
Process Model Discovery: A Method Based on
Transition System Decomposition?

Anna A. Kalenkova1, Irina A. Lomazova1, and Wil M.P. van der Aalst1,2

1 National Research University Higher School of Economics (HSE),
Moscow, 101000, Russia

{akalenkova,ilomazova}@hse.ru
2 Eindhoven University of Technology,

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tue.nl

Abstract. Process mining aims to discover and analyze processes by
extracting information from event logs. Process mining discovery algo-
rithms deal with large data sets to learn automatically process models.
As more event data become available there is the desire to learn larger
and more complex process models. To tackle problems related to the
readability of the resulting model and to ensure tractability, various de-
composition methods have been proposed. This paper presents a novel
decomposition approach for discovering more readable models from event
logs on the basis of a priori knowledge about the event log structure: reg-
ular and special cases of the process execution are treated separately. The
transition system, corresponding to a given event log, is decomposed into
a regular part and a specific part. Then one of the known discovery al-
gorithms is applied to both parts, and finally these models are combined
into a single process model. It is proven, that the structural and behav-
ioral properties of submodels are inherited by the unified process model.
The proposed discovery algorithm is illustrated using a running example.

1 Introduction

Process mining techniques can be used, amongst others, to discover process
models (e.g., in the form of Petri nets) from event logs. Many discovery methods
were suggested in order to obtain process models reflecting a behavior presented
in event logs. Discovered process models may vary considerably depending on a
chosen discovery method. For an overview of process discovery approaches and
techniques see [15].

The main challenge of process discovery is to construct an adequate formal
model reflecting behavior presented in an event log in a best possible way. Qual-
ity criteria for process models discovered from event logs are described in [2].
The first criterion is (replay) fitness: a process model should allow for behavior
recorded in an event log. The next one is precision: a discovered process model

? This work is supported by the Basic Research Program of the National Research
University Higher School of Economics.



should not allow for behavior which differs markedly from an event log records
(no underfitting). The generalization criterion states that a discovered model
should be general enough (no overfitting). And the last but not least quality
criterion is simplicity : a discovered model should not be too complicate and
confusing.

In this paper we focus on simplicity, fitness and precision. The goal of our
work is to present a decomposition method for obtaining clearer and simpler
models, trying to preserve their fitness and precision. The decomposition method
proposed in this paper aim to exploit modularity in processes to obtain more
readable process models. For other quality metrics for evaluation of simplicity
see [22].

Most of process mining algorithms for discovering a model from an event
log first build a (labeled) transition system from an event log, and then use
different techniques to construct a model from this transition system. We also
follow this approach. Methods for building transition systems based on event
logs were proposed in [6] and are out of the scope of this paper. In this paper we
assume that there is a transition system, already constructed from some event
log, and concentrate on discovering a process model from a given transition
system. Moreover, we assume that a transition system is decomposed into a
regular and specific parts on base of some a priori knowledge about a modeled
system. For each of the parts we apply existing process discovery algorithms to
obtain corresponding (sub)process models. Then these models are combined into
a single process model.

For discovering subprocess models we suggest to use state-based region al-
gorithms and algorithms based on regions of languages. The state-based region
approach was initially proposed by A. Ehrenfeucht and G. Rozenberg [16]. Later
this approach was generalized by J. Cortadella et al. [12, 13]. An alternative
generalization was proposed by J. Carmona et al. [11]. The application of state-
based region algorithms to process mining was studied in [6, 9, 21]. Algorithms
based on regions of languages were presented in [7, 14, 18] and then applied to
process mining [8, 24]. State-based region algorithms and algorithms based on
regions of languages map discovered regions into places of a target Petri net.
The advantage of these algorithms is that they guarantee “perfect” fitness, i.e.
every trace in a log (a transition system) can be reproduced in a model. How-
ever, a large degree of concurrency in a system and incompleteness of an event
log (or corresponding transition system) may lead to a blowup of the diagram
comparable to the the state explosion problem.

The paper is organized as follows. In Section 2 a motivating example is pre-
sented. Section 3 introduces basic definitions and notions, including traces, Petri
nets and transition systems. In Section 4 we propose a decomposition algorithm
for constructing a process model. In Section 5 we formally prove that the struc-
tural and behavioral properties of subprocess models constructed from the de-
composed transition system are inherited by the unified process model. Section
6 presents related work. Section 7 concludes the paper.



2 Motivating Example

In this section we will consider booking a flight process. The log reflecting a
history of process execution is presented in Fig. 1. The transition system con-
structed from this log is depicted in Fig. 2.

L = {〈start booking, book flight, get insurance, send email, choose payment type,

pay by card, complite booking〉,
〈start booking, get insurance, book flight, send email, choose payment type,

pay by card, complite booking〉,
〈start booking, get insurance, book flight, send email, choose payment type,

pay by web money, complite booking〉,
〈start booking, book flight, get insurance, send email, choose payment type,

pay by web money, complite booking〉,
〈start booking, book flight, cancel, send email〉,
〈start booking, book flight, get insurance, send email, choose payment type,

〈cancel, send email〉}.

