organizing several workshops (HaCDAIS at
ECML/PKDD in 2010, LEMEDS at AIME in 2011),
conferences (IEEE CBMS in 2012, EDM in 2011,

IEEE CBMS in 2008, and BNAIC in 2009) and tutorials (at ECML/PKDD
in 2012, PAKDD in 2011, IEEE CBMS in 2010, and ECML/PKDD in
2010). He has co-edited the Handbook of Educational Data Mining. His
current research interests include data mining and data-driven intelligence,
and its application to various (adaptive) information systems serving industry,
commerce, medicine, and education.

Dr. Pechenizkiy has served as a Guest Editor of the special issues in
SIGKDD Explorations, Elsevier’s DKE and AIIM, and Springer’s Evolving
Systems Journals. Currently, he takes a leading role in NWO HaCDAIS, STW
CAPA, EIT ICT Labs Stress at Work, and NL Agency CoDaK.

