
Discovering Block-Structured
Process Models from Incomplete Event Logs

Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Eindhoven University of Technology, the Netherlands
{s.j.j.leemans, d.fahland, w.m.p.v.d.aalst}@tue.nl

Abstract One of the main challenges in process mining is to discover a process
model describing observed behaviour in the best possible manner. Since event
logs only contain example behaviour and one cannot assume to have seen all
possible process executions, process discovery techniques need to be able to han-
dle incompleteness. In this paper, we study the effects of such incomplete logs
on process discovery. We analyse the impact of incompleteness of logs on be-
havioural relations, which are abstractions often used by process discovery tech-
niques. We introduce probabilistic behavioural relations that are less sensitive to
incompleteness, and exploit these relations to provide a more robust process dis-
covery algorithm. We prove this algorithm to be able to rediscover a model of the
original system. Furthermore, we show in experiments that our approach even re-
discovers models from incomplete event logs that are much smaller than required
by other process discovery algorithms.

Keywords: process discovery, block-structured process models, rediscoverability, pro-
cess trees

1 Introduction

Organisations nowadays collect and store considerable amounts of event data. For in-
stance, workflow management systems log audit trails, and enterprise resource planning
systems store transaction logs. From these event logs, process mining aims to extract
information, such as business process models, social networks, bottlenecks and com-
pliance with regulations [1]. In this paper we focus on the most challenging problem:
discovering a process model from example traces. Learning a process model (e.g., a
Petri net) from example traces in an event log, called process discovery, is one of the
first and most challenging steps of process mining.

Two problems of logs are particularly challenging for process discovery algorithms.
First, the log may contain infrequent behaviour, which forces algorithms to either ex-
clude this behaviour or return complicated, unreadable models describing all behaviour
[18]. Second, the log might contain insufficient information to discover a process model
that represents the system well: the log might be incomplete. Incompleteness forces al-
gorithms to either exclude the missing behaviour, thereby reducing the as yet unseen
behaviour the model can produce, or include the missing, unknown, behaviour, thereby
risk guessing wrong. In this paper, we focus on handling incomplete logs.

2 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

modelevent logsystem
process discoveryproduces

measure �tness,
precision, generalisationrediscoverability

Figure 1: Traditional model quality assessment (fitness, precision, generalisation) and
rediscoverability.

A notion closely related to incompleteness is rediscoverability. If a process discovery
technique has rediscoverability, it is able to discover models that have the same lan-
guage as the real-life process by which a log was produced [3,5,17]. Figure 1 shows
the context of process discovery, rediscoverability, and how discovered models can be
evaluated. Traditionally, models are evaluated with respect to the event log: fitness mea-
sures what part of the event log is described by the model, precision is high when the
model does not allow too much behaviour that was not in the event log, and generalisa-
tion is high when the model allows more behaviour than just the behaviour in the event
log. Although fitness, precision, and generalisation are intuitively clear, different formal
definitions are possible [13,24,25]. Measuring the quality of a discovered model with
respect to its event log might be useful, but whether the best model for the event log
is the best model for the system is not captured by these measures. Therefore, to com-
pare process discovery techniques it is useful to study rediscoverability, as that gives
theoretical bounds to when a model is language-equivalent to its real-life system.

Rediscoverability is usually proven using assumptions about both log and model
[3,5,17]. A model must be from a certain class, and a log must contain sufficient infor-
mation. The notion what information is sufficient, completeness, depends on the discov-
ery algorithm. Generally, the strongest completeness notion is language-completeness,
i.e., each trace through the process must be present in the log. The weakest completeness
notion is that each process step must occur at least once in the log: activity-completeness
[17].

Typically, rediscoverability can only be guaranteed if the log is complete. In this pa-
per, we investigate the problem of rediscovering process models from event logs, in
particular from incomplete event logs.

Another desirable property of process discovery algorithms is that they return simple
and sound models. A simple model needs few constructs to express its behaviour, and
a sound model is a model free of deadlocks and other anomalies. While an unsound
model might be useful, it is, for instance, not well suited for compliance evaluation
and bottleneck analysis [18]. Therefore, in this paper we will focus on process trees:
abstract hierarchical block-structured Petri nets that are guaranteed to be sound.

The Inductive Miner (IM) [17] is an example of an algorithm that discovers process
trees and for which rediscoverability has been proven. IM applies a divide-and-conquer
approach: it partitions the activities, selects the most important process construct, splits
the log and recurses until a base case is encountered.

In this paper, we adapt IM to handle incomplete logs: we keep the divide-and-conquer
approach, but replace the activity partition step by an optimisation problem. We intro-

Discovering Process Models from Incomplete Event Logs 3

duce relations between activities, estimate probabilities of these relations and search
for a partition of activities that is optimal with respect to these probabilities. Rediscov-
erability is proven assuming log completeness and a sufficiently large log; we give a
lower bound for sufficiency.

In the remainder of this paper, we first explore related work. In Section 3, we in-
troduce logs, Petri nets, process trees and completeness notions. We study effects of
incompleteness on behavioural relations in Section 4 and describe behavioural prob-
abilisations. Section 5 describes the algorithm, Section 6 proves rediscoverability for
sufficiently large logs, and illustrates how incompleteness is handled by the new ap-
proach, compared with other approaches. Section 7 concludes the paper.

2 Related Work

Petri net synthesis aims to build an equivalent Petri net from a transition system or a
language. Region theory, that characterises places in a Petri net, was introduced in [15],
and several synthesis methods were proposed, for instance in [11,21,6,12].

Process discovery differs from Petri net synthesis in the assumption regarding com-
pleteness. Synthesis assumes that the complete language of the system is described in
some form. For process discovery we cannot assume the log to be language-complete,
as typically only a fraction of the possible behaviour can be observed in the event log,
making language-completeness often impossible or infeasible. For example, the lan-
guage of a model with a loop in it contains infinitely many traces, and the language of a
model describing the parallel execution of 10 activities contains at least 10! = 3628800
different traces [1]. In contrast, a typical log only contains a fraction of that.

Many process discovery techniques have been proposed. For instance, after a tran-
sition system has been constructed from the log, state-based region miner techniques
construct a Petri net by folding regions of states into places [4,30]. Typically, state-
based region techniques provide rediscoverability guarantees [10], but have problems
dealing with incompleteness (concurrency is only discovered if sufficient/all interleav-
ings are present).

Process trees, or block structures in general, have been used in process discovery,
both inside the scope of Petri nets [8,2,22], as outside [26,27] the scope of Petri nets.
They provide a natural, structured, well-defined way of describing processes that are
often easily translatable to Petri nets. The process tree formalisms used in [8,17,18]
guarantee soundness as well. Process tree discovery techniques have also been pro-
posed before. For instance, the approach used by [28] constructs a process tree from
a log by enumerating all traces, after which the process tree is simplified. The Evolu-
tionary Tree Miner (ETM) [8] uses a genetic approach to discover a process tree, i.e., a
random population is mutated until a certain stop criterion is met, but as it is steered by
log-based metrics, fitness, precision, generalisation and simplicity, and by its random
nature, it is unable to guarantee rediscoverability. A natural strategy when using block
structures is to apply a divide-and-conquer strategy, which has been applied to process
discovery in for instance [9,38,17,18].