Fig. 1. An event log for a booking process

get_insurance book_flight

send_email

start_booking

book_flight get_insurance

choose_payment_type

pay_by_card
pay_by_web_money

complite_booking

cancel

send_email

cancel

s1

s2

s3 s4

s5

s6

s7

s8
s9

s10

Fig. 2. A transition system for a booking process constructed from the event log de-
picted in Fig. 1

At the beginning of a booking process a customer needs to book a flight and
to get an insurance, these actions are performed in parallel.



Then an email is sent to confirm the booking. After that the customer chooses
a payment method, pays and the booking process successfully completes. If the
booking was cancelled, an email is sent to notify the cancellation. These cancel-
lations may occur during an execution of booking procedures as well as after the
booking was accepted.

Let us consider the models produced by the standard state-based region
algorithm1 (Fig. 3) and the language-based synthesis algorithm2 (Fig. 4) from
original transition system and corresponding event log respectively.

start_booking

book_flight

get_insurance

choose_payment_type

pay_by_card

pay_by_web_money

cancel

complete_bookingsend_email

Fig. 3. The result of applying the standard state-based region algorithm to the tran-
sition system depicted in Fig. 2

start_booking

book_flight

get_insurance choose_payment_type

pay_by_card

pay_by_web_money

cancel

complete_booking

send_email

Fig. 4. The result of applying the language-based synthesis algorithm to the event log
depicted in Fig. 1

1 The State-based regions Miner plug-in is available in Prom framework [23]. This
plug-in implements the standard state-based region algorithm presented in [12,13].

2 The ILP Miner [24] plug-in is implemented in Prom framework [23]. We choose such
parameters that there are no tokens left after a case completion, and initial places
don’t have incoming arcs.



Figures 3 and 4 illustrate that region-based techniques may result in models
that are more complicated than the corresponding transition system.

In this paper we present a method for discovering better structured and more
readable process models by detecting a regular behavior in a given transition
system. We split a transition system in two parts: one of them represents a
regular behavior, and the other describes handling special cases (exceptions,
cancellations, etc.)

3 Preliminaries: Petri Nets and Transition Systems

Let S be a finite set. A multiset m over a set S is a mapping m : S → Nat, where
Nat is the set of natural numbers (including zero), i.e. a multiset may contain
several copies of the same element.

For two multisets m,m′ we write m ⊆ m′ iff ∀s ∈ S : m(s) ≤ m′(s) (the
inclusion relation). The sum of two multisets m and m′ is defined as usual:
∀s ∈ S : (m + m′)(s) = m(s) + m′(s), the difference is a partial function:
∀s ∈ S such that m(s) ≥ m(s′) : (m − m′)(s) = m(s) − m′(s). By M(S) we
denote the set of all finite multisets over S.

Let S and E be two disjoint non-empty sets of states and events, and
B ⊆ S × E × S be a transition relation. A transition system is a tuple TS =
(S,E,B, sin, Sfin), where sin ∈ S is an initial state and Sfin ⊆ S — a set of final

states. Elements of B are called transitions. We write s
e→ s′, when (s, e, s′) ∈ B.

A state s is reachable from a state s′ iff there is a possibly empty sequence
of transitions leading from s to s′ (denoted by s

∗→ s′).
A transition system must satisfy the following basic axioms:

1. every state is reachable from the initial state: ∀s ∈ S : sin
∗→ s;

2. for every state there is a final state, which is reachable from it: ∀s ∈ S ∃sfin ∈
Sfin : s

∗→ sfin;

Let E be a set of events. A trace σ (over E) is a sequence of events, i.e.,
σ ∈ E∗. An event log L is a multiset of traces, i.e., L ∈M(E∗).

A trace σ = 〈e1, . . . , en〉 is called feasible in a transition system TS iff

∃s1, . . . , sn−1, sn ∈ S : sin
e1→ s1

e2→ . . . sn−1
en→ sn, and sn ∈ Sfin, i.e. a fea-

sible trace leads from the initial state to some final state. A language accepted
by TS is defined as the set of all traces feasible in TS, and is denoted by L(TS).

We say that a transition system TS and an event log L are matched iff each
trace from L is a feasible trace in TS, and inversely each feasible trace in TS
belongs to L.

Let P and T be two finite disjoint sets of places and transitions, and F ⊆
(P × T ) ∪ (T × P ) — a flow relation. Let also E be a finite set of events, and
λ : T → E be a labeling function. Then N = (P, T, F, λ) is a (labeled) Petri net.

A marking in a Petri net is a multiset over the set of places. A marked Petri
net (N,m0) is a Petri net together with its initial marking.



Pictorially, places are represented by circles, transitions by boxes, and the
flow relation F by directed arcs. Places may carry tokens represented by filled
circles. A current marking m is designated by putting m(p) tokens into each
place p ∈ P .