In distinguishing languages of classes of Petri nets, behavioural relations have proved
their worth [31], and they have been used to refine or coarsen models, i.e., making them

4 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

more or less abstract [29,16], to compare process models [32], and to perform pro-
cess discovery. For instance, the behavioural relation used in the α algorithm [3], its
derivatives [35,36], and in [17,18], the directly-follows relation, holds for two activ-
ities if one activity can consecutively follow the other activity. A notion close to the
directly-follows relation is the eventually-follows relation, which holds if one activity
can eventually be followed by another. This eventually-follows relation has been used
in the context of process discovery [28,31,18].

To the best of our knowledge, the influence of incompleteness has not been system-
atically studied either on behavioural relations or process discovery.

3 Traces, Event Logs, Petri Nets and Completeness

Traces, Event Logs. A trace is a sequence of activities: xa, a, by denotes a trace in which
first a occurred, then a again and finally b. Traces can be concatenated: xa, by � xcy �
xa, b, cy. An event log is a multiset of traces. For instance, rxa, a, by3, xb, by2s denotes
an event log in which the trace xa, a, by happened 3 times and xb, by happened 2 times.
The function set transforms a multiset into a set: setpLq � tt|t P Lu; the function Σ
gives the alphabet of the log, i.e., the activities used in it.

Petri Nets, Workflow Nets and Block-Structured Workflow Nets. A Petri net is a bipar-
tite directed graph of interconnected places and transitions, in which tokens on places
model the system state and transitions model process step execution. We use the stan-
dard semantics of Petri nets, see [23].

A workflow net is a Petri net having a single input and a single output place, mod-
elling the initial and final states of the system. Moreover, each element is on a path from
input to output [3]. A consecutive sequence of process executions that brings the system
from the initial state into the final state, corresponds to a trace. The set of traces that
can be produced by a model M , the language of M , is denoted by LpMq.

A block-structured workflow net is a hierarchical workflow net: it can be divided
recursively into workflow nets. An example is shown in Figure 2.

b

c

d e

f

g

a

Figure 2: A block-structured workflow net ME ; filled regions denote the block-
structure; process tree Ñp�p^pa, bq, cq,�pöpÑpd, eq, fq, gqq corresponds to this net.

Process Trees. A process tree is an abstract hierarchical representation of a block-
structured workflow net. The leaves of the tree are activities, representing transitions.
The nodes of the tree, operators, describe how their children are combined. This paper
uses four operators: �, Ñ, ^ and ö. The � operator describes the exclusive choice be-
tween its children, Ñ the sequential composition and ^ the parallel composition. The

Discovering Process Models from Incomplete Event Logs 5

first child of a ö tree is the loop body, the non-first children are redo parts. For instance,
öpa, bq is the composition of a trace of the body a, then zero-or-more times a trace from
a redo part b and a body a again: apbaq�.

Each process tree is easily translatable to a sound workflow net. For example, Fig-
ure 2 shows the block-structured workflow net corresponding to the process tree ME �
Ñp�p^pa, bq, cq,�pöpÑpd, eq, fq, gqq.

To define the semantics of process trees, we assume a finite set of activities Σ to be
given. The language of an activity is the execution of that activity (a process step). The
language of the silent activity τ contains only the empty trace: executing τ adds nothing
to the log. The language of an operator is a combination of the languages of its children.

In the following definition, we use the standard language notations |, � and � [20]. To
characterise ^, we use the shuffle product S1� . . . Sn, which takes sets of traces from
S1 . . . Sn and interleaves their traces t1 P S1, . . . , tn P Sn while maintaining the partial
order within each ti [7]. For instance,

txa, byu� txc, dyu � txa, b, c, dy, xa, c, b, dy, xa, c, d, by,

xc, d, a, by, xc, a, d, by, xc, a, b, dyu

Using this notation, we define the semantics of process trees:

Lpτq � tx yu

Lpaq � txayu for a P Σ
Lp�pM1, . . . ,Mnqq � LpM1q|LpM2q . . .LpMnq

LpÑpM1, . . . ,Mnqq � LpM1q � LpM2q � � �LpMnq

Lp^pM1, . . . ,Mnqq � LpM1q� LpM2q . . .LpMnq

LpöpM1, . . . ,Mnqq � LpM1qpLp�pM2, . . . ,MnqqLpM1qq
�

As an example, the language of ME is pab|ba|cqpdepfdeq�|gq. The function Σ gives
the alphabet of a process tree: ΣpMEq � ta, b, c, d, e, f, gu. We use

À
to denote

the set of operators, and often ` to denote a process tree operator: ` P
À

,
À

�
t�,Ñ,^,öu. Obviously, the order of children for � and ^ and the order of non-first
children of ö is arbitrary.

Directly-Follows Relation, Transitive Closure and Graphs. The directly-follows rela-
tion ÞÑ has been proposed in [3] as an abstraction of the behaviour described by a model
or a log. From a model M , take two activities a and b. If b can follow a directly in M ,
x. . . , a, b, . . .y P LpMq, then a ÞÑM b. For a log L, ÞÑL is defined similarly. For logs,
ÞÑ is monotonic: for a pair of activities, ÞÑ cannot cease to hold by adding more traces
to the log.

A ÞÑ-path is a sequence a1 . . . ak of activities such that k ¥ 2 and @1¤i kai ÞÑ ai�1.
The transitive closure of ÞÑ is denoted by ÞÑ�: for activities a and b, the relation a ÞÑ�b
holds if there exists a ÞÑ-path from a to b. 1 For a model M (resp. a log L), StartpMq

1 We did not choose the eventually-follows/weak-order relation [18,31], as its completeness
does not survive log splitting; Lemma 11 does not hold for it.

6 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

b

a
g

c
f

d

e

(a) ÞÑ-graph of ME

b

a
g

c
f

d

e

(b) ÞÑ�-graph of ME

Figure 3: Graphs of ME showing its directly-follows relation ÞÑ and its transitive
closure ÞÑ�.

(resp. StartpLq) denotes the start activities, found at the beginning of a trace, and
EndpMq (resp. EndpLq) the end activities, that can conclude a trace.

Figure 3a shows the directly-follows relation of ME in graph notation: a directly-
follows graph. In this graph, an edge is drawn between a pair of activities px, yq if
x ÞÑ y. Similarly, Figure 3b shows the graph of ÞÑ� for ME .