For a transition t ∈ T an arc (x, t) is called an input arc, and an arc (t, x)
— an output arc; the preset •t and the postset t• are defined as the multisets
over P such that •t(p) = 1, if (p, t) ∈ F , otherwise •t(p) = 0, and t•(p) = 1
if (t, p) ∈ F , otherwise t•(p) = 0. Note that we will also consider presets and
postsets as sets of places. A transition t ∈ T is enabled in a marking m iff •t ⊆ m.
An enabled transition t may fire yielding a new marking m′ =def m − •t + t•

(denoted m
t→ m′, m

λ(t)→ m′, or just m→ m′).
We say that m′ is reachable from m iff there is a (possibly empty) sequence

of firings m = m1 → · · · → mn = m′.
R(N,m) denotes the set of all markings reachable in N from the marking m.
A marked Petri net (N,m0), N = (P, T, F, λ) is called safe iff ∀p ∈ P ∀m ∈

R(N,m0) : m(p) ≤ 1, i.e. at most one token can appear in a place.
A reachability graph for a marked Petri net (N,m0) labeled with events from

E is a transition system TS = (S,E,B, sin, Sfin), with the set of states S =
R(N,m0), the event set E, and transition relation B defined by (m, e,m′) ∈ B
iff m

t→ m′, where e = λ(t). The initial state in TS is the initial marking m0.
If some reachable markings in (N,m0) are distinguished as final markings, they
are defined as final elements in TS. Note that TS may also contain other final
states, to satisfy the axiom that for every state in TS there is a final state, which
is reachable from it.

Workflow nets (WF-nets) [1] is a special subclass of Petri nets designed for
modeling workflow processes. A workflow net has one initial and one final place,
and every place or transition in it is on a directed path from the initial to the
final place.

A (labeled) Petri net N is called a (labeled) workflow net (WF-net) iff

1. There is one source place i ∈ P and one sink place f ∈ P s. t. i has no input
arcs and f has no output arcs.

2. Every node from P ∪ T is on a path from i to f .
3. The initial marking in N contains the only token in its source place.

We denote by [i] the initial marking in a WF-net N . Similarly, we use [f ] to
denote the final marking in a WF-net N , defined as a marking containing the
only token in the sink place f .

A WF-net N with an initial marking [i] and a final marking [f ] is sound iff

1. For every state m reachable in N , there exists a firing sequence leading from
m to the final state [f ]. Formally, ∀m : [([i]

∗→ m) implies (m
∗→ [f ])];

2. The state [f ] is the only state reachable from [i] in N with at least one token

in place f . Formally, ∀m : [([i]
∗→ m) ∧ ([f ] ⊆ m) implies (m = [f ])];

3. There are no dead transitions in N . Formally, ∀t ∈ T ∃m,m′ : (i
∗→ m

λ(t)→
m′).



4 Method for Constructing Structured and Readable
Process Models

As shown by the example in the Section 2 straightforward application of the syn-
thesis algorithms may give rather confounded process models. Prior knowledge
of a modular process structure can be used to identify subprocesses and clarify
the target process model. Our goal is to construct readable process models which
will reflect modular structures of processes.

4.1 Decomposition of a Transition System

Assume that we can identify a regular and a special process behavior within the
original transition system.

Let us consider a transition system TS = (S,E,B, sin, Sfin) and divide the
set of states into two non-overlapping subsets which correspond to a regular and
a special behavior: S = Sreg ∪ Sspec, Sreg ∩ Sspec = ∅ (Fig. 5). Let Breg denote a

SregSspec

Breg

Bret

Besc

Bspec

Fig. 5. Decomposition of a transition system

set of regular process transitions, Bspec denote a set of special transitions, Besc

and Bret stand for transitions, which indicate escaping from the regular process
flow and returning to the regular process flow respectively. Let Ereg and Espec



denote the set of events corresponding to Breg and Bspec respectively. Note that
Ereg and Espec are not necessarily disjoint sets, i.e. the same label can appear in
different parts of the transition system.

Formally, set of states S can be partitioned over Sreg and Sspec and then the
tuple TSdec = (TS, Sreg, Sspec) is called a decomposed transition system if the
following additional conditions hold: sin ∈ Sreg and Sfin ⊆ Sreg.

The construction of such a transition system from an event log can be per-
formed in two steps. Firstly, a transition system is constructed for the traces
corresponding to a regular process behavior. Secondly, an additional behavior is
added to the transition system, and new states are marked as special.

4.2 Region-Based Algorithms

An algorithm for synthesis of a marked Petri net from a decomposed transition
system will be build on well-known region based algorithms. Therefore, we will
give an overview of these algorithms and outline their properties, which will be
used in the further analysis of the presented algorithm.

State-based region algorithm First, we briefly describe the standard
state-based region algorithm [12, 13]. Let TS = (S,E, T, sin, Sfin) be a transi-
tion system and S′ ⊆ S be a subset of states. S′ is a region iff for each event
e ∈ E one of the following conditions hods:

– all the transitions s1
e→ s2 enter S′, i.e. s1 /∈ S′ and s2 ∈ S′,

– all the transitions s1
e→ s2 exit S′, i.e. s1 ∈ S′ and s2 /∈ S′,

– all the transitions s1
e→ s2 do not cross S′, i.e. s1, s2 ∈ S′ or s1, s2 /∈ S′.

A region r′ is said to be a subregion of a region r iff r′ ⊆ r. A region r is called
a minimal region iff it does not have any other subregions.

The state-based region algorithm constructs a target Petri net in such a
way that a transition system is covered by its minimal regions and after that
every minimal region is transformed to a place in the Petri net. The result
of applying the standard state-based region algorithm to the transition system
which corresponds to a regular behavior of the booking process is presented in
Fig. 6. Note that states in the transition system correspond to markings of the
target Petri net.

Let us enumerate the properties of the standard state-based region algorithm
[12,13], which will be used for the analysis of the discovery algorithm presented
in this paper:

1. Every Petri net transition t ∈ T corresponds to an event in the initial tran-
sition system e ∈ E (the transition t is labeled with e), the opposite is not
true (events of the initial transition system might be split).

2. There is a bisimulation between a transition system and a reachability graph
of the target Petri net, this implies that every state in TS corresponds to a
Petri net marking.



get_insurance book_flight

send_email

start_booking

book_flight get_insurance

choose_payment_type

pay_by_card
pay_by_web_money

complite_booking

start_booking

get_insurance

choose_payment_type

pay_by_card pay_by_web_money

complete_booking

book_flight

send_email

Fig. 6. Applying the state-based region algorithm to the transition system which cor-
responds to a regular behavior of the booking process

3. The target Petri net is safe, i.e. no more than one token can appear in a place.

An algorithm based on regions of languages The aim of the different
algorithms based on regions of languages [8,24] is to construct a Petri net, which
is able to reproduce a given language (herein we will consider a language accepted
by an initial transition system), reducing undesirable behavior by adding places.
Addition of such places will not allow for construction of a Petri net, e.g. the
flower-model (Fig. 7), which generates all the words in a given alphabet. A

e1

e2

...

en

Fig. 7. A flower model



(language-based) region is defined as a (2 |T |+1)-tuple of {0, 1}, representing an
initial marking and a number of tokens each transition consumes and produces
in a place. Like in the previous approach each region corresponds to a place in
a Petri net. Regions are defined as solutions of the linear inequation system,
constructed for a given language. The algorithms based on regions of languages
satisfy the following conditions:

1. There is a bijection between Petri net transitions T and events in the initial
transition system E, such that every transition is labeled with a correspond-
ing event.

2. There is a homomorphism ω from a transition system TS to the reachability
graph RG of a target Petri net N , i.e. for every s ∈ S there is a correspond-
ing node - ω(s) in RG (every state in TS has a corresponding N marking),

such that ω(sin) = m0 and for every transition (s1
e→ s2) ∈ B there is an

arc (ω(s1), ω(s2)) in RG labeled with e.

3. The target Petri net is safe. We will add constraints to obtain elementary
Petri nets, in which transitions can only fire when their output places are
empty [24], this implies that we will get a safe Petri net.

Let us refer to the state-based algorithms and the algorithms based on re-
gions languages, which meet the specified requirements, simply as basic region
algorithms.

4.3 Constructing Transition Systems

In this subsection we give a method for constructing two separate transition
systems from a given decomposed transition system. Before applying basic region
algorithms to parts of a decomposed transition system we have to be sure that
these parts are transition systems as well, otherwise they should be repaired.

Let TSdec = ((S,E,B, sin, Sfin), Sreg, Sspec) be a decomposed transition sys-
tem. As we can see from the example (Fig. 5) the subgraph formed by vertices
from Sreg and transitions from Breg may not define a transition system, since
it contains states which are not on the path from the initial state to some final
state, and should be repaired. A set of novel events E′ and a set of transitions
B′ labeled with this events should be added to retrieve missing connections be-
tween Sreg states (see Fig. 8). For every pair of nodes from Sreg having a path
between them with a starting transition from Besc, a destination transition from
Bret, and containing exactly one transition from Besc, such that there is no path
between these nodes within the graph (Sreg, Breg), a novel event e′ ∈ E′ and a
novel transition b′ ∈ B′ labeled with this event should be added. One can note
that after this transformation every state is on the path from sin to sfin ∈ Sfin,
and we get a transition system TSreg = (Sreg, Ereg ∪ E′, Breg ∪B′, sin, Sfin).