Completeness. Using these relations, we introduce two completeness notions, between
a model M and a log L:
– L is activity complete to M (L �ΣM), if each activity of M is present in L at least

once: ΣpMq � ΣpLq.
– L is directly-follows complete to M (L �ÞÑM), if L is activity-complete to M , its

directly-follows relation is complete, and both start and end activities are complete:
L �ΣM , ÞÑM � ÞÑL, StartpMq � StartpLq and EndpMq � EndpLq.

Partitions and Cuts. A partition is a distribution of an activity set Σ into disjoint non-
empty subsets Σ1 . . . Σn, with n ¡ 1. A pair of activities pa, bq is partitioned by a
partition Σ1, . . . , Σn if a and b are not both in the same Σi. A cut is a partition com-
bined with a process tree operator. If a pair of activities is partitioned by the partition
in a cut, the pair crosses the cut. For example, pÑ, tau, tb, c, d, e, fuq is a cut, activity
pair pa, bq crosses it and activity pair pb, dq does not.

Obviously, any process tree can be rewritten to a language-equivalent binary pro-
cess tree. Therefore, without loss of generality, in this paper we consider only binary
partitions and cuts.

4 Behavioural Relations

In many Petri net discovery algorithms, such as [3,17,18,35,36], a two-stage approach
is used: first, an abstraction of the log is derived, and second, from this abstraction a
model is generated. The directly-follows relation ÞÑ is often used as a behavioural re-
lation. In this section, we first describe the influence of incompleteness on behavioural
relations. To this end, we classify pairs of activities inspired by the process tree oper-
ators, by using the ÞÑ relation, after which we show the effect incompleteness has on

Discovering Process Models from Incomplete Event Logs 7

this classification. Second, we introduce a probabilistic version of the classification that
helps discovery techniques deal with incompleteness.

Figure 4 identifies nine cases for ÞÑ and ÞÑ� between two given activities a and b,
and organises these cases in a lattice. The structure of the lattice follows from ÞÑ and
ÞÑ�: an edge in the lattice corresponds to an extension of the ÞÑ-relation with one pair
of activities.

The lattice yields five relations between activities: the commutative�,^ and öi, and
the non-commutative Ñ and ös. For instance, if b ÞÑ a and a �ÞÑ�b, then Ñpa, bq, and if
a ÞÑ�b, b ÞÑ�a, a �ÞÑ b and b �ÞÑ a, then öipa, bq. Informally, �pa, bq denotes that a and
b are in an exclusive choice relation, Ñpa, bq denotes that a and b are in a sequence
relation, and ^pa, bq denotes that a and b are in a parallel relation. These are similar to
the α-relations #W , ÑW and ‖W [3], but act globally instead of locally.

Both öipa, bq (loop indirect) and öspa, bq (loop single) denote that a and b are in a
loop relation. If we combined them into a single relation, this single relation would not
give sufficient information to partition the activities. Using the two relations ös and öi

as given by the lattice does, as will be proven in Section 6.

We consider the commutative cases, for instance ^pa, bq and ^pb, aq, to be equiva-
lent.

a�→bb�→a

a�→bb�→a

)a, b(∧

)a, b(→ a�→bb�→a
)b, a(→

)a, b(×
)b, a(×

)b, a(∧

)b, a(→)a, b(→

)b, a(s�)a, b(s�

)a, b(i�
)b, a(i� a→��bb→��a

a→��bb→��a

b→��aa→��b

b+�→a b+→���a

b+�→a

b+→���a

b+�→ab+�→a

b+�→a

b+�→a

a→��b

a→��b

a→��bb→��a

b→��a

b→��a

a+→���b

a+→���b

a+→���b

a+�→b

a+�→b a+�→b

a+�→b

a+�→b

a+�→b

b+→���a

Figure 4: Activity relations; the arrows define a lattice.

Consider again Petri net ME shown in Figure 2. Figure 5 shows the activity re-
lations of ME as graphs. Consider the log LE � rxc, d, e, f, d, e, f, d, ey, xb, a, d, ey,
xa, b, d, e, f, d, ey, xc, gys, which we produced usingME , but LE is not directly-follows
complete to ME , as a ÞÑ g, b ÞÑ g, a ÞÑ�g and b ÞÑ�g hold in ME but not in LE . There-
fore, �pa, gq and �pb, gq hold in LE ; Figure 6 shows how � and Ñ change. For LE ,
a process discovery algorithm will regard a and b to be exclusive to g, while ME puts
them in sequence, and thus be unable to rediscover ME . The problem illustrated with
these activity relations is inherent to any process discovery algorithm using behavioural
relations; any technique that just uses behavioural relations is likely unable to rediscover
a model if the behavioural relations of the log are not complete.

8 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

b

a
g

c
f

d

e

(a) �-graph

b

a
g

c
f

d

e

(b) Ñ-graph

b

a
g

c
f

d

e

(c) öi-graph

b

a
g

c
f

d

e

(d) ös-graph

b

a
g

c
f

d

e

(e) ^-graph

Figure 5: Activity relations of ME as graphs. In the Ñ-graph a directed edge is
drawn from a to b if Ñpa, bq holds, and similar for ös. For �, ^ and öi, which are
commutative, undirected edges are drawn.

b

a
g

c
f

d

e

(a) �-graph

b

a
g

c
f

d

e

(b) Ñ-graph

Figure 6: Two activity relations of LE as graphs. Notice that Ñpa, gq and Ñpb, gq do
not hold anymore, while �pa, gq and �pb, gq now do.

In the following, we explore ways to use information from incomplete logs that could
help to rediscover the original model. Therefore, in the remainder of this paper we as-
sume that the log only contains behaviour from its system, i.e., no noise is present. First,
some information in the log may allow us to conclude that a particular relation between
two activities cannot hold. For instance, if the log contains a trace xb, ay, then Ñpa, bq
cannot hold. These violations follow from Figure 4: if the log contains information that
a relation ` holds, then any weaker relation, i.e., not reachable from `, cannot hold;
one can only move up in the lattice.

Second, the idea is, instead of using a binary choice, to rather use an estimated proba-
bility that a relation holds, an idea also used in for instance the Heuristics miner [33,34].
For each of the activity relations `, we introduce a probabilistic version p`: for activ-
ities a and b, p`pa, bq denotes an artificially estimated probability that pa, bq are in a
`-related. Using the probabilistic versions makes it easier for techniques to handle in-
completeness: in our example, instead of a binary choice whether Ñpa, gq and Ñpb, gq
hold or not, we can compare the probabilities pÑ and p� to make a choice.