The subgraph formed by vertices from Sspec and transitions from Bspec should
be also repaired to form a transition system. As in the previous case each pair



SregSspec e1'

si

so

estart

eend eend

e2'

e3'

e1'' e2''

Fig. 8. Constructing transition systems, which correspond to subprocesses

of states connected only through external nodes should be connected directly
via transitions labeled with novel events (see Fig. 8). Note that a path through
the external nodes should not contain transitions added to repair the transition
system constructed for a normal flow. Let B′′ denote the set of novel transitions,
E′′ denote the set of corresponding events. In contrast to the transition system
TSreg constructed for the normal process flow in the previous step an initial state
si and a final state (state without outgoing transitions) so should be added. All
states having incoming transitions from Besc, should be connected with si by
incoming transitions labeled with a special event estart. Let us denote the set of
these transitions by Bstart. Similarly, all states having outgoing transitions from
Bret should be connected with so by outgoing transitions labeled with the event
eend. The set of such transitions will be denoted by Bend. After these transfor-
mations every state lies on a path from sin to sfin ∈ Sfin, and, hence, we obtain
a transition system TSspec = (Sspec ∪{si, so} , Espec ∪E′′ ∪{estart, eend} , Bspec ∪
B′′ ∪Bstart ∪Bend, si, {so}).

4.4 Discovery Algorithm

This algorithm uses some basic region algorithm A.

Algorithm [Discovery algorithm]. (Constructing a marked Petri net for
a decomposed TS).
Input: A decomposed transition system TSdec = ((S,E,B, sin, Sfin), Sreg, Sspec).

Step 1: Construct two transition systems: TSreg = (Sreg, Ereg∪E′, Breg∪B′, sin, Sfin)
and TSspec = (Sspec ∪ {si} ∪ {so} , Espec ∪ E′′ ∪ {estart, eend} ,



Bspec ∪B′′ ∪Bstart ∪Bend, si, {so}) form the decomposed transition sys-
tem TSdec.

Step 2: Apply algorithm A to retrieve a regular (Nreg) and a special (Nspec)
process flow from TSreg and TSspec respectively.

Step 3: Restore the connections between Nreg and Nspec to create a so-called a
unified Petri net N :

– For every transition (s
eesc→ s′) ∈ Besc, s ∈ Sreg, s

′ ∈ Sspec add a novel
Petri net transition labeled with eesc (see Fig. 9). Connect this transition
by incoming arcs with all the places p ∈ P , such that m(p) > 0, and by
outgoing arcs with the places p′ ∈ P ′, such that m′(p′) > 0, where m
and m′ are markings corresponding to s and s′ respectively. Similarly,
transitions from Bret should be restored.

Sreg

Sspec

eesc

s

s`

eret
...

m'

m

s''
m''

eesc

...

m

...

m'

eret

...

m''
...

Nspec

Nreg

N

Fig. 9. A unified Petri net

– Delete the following nodes along with their incident arcs from the
result Petri net: transitions with labels from E′ and E′′, all the transi-
tions labeled with estart along with the places from their presets (if these
places don’t have other output arcs), and all the transitions labeled with
eend along with the places from their postsets (if these places don’t have
output arcs).

– Initial marking for the result Petri net N is defined as an initial mark-
ing of Nreg, label function of the result N is defined on the basis of Nreg

and Nspec label functions.



Output: Marked Petri net N .

Note that after partitioning of the initial transition system into two transi-
tions systems (Step 1), each of the parts can be in turn divided into subsystems.
After decomposition a discovery algorithm is applied to each part (Step 2) and
required connections are restored within the entire model (Step 3).

start_booking

get_insurance

choose_payment_

type

pay_by_card pay_by_web_money

cancel

complete_booking

book_flight

send_email

cancel

send_email

estart

eend

Fig. 10. The result of applying the discovery algorithm to the original transition system

Let us consider the initial transition system presented in Fig. 2. Suppose that
we will divide the set of states in the following manner: S = Sreg ∪ Sspec, Sreg =
{s1, s2, s3, s4, s5, s6, s7, s8, s10}, Sspec = {s9}. A Petri net which is constructed
for this decomposed transitions system according to the discovery algorithm is
presented in Fig. 10. The subprocesses structures can be easily retrieved from
this model. Note, that dashed nodes and arcs denote those parts which were
deleted during an execution of the discovery algorithm.

Now assume that, we decided to divide the set of states as follows: S = Sreg∪
Sspec, Sreg = {s1, s2, s4, s5, s6, s7, s8, s10}, Sspec = {s3, s9}. The result of applying
the discovery algorithm to the decomposed transition system is presented in
Fig. 11. This example shows that the result depends on choosing a partition of



the set of states. Expert knowledge can help to find an appropriate partition.
For example, names of events, which correspond to an irregular behavior, can
be helpful for that.

Note, that the models, presented in Fig. 10 and Fig. 11, can be constructed
by both: the state-based region algorithm and the algorithm based on regions of
languages, which meet the requirements, listed in Subsection 5.2, with the only
difference, that the algorithm based on regions of languages doesn’t produce final
place.

start_booking

get_insurance

choose_payment_type

pay_by_card
pay_by_web

_money

cancel

complete_booking

send_email

cancel

send_email

estart

eend

book_flight

book_flight

get_insurance

Fig. 11. The result of applying the discovery algorithm to the original transition system
with different states partition

5 Structural and Behavioral Properties Preserved by
Decomposed Discovery

In this section we will formally prove that the structural and behavioral proper-
ties of subprocess models constructed from a decomposed transition system are



inherited by the unified process model. As was mentioned earlier the discovery
algorithm use some basic region algorithm. A basic region algorithm is a state-
based region algorithm, which guarantees the bisimilarity relation between an
initial transition system and a reachability graph of the target Petri net, or an al-
gorithm based on regions of languages, for which there is a homomorphism from
a transition system to a reachability graph of the target Petri net. Bisimularity
relation defined by the state-based region algorithm specifies exactly one state
in a reachability graph for each state in a transition system, in such a case bisim-
ularity implies homomorphism. So, our decomposition approach can use any of
basic region algorithms, provided this algorithm outputs a safe Perti net, and
there is a homomorphism from an initial transition system to the reachability
graph of the target Petri net.

5.1 Structural Properties

First, we will show that the Discovery algorithm preserve connectivity properties
of subprocess models, i.e. nodes connected within the subprocess model, obtained
on the Step 2 of the Discovery algorithm, will be connected within the unified
model.

Lemma 1 (Connectivity properties). If there is a directed path between a
pair of nodes (i.e., places or transitions) within subprocess model Nreg (Nspec)
and these nodes were not deleted during the construction of the unified Petri net
model N = (P, T, F, λ), then there is a directed path between them within N .

Proof. Let TSdec = (TS, Sreg, Sspec) be a decomposed transition system. Let
us consider two arbitrary nodes u, v ∈ P ′ ∪ T ′ within Nreg = (P ′, T ′, F ′, λreg).
By construction there is a path between them before the deletion of unnecessary
nodes. Let us prove that u, v will be connected after the deletion as well. Consider
transition t ∈ T ′ labeled with e′, which should be deleted along with all incident
arcs (see Fig. 12).

Let us prove that the nodes from •t and t• are still connected with each other.
If so, connection between arbitrary nodes u and v will be preserved. Consider

transition (s1
e′→ s2), s1, s2 ∈ Sreg, which was added to the transition system

constructed for Sreg (see Fig. 12). Let Bspec, Besc, and Bret be transitions of the
decomposed transition system, connecting nodes as it shown in Fig. 5. There is an
alternative path within the transition system between s1 and s2 which contains
transitions from Besc, Bspec and Bret. Since there is a homomorphism from the
transition system to the reachability graph of the target Petri net, there is a path
through Nspec nodes between Petri net transitions: tesc ∈ T and tret ∈ T labeled
with eesc and eret respectively (inner transitions of this path are represented only
by Nspec transitions), which corresponds to a firing sequence within Nspec, since
Nspec contains no tokens before tesc fires. Let us consider Petri net markings:
m1 and m2 which correspond to s1 and s2 respectively. Since there is an arc

corresponding to (s1
e′→ s2) within the reachability graph of Nreg, the following

conditions hold: •t ⊆ m1 and t• ⊆ m2. This implies that every place from •t



e'

...

...

m1

m2

m1

m2

e'

eesc

eret

s1

s2

eesc

eret

Fig. 12. Transition that should be deleted

connected with tesc, and tret is connected with any place from t•, if so places
from •t are still connected with places from t• through Petri net transitions
tesc, and tret. Similarly, it may be proven that the deletion of unnecessary nodes
within Nspec will not lead to a violation of nodes connectivity.

The standard state-based region algorithm could be extended to produce
WF-nets by adding artificial initial and final states, connected by transitions
with unique labels with the original initial and final states respectively. This
follows from the definition of a region. In [24] the extensions for algorithms
based on regions of languages were presented: the first extension produces models
with places that contain no tokens after a case completion, the second extension
doesn’t allow for places to have initial markings, unless they have no incoming
arcs. It is easier to transform a Petri net, which satisfies these conditions, to a
WF-net. Thus, it is important to verify that if subprocess models are WF-nets
then the unified process model also a WF-net.

Theorem 1 (WF-nets). Assume that subprocess models Nreg and Nspec are
WF-nets. Then the unified process model N is a WF-net.

Proof. Let TSdec = (TS, Sreg, Sspec) be a decomposed transition system. The
proof follows from Lemma 1. Source and sink places of N are determined as the
source and sink places of the subprocess model Nreg. Every node within Nreg

is on the path from the source to sink. The source and sink places of Nspec are
connected by input and output arcs respectively with the rest part of the system,
otherwise TS is not a transition system (there are states which are not on the
path from the initial to a final state).

For now, it has been proven that significant structural properties are inherited
by the discovered unified process model.



5.2 Behavioral Properties

In this subsection we show that that unified process model also preserves some
behavioral properties.

First we show that if a basic region algorithm constructs sound WF-nets, then
the composite model will also be a sound WF-net. A reasonable decomposition
of a transition system may help to construct a hierarchy of sound process models.