Discovering Process Models from Incomplete Event Logs 9

Our choice for these p` is shown in Table 1. Let M be a model and L a log of M .
Then, using Figure 4, we distinguish three cases and choose p`pa, bq as follows:
– if `pa, bq holds in L, it makes sense to choose p`pa, bq as the highest of all relations

for the pair pa, bq. The more frequent activities a and b occur in L, the more confident
we are that `pa, bq holds for M , and not some stronger relation. We choose p`pa, bq

as follows: let zpa, bq � |a|�|b|
2 denote the average number of occurrences of a and

b, then we define p`pa, bq � 1� 1
zpa,bq�1 , yielding a number between 1

2 and 1.
– if some relation bpa, bq, holds in L from which `pa, bq is unreachable, then L con-

tains a violation to p`pa, bq, as we assumed L to be noise-free and the behavioural
relations cannot cease to hold by adding observations. Therefore, we choose p`pa, bq
low: 0.

– if some relation b1pa, bq holds in L from which `pa, bq can be reached, i.e., p`pa, bq
could hold by adding more traces to L, we choose to divide the remaining 1

zpa,bq�1

evenly over all remaining entries, such that the probabilities for each pair pa, bq sum
up to 1.

For example, in case of LE , we get p�pa, gq � 0.6 and pÑpa, gq � 0.07.

Table 1: Our proposal for probabilistic activity relations for activities a and b, with
zpa, bq � p|a| � |b|q{2. Negations of relations are omitted from the first column.

p�pa, bq pÑpa, bq pÑpb, aq pöipa, bq pöspa, bq pöspb, aq p^pa, bq

(nothing) 1� 1
z�1

1
6
� 1
z�1

1
6
� 1
z�1

1
6
� 1
z�1

1
6
� 1
z�1

1
6
� 1
z�1

1
6
� 1
z�1

a ÞÑ�b 0 1� 1
z�1

0 1
4
� 1
z�1

1
4
� 1
z�1

1
4
� 1
z�1

1
4
� 1
z�1

b ÞÑ�a 0 0 1� 1
z�1

1
4
� 1
z�1

1
4
� 1
z�1

1
4
� 1
z�1

1
4
� 1
z�1

a ÞÑ�b^ b ÞÑ�a 0 0 0 1� 1
z�1

1
3
� 1
z�1

1
3
� 1
z�1

1
3
� 1
z�1

a ÞÑ b 0 1� 1
z�1

0 0 1
2
� 1
z�1

0 1
2
� 1
z�1

a ÞÑ b^ b ÞÑ�a 0 0 0 0 1� 1
z�1

0 1
z�1

b ÞÑ a 0 0 1� 1
z�1

0 0 1
2
� 1
z�1

1
2
� 1
z�1

b ÞÑ a^ a ÞÑ�b 0 0 0 0 0 1� 1
z�1

1
z�1

a ÞÑ b^ b ÞÑ a 0 0 0 0 0 0 1

In the next section, we demonstrate how to use any system of probabilistic relations
in a concrete algorithm; one could define Table 1 differently, as long as for each pair of
activities pa, bq and each relation `, a probability p`pa, bq is available. In Section 6, we
will show that our choices for p` lead to a correct algorithm. We expect that the proofs
given in Section 6 easily extend to other choices, but the precise class of acceptable p`
needs further research.

5 Algorithm

In this section, we demonstrate how the probabilistic activity relations defined in Sec-
tion 4 can be used to discover process trees.

We use a divide-and-conquer approach and adapt ideas from IM [17] to introduce
a new disovery algorithm that we call Inductive Miner - incompleteness (IMin). IMin

10 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

consists of three steps that are applied recursively: first, the ÞÑ-graph of the log and
its transitive closure ÞÑ� are computed. Second, a cut is chosen such that the relations
between pairs crossing the cut have the highest probability according to Table 1. The
operator of the chosen cut is recorded. Third, using the cut, the log is split into a sublog
for each part and on each sublog, IMin recurses. The recursion ends when a base case, a
log containing just a single activity, is encountered. The hierarchy of recorded operators
is a process tree.

We first describe how to accumulate the probabilities of Table 1 to assess the prob-
ability of a cut. Second, we give the algorithm, an example and a description of our
implementation.

5.1 Accumulated Estimated Probabilities for Cuts

Given activity relation probabilities, such as the ones defined in Table 1, we compute
an accumulated probability for a cut. Informally, for ` P t�,Ñ,^u, the accumulated
probability p` is the average p` over all partitioned pairs of activities.

Definition 1 (accumulated probability for �, Ñ and ^). Let c � p`, Σ1, Σ2q be a
cut, with ` P t�,Ñ,^u. Then p`pΣ1, Σ2q denotes the accumulated probability of c:

p`pΣ1, Σ2q �

°
aPΣ1,bPΣ2

p`pa, bq

|Σ1| � |Σ2|

Note that a Ñ, �, or ^ cut requires all pairs of activities to be in the same relation
sufficiently often. For a loop cut, this is not sufficient, as all crossing pairs of activities in
a loop are in a loop relation (ös Yöi). This loop relation suffices to describe the prob-
ability whether all activities are indeed in a loop, but on its own cannot distinguish the
body of a loop from its redo parts. For this, we have to explicitly pick the start and end
activities of the redo parts, such that a redo start activity follows a body end activity, and
a redo end activity is followed by a body start activity. This direct succession in a loop
is expressed in ös. Hence, we obtain the following probability that c � pö, Σ1, Σ2q
is a loop cut for the chosen redo start activities S2 and loop redo end activities E2; the
start and end activities of the body are the start and end activities of the log. In the next
section, we show how S2 and E2 could be chosen.

Definition 2 (accumulated probability for ö). Let c � pö, Σ1, Σ2q be a cut, L be a
log, and S2, E2 be sets of activities. We aggregate over three parts: start of a redo part,
end of a redo part and everything else:

redostart �
¸

pa,bqPEndpLq�S2

pös
pa, bq

redoend �
¸

pa,bqPE2�StartpLq

pös
pa, bq

indirect �
¸

aPΣ1,bPΣ2

pa,bqRpEndpLq�S2qYpE2�StartpLqq

pöi
pa, bq

Discovering Process Models from Incomplete Event Logs 11

Then, pöpΣ1, Σ2, S2, E2q denotes the accumulated probability of c:

pöpΣ1, Σ2, S2, E2q �
redostart � redoend � indirect

|Σ1| � |Σ2|

In this definition, redostart and redoend capture the strength of S2 and E2 really being
the start and end of the redo parts; indirect captures the strength that all other pairs of
activities that cross Σ1, Σ2 are in a loop relation.

For readability reasons, in the following, we will omit the parameters S2 and E2.

5.2 The Algorithm: Inductive Miner - incompleteness (IMin)

Next, we introduce a process discovery algorithm that uses the accumulated estimations
of definitions 1 and 2 in a divide-and-conquer approach.