Theorem 2 (Sound WF-nets). Let subprocess models Nreg and Nspec be sound
WF-nets, then the unified process model N is also a sound WF-net.

Proof. Using Theorem 1 we can show that N is a workflow net. By construction
every state is reachable from the initial state and the final state is reachable
from any state. No dead transitions are added by construction.

The standard state-based region algorithm [12, 13] guarantees that there is
a bisimilarity relation between the initial transition system and the reachability
graph of the target Petri net. This property is inherited by a regular transition
system under the assumption that a basic region algorithm will not produce
reachability graphs with markings which dominate one another (m ⊆ m′). Gen-
erally speaking, state-based region algorithms can produce Petri nets with reach-
ability graphs, containing states with markings which dominate one another. In
that case splitting of labels can be applied to separate the states from the same
region.

Theorem 3 (Bisimulation). If there are bisimularity relations between tran-
sition systems, which correspond to subprocess models, and reachability graphs
RGreg, RGspec of these subprocess models, then there is a bisimularity relation
between a decomposed transition system and the reachability graph of the unified
process model N .

Proof. Since reachability graphs RGreg and RGspec don’t have common states
and transitions, a reachability graph of the unified process model N will be
built as a union of RGreg and RGspec with subsequent deletion of unnecessary
transitions and addition of novel connecting transitions, corresponding to the
transitions Breg and Bspec of the decomposed transition system. Note that no
extra transitions will be added, since we assume that there are no markings that
dominate one another. This will guarantee bisimilarity.

In contrast to the state-based region algorithm which guarantees fitness and
precision, the algorithm based on regions of languages guarantees only fitness,
i.e. every trace can be reproduced in a process model. Let us prove that the
property of language inclusion is also preserved.

Theorem 4 (Language inclusion). Let TSdec = (TS, Sreg, Sspec) be a de-
composed transition system. Assume that Nreg and Nspec are subprocess models
constructed from transition systems TSreg and TSspec with corresponding reacha-
bility graphs RGreg and RGspec. Let Petri net N be the unified process model with
a reachability graph RG. If L(TSreg) ⊆ L(RGreg) and L(TSspec) ⊆ L(RGspec),
then L(TS) ⊆ L(RG).



Proof. Let us consider two transition systems: TSreg and TSspec. For each tran-
sition system there is a homomorphism to the corresponding reachability graph
(see Fig. 8): wreg : TSreg → RGreg, wspec : TSspec → RGspec. Since RGreg and
RGspec don’t have common states and transitions, by construction of the unified
process model N its reachability graph RG will be built as a union of RGreg and
RGspec reachability graphs with subsequent deletion of unnecessary transitions
and addition of novel transitions, which corresponds to transitions connecting
states from Sreg with states from Sspec. Note that we may get extra transitions
connecting states, which dominate the states that should be connected. By con-
struction there is a homomorphism from TS to RG, which implies language
inclusion.

These theoretical observations are of great importance for application of
region-based synthesis since state-based region algorithms can be decomposed
and still produce Petri nets with reachability graphs bisimilar to original transi-
tion systems, language-based algorithms can be decomposed and still guarantee
language inclusion.

6 Related Work

In this section we will give an overview of the process discovery techniques based
on decomposition. An approach for partitioning activities over a collection of pas-
sages in accordance with so-called predefined causal structure was introduced
in [3]. Using this approach discovery can be done per passage. A generic ap-
proach based on horizontal projections of an event log was proposed in [4], this
approach can be combined with different process discovery algorithms and might
be considered as a generalization of passages technique.

More related are approaches based on the decomposition analysis of an entire
transition system [10,17,20]. In [20] an effective method for a union of transition
systems which correspond to different log traces was presented. The main dif-
ference of [20] from the approach presented in this paper is that the aim of [20]
was to distribute the computations, and subsystems were not considered as sub-
processes. The idea proposed in [10] is to generate a set of state machines (Petri
nets with transitions having at most one incoming and at most one outgoing
arc) whose parallel composition can reproduce any trace from an event log. In
contrast to the approach presented in this paper, the decomposition of a transi-
tion system was based only on its structural properties, additional information
about an event log was not considered. An approach for the discovery of can-
cellation regions based on the analysis of a topological structure of an initial
transition system was proposed in [17]. This approach uses state-based region
algorithm to discover regular and exceptional behavior. Improvement of the al-
gorithm proposed in this paper based on the addition of reset arcs in order to
reduce the number of connections between subsystems might be considered as a
generalization of [17].



In this paper we focus on producing readable process models and not on the
decomposition of a transition system in order to distribute the computations,
but the approach can be used for the decomposition of computations as well.

7 Conclusion

This paper presents a novel decomposition approach for discovering more read-
able process models from event logs. Using existing techniques we first produce
a transition system. This transition system is decomposed into a regular and a
special part on the basis of a priori knowledge about an event log. Then one of
the region based discovery algorithms [8,12,13,24] is applied to each part of the
transition system and after that the discovered subprocess models are combined
into a unified model. It is proven that structural and behavioral properties of
subprocess models are inherited by the unified process model.