For this, we introduce a parameter that influences a threshold of acceptable incom-
pleteness. By default, a cut with highest p` is to be selected at all times. However,
a low p` might indicate that the behaviour in the log cannot be described well by a
block-structured Petri net. Therefore, a parameter h is included: if there is no cut with
p` ¥ h, a flower model öpτ, a1, . . . , amq with ta1, . . . , amu � ΣpLq, allowing for
any trace over ΣpLq [17], is returned.

function IMIN(L)
if L � rxayxs with a P Σ and x ¥ 1 then

return a
end if
p`, Σ1, Σ2q Ð cut of ΣpLq with highest p`pΣ1, Σ2q; ` P

À

if p`pΣ1, Σ2q ¥ h then
L1, L2 Ð SPLITpL, p`, Σ1, Σ2qq
return `pIMinpL1q, IMinpL2qq

else
return öpτ, a1, . . . , amq where ta1, . . . , amu � ΣpLq

end if
end function
IMin contains two non-trivial operations: selecting a cut with highest p` and the

SPLIT function. To select a cut with highest p`, and in case of ö to choose S2 and E2,
our implementation uses an SMT-solver. For more details of the translation to SMT,
please refer to [19].

The function SPLIT splits a log L into sublogs L1 and L2, according to a given cut
c � p`, Σ1, Σ2q, by projecting the traces of L on Σ1 and Σ2. For example, SPLIT
applied to a sequence cut pÑ, tau, tbuq and a trace xa, a, b, by yields xa, ay and xb, by.
In addition, for ö, traces are split on the points where the trace ‘leaves’ Σ1 and ‘en-
ters’ Σ2. For example: SPLITprxa, b, a, a, b, ays, pö, tau, tbuqq yields rxay2, xa, ays and
rxby2s. For a more detailed formal description, please refer to [17].

IMin has been implemented as part of the Inductive Miner plug-in of the ProM frame-
work [14], available at http://www.promtools.org.

Example 3. As an example, consider again the log LE � rxc, d, e, f, d, e, f, d, ey,
xb, a, d, ey, xa, b, d, e, f, d, ey, xc, gys. If IMin is applied to LE with h � 0, the first

12 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

most likely cut is pÑ, ta, b, cu, td, e, f, guq, with a pÑ of about 0.64. The choice for Ñ
is recorded, and LE is split into rxcy2, xb, ay, xa, bys and rxd, e, f, d, e, f, d, ey, xd, ey,
xd, e, f, d, ey, xgys. Then, IMin recurses on both these sublogs. Figure 7 shows the
recursive steps that are taken by IMin. The final result is Ñp�p^pa, bq, cq,
�pöpÑpd, eq, fq, gqq, which is equal to ME .

)}d, e, f, g}{a, b, c{,→(

)}c{,}a, b{,×(

)}b{,}a{,∧(

)}g{,}d, e, f{,×(

)}f{,}d, e{,�(

)}e{,}d{,→(a b

c

d e

f

g

64.0

74.0

00.1

74.0

82.0

86.0

Figure 7: Running example: IMinpLEq. As a first step, the cut with highest p` is
pÑ, ta, b, cu, td, e, f, guq, with p` � 0.64. Then, IMin recurses as shown.

6 Rediscoverability

In this section, we report on the rediscoverability of IMin. We first describe a class of
process trees, for which we then prove that IMin has rediscoverability, given a directly-
follows complete log in which each activity occurs sufficiently often. After that, we
report on experiments showing that IMin manages to rediscover these process trees,
even from smaller logs than those needed by other discovery algorithms.

6.1 Class of Rediscoverable Process Trees; Normal Form

The class of process trees CR for which we will prove rediscoverability is as follows:

Definition 4 (Class CR). Let M be a process tree. Then M belongs to CR if for each
(sub)tree M 1 at any position in M , it holds that
– The subtree is not a silent activity: M 1 � τ
– If M 1 � `pM 1

1 . . .M
1
nq, with ` P

À
, then no activity appears more than once:

@1¤i j¤nΣpM
1
iq XΣpM 1

jq � H
– IfM 1 � öpM 1

1 . . .M
1
nq, thenM 1

1 is required to have disjoint start and end activities:
StartpM 1

1q X EndpM 1
1q � H

In order to prove language-rediscoverability, we use a language-unique normal form.
Each process tree can be converted into this normal form using the following language-
preserving reduction rules. If no rule can be applied to a tree, the tree is in language-
unique normal form [17].

Note that the order of children of � and ^, and redo children of ö, is arbitrary.

Discovering Process Models from Incomplete Event Logs 13

Definition 5 (Normal Form). Let M be a process tree. Then applying the following
reduction rules exhaustively on subtrees of M yields a language-unique normal form,
in which ` denotes a process tree operator:

`pM 1q ÑM 1

�p� � �1 ,�p� � �2q, � � �3q Ñ �p� � �1 , � � �2 , � � �3q

Ñp� � �1 ,Ñp� � �2q, � � �3q Ñ Ñp� � �1 , � � �2 , � � �3q

^p� � �1 ,^p� � �2q, � � �3q Ñ ^p� � �1 , � � �2 , � � �3q

öpöpM 1, � � �1q, � � �2q Ñ öpM 1, � � �1 , � � �2q

öpM 1, � � �1 ,�p� � �2q, � � �3q Ñ öpM 1, � � �1 , � � �2 , � � �3q

Using this normal form, IMin can discover the language of any tree by searching for
only binary cuts. For example, if M � ÑpM1,M2,M3q, it is perfectly fine to discover
either ÑpM1,ÑpM2,M3qq or ÑpÑpM1,M2q,M3q.

We say that a cut c conforms to a model M in normal form if selecting c does not
disable discovery of a tree equivalent to M :

Definition 6. Let c � p`, Σ1, Σ2q be a cut and let M � `pM1 . . .Mnq be a model
in normal form. Then c conforms to M if no ΣpMiq is partitioned: @iDjΣpMiq � Σj .
Moreover, for non-commutative operators, order must be maintained.

6.2 Formal Rediscoverability

The main theorem states that any model from class CR can be rediscovered from a
directly-follows complete log whose activities occur at least a certain number of times.
Let leastpLq denote the number of times the least occurring activity occurs in a log L.

Theorem 7. Assume a model M that is of class CR. Then there exists a k P N such
that for all logs L with setpLq � LpMq, L �ÞÑM and leastpLq ¥ k, it holds that
LpIMinpLqq � LpMq.

We prove the theorem as follows: we first show that IMin selects the correct root oper-
ator (Lemma 9), then that IMin selects a partition corresponding toM (Lemma 10), and
finally that log splitting yields correct directly-follows complete sublogs (Lemma 11),
on which IMin recurses.

In these lemmas, we will use a very general property of partitions: any two partitions
share at least one pair of activities that crosses both partitions.

Lemma 8. Take two binary partitions Σ1, Σ2 and Σ1
1, Σ

1
2, both of the same Σ. Then

there is a pair of activities that is partitioned by both partitions.