The results presented in this paper can be used as a starting point for more
advanced methods of discovering better structured and more readable process
models from transition systems. The quality of the model obtained within the
decomposition approach depends significantly on the choice of states partitioning
in a given transition systems. Our future work aims at implementing the pre-
sented discovery algorithm and continue the research with real-life event logs.
Also we plan applying the decomposition approach to discover and build process
models in high-level process languages such as BPMN [19] or YAWL [5].

References

1. W.M.P. van der Aalst. The application of Petri nets to workflow management.
Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst. Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, 2011.

3. W.M.P. van der Aalst. Decomposing Process Mining Problems Using Passages. In
S. Haddad and L. Pomello, editors, Applications and Theory of Petri Nets 2012,
volume 7347, pages 72–91, 2012.

4. W.M.P. van der Aalst. Decomposing Petri Nets for Process Mining: A Generic
Approach. Distributed and Parallel Databases, 31(4):471–507, 2013.

5. W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design and
Implementation of the YAWL System. QUT Technical report, FIT-TR-2003-07,
Queensland University of Technology, Brisbane, 2003.

6. W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek, B.F. van Dongen, E. Kindler,
and C.W. Günther. Process Mining: A Two-Step Approach to Balance Between
Underfitting and Overfitting. Software and Systems Modeling, 9(1):87–111, 2010.

7. E. Badouel, L. Bernardinello, and Ph. Darondeau. Polynomial Algorithms for the
Synthesis of Bounded Nets. In TAPSOFT, volume 915, pages 364–378, 1995.

8. R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process Mining Based on Re-
gions of Languages. In International Conference on Business Process Management
(BPM 2007), volume 4714, pages 375–383, 2007.



9. J. Carmona, J. Cortadella, and M. Kishinevsky. A Region-Based Algorithm
for Discovering Petri Nets from Event Logs. In Business Process Management
(BPM2008), pages 358–373, 2008.

10. J. Carmona, J. Cortadella, and M. Kishinevsky. Divide-and-Conquer Strategies for
Process Mining. In Business Process Management (BPM 2009), volume 5701 of
Lecture Notes in Computer Science, pages 327–343. Springer-Verlag, Berlin, 2009.

11. J. Carmona, J. Cortadella, and M. Kishinevsky. New Region-Based Algorithms for
Deriving Bounded Petri Nets. IEEE Transactions on Computers, 59(3):371–384,
2010.

12. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing Petri
Nets from State-Based Models. In Proceedings of the 1995 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD ’95), pages 164–171, 1995.

13. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri nets
for finite transition systems. IEEE Trans. Computers, 47(8):859–882, 1998.

14. Ph. Darondeau. Deriving Unbounded Petri Nets from Formal Languages. In
CONCUR 1998, volume 1466, 1998.

15. B.F. van Dongen, A.K. Alves de Medeiros, and L. Wenn. Process Mining: Overview
and Outlook of Petri Net Discovery Algorithms. In Transactions on Petri Nets and
Other Models of Concurrency II, volume 5460, pages 225–242, 2009.

16. A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures - Part 1 and Part 2.
Acta Informatica, 27(4):315–368, 1989.

17. A.A. Kalenkova and I.A. Lomazova. Discovery of cancellation regions within pro-
cess mining techniques. In CS&P, volume 1032 of CEUR Workshop Proceedings,
pages 232–244. CEUR-WS.org, 2013.

18. R. Lorenz and G. Juhás. How to Synthesize Nets from Languages: A Survey.
In Proceedings of the Wintersimulation Conference (WSC 2007), pages 637–647.
IEEE Computer Society, 2007.

19. OMG. Business Process Model and Notation (BPMN). Object Management
Group, formal/2011-01-03, 2011.

20. M. Sol and J. Carmona. Incremental process mining. In ACSD/Petri Nets Work-
shops, volume 827 of CEUR Workshop Proceedings, pages 175–190. CEUR-WS.org,
2010.

21. M. Sole and J. Carmona. Process Mining from a Basis of Regions. In Applications
and Theory of Petri Nets 2010, volume 6128, pages 226–245, 2010.

22. I. Vanderfeesten, J. Cardoso, J. Mendling, H.A. Reijers, and W.M.P. van der Aalst.
Quality Metrics for Business Process Models. In BPM and Workflow Handbook
2007, pages 179–190. Future Strategies Inc., Lighthouse Point, Florida, USA, 2007.

23. H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst.
ProM 6: The Process Mining Toolkit. In Proc. of BPM Demonstration Track 2010,
volume 615 of CEUR Workshop Proceedings, pages 34–39, 2010.

24. J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik.
Process discovery using integer linear programming. Fundamenta Informaticae,
94(3):387–412, 2009.