Proof. Towards contradiction, assume there is no pair that is partitioned by bothΣ1, Σ2

and Σ1
1, Σ

1
2. Take a1, a

1
1 P Σ1, a2 P Σ2. Pairs pa1, a2q and pa11, a2q are partitioned

by Σ1, Σ2, so by assumption they are not partitioned by Σ1
1, Σ

1
2. Thus, there is an

1 ¤ i ¤ 2 such that a1, a
1
1, a2 P Σ

1
i. As we posed no restrictions on a1 and a11, for some

1 ¤ i ¤ 2, Σ1 � Σ1
i. By similar reasoning, Σ2 � Σ1

i, so Σ1 Y Σ2 � Σ1
i. Therefore,

Σ1
i � Σ and hence Σ1

1, Σ
1
2 is not a partition. [\

14 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

In the following lemma, we prove that for each log for which least is sufficiently
large, IMin selects the correct root operator.

Lemma 9. Assume a reduced model M � `pM1, . . . ,Mnq. Then there exists a k P N
such that for all logs L with setpLq � LpMq, L �ÞÑM and leastpLq ¥ k, it holds that
IMinpLq selects `.

Proof. IMin selects binary cuts, while M can have an arbitrary number of children.
Without loss of generality, assume that c � p`, Σ1, Σ2q is a binary cut conforming to
M . Let c1 � pb, Σ1

1, Σ
1
2q be an arbitrary cut of M , with b � `. We need to prove that

p`pΣ1, Σ2q ¡ pbpΣ
1
1, Σ

1
2q, which we do by computing a lower bound for p`pΣ1, Σ2q

and an upper bound for pbpΣ1
1, Σ

1
2q and then comparing these two bounds. Apply case

distinction on whether ` � ö:
– Case ` � ö. We start with the lower bound for p`pΣ1, Σ2q. By Definition 1,

p`pΣ1, Σ2q �

°
aPΣ1,bPΣ2

p`pa, bq

|Σ1| � |Σ2|

By semantics of process trees, Figure 4, setpLq � LpMq andL �ÞÑM , for each ac-
tivity pair pa, bq that crosses c,`pa, bq holds. For each such pair, we chose p`pa, bq ¥
1� 1

zpa,bq�1 (note that this would be an equality, save for p^pa, bq, which is 1). Thus,

p`pΣ1, Σ2q ¥

°
aPΣ1,bPΣ2

1� 1
zpa,bq�1

|Σ1| � |Σ2|

For all a and b, zpa, bq � |a|�|b|
2 ¥ minp|a|, |b|q ¥ leastpLq. Thus,

p`pΣ1, Σ2q ¥ 1�
1

leastpLq � 1
(1)

Next, we prove an upper bound for pbpΣ1
1, Σ

1
2q. By Definition 1,

°
aPΣ1

1,bPΣ
1

2
pbpa, bq

|Σ1
1| � |Σ

1
2|

� pbpΣ
1
1, Σ

1
2q

Let pu, vq be a pair partitioned by both Σ1, Σ2 and Σ1
1, Σ

1
2. By Lemma 8, such a

pair exists. For all other pa, bq � pu, vq, it holds that pbpa, bq ¤ 1 (abusing notation
a bit by combining öi and ös), and there are |Σ1| � |Σ2| � 1 of those pairs.

p|Σ1
1| � |Σ

1
2| � 1q � 1� 1 � pbpu, vq

|Σ1
1| � |Σ

1
2|

¥ pbpΣ
1
1, Σ

1
2q

As pu, vq crosses c, `pu, vq holds. Then by inspection of Table 1, pbpu, vq ¤
1

zpu,vq�1 . Define y to be |Σ1
1| � |Σ

1
2|.

py � 1q � 1
zpu,vq�1

y
¥ pbpΣ

1
1, Σ

1
2q

Discovering Process Models from Incomplete Event Logs 15

From zpa, bq � |a|�|b|
2 ¥ 1 follows that 1

zpu,vq�1 ¤
1
2 . Thus,

py � 1q � 1
2

y
¥ pbpΣ

1
1, Σ

1
2q (2)

Using the two bounds (1) and (2), we need to prove that

1�
1

leastpLq � 1
¡
py � 1q � 1

2

y
(3)

Note that y is at most tΣpMq{2u � rΣpMq{2s, which allows us to choose k such that
k ¡ 2y � 1. By initial assumption leastpLq ¥ k, and therefore (3) holds. Hence,
p`pΣ1, Σ2q ¡ pbpΣ

1
1, Σ

1
2q.

– Case ` � ö. Using reasoning similar to the ` � ö case, we derive (1). We directly
reuse (2) to arrive at (3) and conclude that p`pΣ1, Σ2q ¡ pbpΣ

1
1, Σ

1
2q.

Thus, p`pΣ1, Σ2q ¡ pbpΣ
1
1, Σ

1
2q holds for all `. As IMin selects the cut with highest

p`, IMin selects `. [\

Next, we prove that for a log L, if leastpLq is sufficiently large, then IMin will select
a partition conforming to M .

Lemma 10. Assume a model M � `pM1, . . . ,Mnq in normal form. Let c �
p`, Σ1, Σ2q be a cut conforming to M , and let c1 � p`, Σ1

1, Σ
1
2q be a cut not con-

forming to M . Then there exists a k P N such that for all logs L with setpLq � LpMq,
L �ÞÑM and leastpLq ¥ k, holds that p`pΣ1, Σ2q ¡ p`pΣ

1
1, Σ

1
2q.

The proof strategy for this lemma is similar to the proof of Lemma 9: we prove that
at least one “misclassified” activity pair pu, vq contributes to the average p`pΣ

1
1, Σ

1
2q.

Please refer to [19] for a detailed proof.
As a last lemma, we show that log splitting produces correct and directly-follows

complete sublogs.

Lemma 11. Assume a modelM in normal form and a log L such that setpLq � LpMq
and L �ÞÑM . Let c � p`, Σ1, Σ2q be a cut corresponding to M , and let L1, L2

be the result of SPLITpL, cq. Then, there exist process trees M1 and M2, such that
Σ1 � ΣpM1q,Σ2 � ΣpM2q, the normal form of`pM1,M2q isM , setpL1q � LpM1q,
L1 �ÞÑM1, setpL2q � LpM2q and L2 �ÞÑM2.

For this lemma, we use that M can be converted into a binary tree by using the reduc-
tion rules of Definition 5 reversed. As c conforms to M , it is possible to convert M to
`pM1,M2q such that Σ1 � ΣpM1q and Σ2 � ΣpM2q. The strategy for the remaining
part of the proof is to show for each operator that SPLIT returns sublogs L1 and L2

that are valid for M1 and M2 (@i : setpLiq � LpMiq). We then prove that L1 and L2

are directly-follows complete to M1 and M2 (@i : Li �ÞÑMi). Please refer to [19] for
details.

Using these lemmas, we can prove rediscoverability for sufficiently large logs.

Proof (of Theorem 7). We prove the theorem by induction on model sizes, being |ΣpMq|.

16 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

– Base case: M � a. As setpLq � LpMq, L � rxayxs for some x ¥ 1. By code
inspection, LpIMinpLqq � LpMq.

– Induction step: assume that the theorem holds for all models smaller than M . By
Lemma 9 and 10, IMin selects a cut c � p`, Σ1, Σ2q conforming to M . Next
SPLIT(L, c) returns an L1 and L2. By Lemma 11, there exists process trees M1, M2

such that Lp`pM1,M2qq � LpMq. By Lemma 11, setpL1q � LpM1q, L1 �ÞÑM1,
setpL2q � LpM2q and L2 � ÞÑM2. As of the induction hypothesis and the fact that
L1 and L2 are sufficiently large by construction, Lp`pIMinpL1q, IMinpL2qqq �
Lp`pM1,M2qq � LpMq. Because IMinpLq � `pIMinpL1q, IMinpL2qq, there exists
a k P N such that if leastpLq ¥ k, then LpIMinpLqq � LpMq. [\

In the proofs of Lemmas 9 and 10, we chose k ¡ 2 � tΣpMq{2u � rΣpMq{2s � 1.
This gives an upper bound for the minimum leastpLq required, and a characterisation
of sufficiency:

Corollary 12. A bound for k and leastpLq as used in Theorem 7 is determined by the
size of the alphabet: leastpLq ¥ k ¥ 2 � t|ΣpMq|{2u � r|ΣpMq|{2s.

Last, the unsolved question remaining is whether directly-follows completeness of a
log implies that the log is sufficiently large, and that a generalised version of Theorem 7
holds:

Conjecture 13. Assume a model M and a log L such that setpLq � LpMq and
L �ÞÑM . Then LpIMinpLqq � LpMq.

The experimental results reported in the remainder of this paper support this conjecture.

6.3 Experimental Result

In this section, we show that IMin can rediscover models from small logs. In addi-
tion, we investigate how various process discovery algorithms, including IMin, handle
incompleteness.

Experiment. In the experiment, we aim to answer three questions: 1) Can IMin redis-
cover the language of models? 2) How does IMin handle incomplete logs? 3) How do
other algorithms handle incomplete logs?

To answer questions 1 and 2, we investigated how large the log of a given model M
has to be to rediscover the language ofM , by generating logs of various sizes and trying
to rediscover M from these logs. For question 3, we investigated how large logs need
to be for other algorithms, such that adding more traces to the log would not change the
result of the algorithm.

Setup. For answering questions 1 and 2, we generated 25 random process trees with
15 activities from class CR. For each tree M , 20 random, sufficiently large, directly-
follows complete logs were generated. For each log L, we verified that LpMq was
rediscovered from it: LpIMinpLqq � LpMq. Then we performed a binary search on
L to find the smallest sublog of L from which, in normal form, M was rediscovered.

Discovering Process Models from Incomplete Event Logs 17

These sublogs were obtained by removing traces from L, and on each smallest sublog
found, we measured the number of traces and completeness of ÞÑ.

To answer question 3, comparing IMin to other algorithms, we used a similar proce-
dure: for each discovery algorithm D, we used the same randomly generated process
trees to find, for each tree, the smallest logs LD such that adding more traces to LD
would always return a model D1 � DpLDq (up to isomorphism). We call the model
DpLDq for such a smallest log LD a top model MT . For this experiment, we con-
sidered the following discovery algorithms: Inductive Miner (IM) [17], Integer Linear
Programming miner (ILP) [37], α-algorithm (α) [3], Region miner (RM) [30,4] and
flower model, all plug-ins of the ProM framework [14]. The flower model was included
as a baseline, as it will reach its top model if L �ΣM : it only depends on the presence
of activities in the log. All miners were applied using their default settings, and for
IMin h was set to 0. For both procedures, we experimentally observed that event logs
with 16000 traces were directly-follows complete and sufficiently large to rediscover
the original model (in case of IMin) or to find the top model (for other algorithms).

Results. Table 2 shows the results. For example, IM on average required 97% of the
ÞÑ-pairs of the model to be present in the log to discover its top model MT . For some
models, the ILP implementation we used did not return an answer. Averages are given
without these models and are marked with a preceding *.

Table 2: Results of the experiments. Column 2: for how many models M was its
language rediscovered in MT , averaged over logs. Column 3: average number of traces
in the smallest sublogs. Column 4: average ratio of ÞÑ-pairs present in smallest sublogs
compared to the models M .

miner LpMq � LpMT q number of traces ÞÑ-completeness

α 0% 133.132 1.000
ILP 12% *258.529 *0.980
RM 4% 132.896 1.000
IM 100% 85.256 0.971
IMin 100% 32.568 0.875
Flower 0% 11.620 0.641

a0
a1

a2

a4

a3
a5 a6

a7 a8

a9 a10

a14

a11

a13

a12

Figure 8: Petri net representation of MF : ÑpöpÑpa0,�pa1, a2qq,
a3, a4q,öp^pÑpa5, a6q,Ñpa7, a8q,Ñpa9, a10qq,Ñpa11, a12q, a13, a14q

One of the randomly generated models is shown in Figure 8. To illustrate handling
of incompleteness, we used this model to find the smallest sublog for which IMin re-

18 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

discovered MF , and applied other discovery algorithms to that sublog. The results are
shown in Figure 9.

a0

a3

(a) Excerpt of α; a0 cannot fire;
unsound.

(b) Excerpt of RM; labels have been removed; lots of
places necessary to represent parallelism.

a0
a2

a5

(c) Excerpt of ILP; a0 can fire at any
time.

(d) IM; labels have been removed; misses the central
parallelism.

Figure 9: Models resulting from discovery of a smallest sublog of IMin.

Discussion. Answering question 1, whether IMin can rediscover the language of mod-
els, for all models and logs, IMin discovered the original model or a language-equivalent
one, and even did not require the log to be directly-follows complete, which supports
Conjecture 13. IMin required on average 87.5% of the ÞÑ-relation pairs to be present
in the log to discover its top model. This suggests that IMin is able to handle directly-
follows incomplete logs, answering question 2.

The flower model provides a baseline: it discovers a model based on the activities
that are present in a log; no process discovery technique can be expected to reach its
top model without all activities being present in the log. For all models, IMin required
fewer or equally many traces than any other discovery algorithm, except for the flower
model, to reach its top model.

Remarkably, also IM did not require the ÞÑ relation to be complete at all times. A
possible explanation is that log splitting might help at times. For instance, ^pa, b, cq
could be rediscovered as ^pa,^pb, cqq. If a log lacks ÞÑpb, cq, it could be introduced
during log splitting: by splitting xb, a, cy with tau and tb, cu yields the trace xb, cy for
which b ÞÑ c holds, enabling the rediscovery of ^pb, cq.

Figure 9 illustrates how other discovery algorithms handle models within the repre-
sentational bias of IM and IMin, for which IMin rediscovers its language. It would be
interesting to see how these algorithms perform on process trees not derived from class
CR, and on general Petri nets.

7 Conclusion

In this paper, we studied the effects of incompleteness on process discovery. We anal-
ysed the impact of incompleteness of logs on behavioural relations. We introduced

Discovering Process Models from Incomplete Event Logs 19

probabilistic behavioural relations to make them more stable when dealing with in-
completeness, and defined an algorithm based on these probabilistic relations. This al-
gorithm was proven to be able to rediscover the language of models, given sufficiently
large directly-follows complete logs. Moreover, in experiments it was shown to be able
to rediscover the language of models, even when given small incomplete logs, and to
need less information in the log to converge than other process discovery algorithms.

An open question remaining is whether rediscoverability holds for IMin (Conjec-
ture 13). Other points of future research could be what characterises acceptable choices
of probabilistic activity relations (Table 1), (that could even be able to handle noise),
and, if directly-follows completeness is an upper bound for rediscoverability, and if
activity-completeness is a lower bound for it, whether these bounds are tight. The ex-
periments we conducted suggest that there is a tighter upper bound than directly-follows
completeness.

References

1. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer (2011)

2. van der Aalst, W., Buijs, J., van Dongen, B.: Towards improving the representational bias of
process mining. In: SIMPDA. Lecture Notes in Business Information Processing, vol. 116,
pp. 39–54. Springer (2011)

3. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering process models
from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

4. Badouel, E., Darondeau, P.: Theory of Regions. In: Lectures on Petri Nets I: Basic Models.
vol. 1491, pp. 529–586 (1998)

5. Badouel, E.: On the α-reconstructibility of workflow nets. In: Petri Nets’12. LNCS, vol.
7347, pp. 128–147. Springer (2012)

6. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Synthesis of Petri nets from term based
representations of infinite partial languages. Fundam. Inform. 95(1), 187–217 (2009)

7. Bloom, S.L., Ésik, Z.: Free shuffle algebras in language varieties. Theor. Comput. Sci.
163(1&2), 55–98 (1996)

8. Buijs, J., van Dongen, B., van der Aalst, W.: A genetic algorithm for discovering process
trees. In: IEEE Congress on Evolutionary Computation. pp. 1–8. IEEE (2012)

9. Carmona, J.: Projection approaches to process mining using region-based techniques. Data
Mining and Knowledge Discovery 24(1), 218–246 (2012)

10. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets for finite
transition systems. IEEE Trans. Computers 47(8), 859–882 (1998)

11. Darondeau, P.: Region based synthesis of p/t-nets and its potential applications. In: ICATPN.
pp. 16–23 (2000)

12. Darondeau, P.: Unbounded Petri net synthesis. In: Lectures on Concurrency and Petri Nets.
LNCS, vol. 3098, pp. 413–438. Springer (2003)

13. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality
assessment of state-of-the-art process discovery algorithms using real-life event logs.
Information Systems 37, 654–676 (2012)

14. van Dongen, B., de Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: The prom
framework: A new era in process mining tool support. ICATPN 3536, 444–454 (2005)

15. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. Acta Informatica 27(4), 343–368
(1990)

20 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

16. Günther, C., van der Aalst, W.: Fuzzy mining–adaptive process simplification based on
multi-perspective metrics. Business Process Management pp. 328–343 (2007)

17. Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process models
from event logs - a constructive approach. In: Petri Nets 2013. LNCS, vol. 7927, pp.
311–329. Springer (2013)

18. Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process mod-
els from event logs containing infrequent behaviour. In: Business Process Management
Workshops. Springer (2013), to appear

19. Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process models
from incomplete event logs. Tech. Rep. BPM-14-05, Eindhoven University of Technology
(March 2014)

20. Linz, P.: An introduction to formal languages and automata. Jones & Bartlett Learning (2011)
21. Lorenz, R., Mauser, S., Juhás, G.: How to synthesize nets from languages: a survey. In:

Winter Simulation Conference. pp. 637–647. WSC (2007)
22. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the

refined process structure tree. In: WS-FM’10. LNCS, vol. 6551, pp. 25–41. Springer (2010)
23. Reisig, W., Schnupp, P., Muchnick, S.: Primer in Petri Net Design. Springer (1992)
24. Rozinat, A., de Medeiros, A., Günther, C., Weijters, A., van der Aalst, W.: The need for

a process mining evaluation framework in research and practice. In: Business Process
Management Workshops. pp. 84–89. Springer (2008)

25. Rozinat, A., Veloso, M., van der Aalst, W.: Evaluating the quality of discovered process
models. In: 2nd Int. Workshop on the Induction of Process Models. pp. 45–52 (2008)

26. Schimm, G.: Generic linear business process modeling. In: ER (Workshops). LNCS, vol.
1921, pp. 31–39. Springer (2000)

27. Schimm, G.: Process miner - a tool for mining process schemes from event-based data. In:
JELIA. LNCS, vol. 2424, pp. 525–528. Springer (2002)

28. Schimm, G.: Mining most specific workflow models from event-based data. In: Business
Process Management. LNCS, vol. 2678, pp. 25–40. Springer (2003)

29. Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based on
synthesis from well-structured behavioral profiles. Int. J. Cooperative Inf. Syst. 21(1), 55–83
(2012)

30. Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Petri Nets. LNCS,
vol. 6128, pp. 226–245. Springer (2010)

31. Weidlich, M., van der Werf, J.: On profiles and footprints - relational semantics for Petri
nets. In: Petri Nets. LNCS, vol. 7347, pp. 148–167. Springer (2012)

32. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles - effi-
cient computation, applications, and evaluation. Fundam. Inform. 113(3-4), 399–435 (2011)

33. Weijters, A., van der Aalst, W., de Medeiros, A.: Process mining with the heuristics miner-
algorithm. BETA Working Paper series 166, Eindhoven University of Technology (2006)

34. Weijters, A., Ribeiro, J.: Flexible Heuristics Miner. In: CIDM. pp. 310–317. IEEE (2011)
35. Wen, L., van der Aalst, W., Wang, J., Sun, J.: Mining process models with non-free-choice

constructs. Data Mining and Knowledge Discovery 15(2), 145–180 (2007)
36. Wen, L., Wang, J., Sun, J.: Mining invisible tasks from event logs. Advances in Data and

Web Management pp. 358–365 (2007)
37. van der Werf, J., van Dongen, B., Hurkens, C., Serebrenik, A.: Process discovery using

integer linear programming. Fundam. Inform. 94(3-4), 387–412 (2009)
38. Yzquierdo-Herrera, R., Silverio-Castro, R., Lazo-Cortés, M.: Sub-process discovery:

Opportunities for process diagnostics. In: EIS of the Future, pp. 48–57. Springer (2013)

