
Using Monotonicity to find Optimal Process
Configurations Faster

D.M.M. Schunselaar1?, H.M.W. Verbeek1?, H.A. Reijers1,2?, and W.M.P. van
der Aalst1?

1 Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

{d.m.m.schunselaar, h.m.w.verbeek, w.m.p.v.d.aalst, h.a.reijers}@tue.nl
2 VU University Amsterdam,

De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
h.a.reijers@vu.nl

Abstract. Configurable process models can be used to encode a mul-
titude of (different) process models. After configuration, they can be
used to support the execution of a particular process. A configurable
process model represents a space of instantiations (configured process
variants). Such an instantiation space can be used by an organisation
to select the best instantiation(s) according to some Key Performance
Indicators (KPIs), e.g., cost, throughput time, etc. Computing KPIs for
all the instantiations in the space is time consuming, as it might require
the analysis (e.g., simulation) of thousands (or more) of instantiations.
Therefore, we would like to exploit structural characteristics to reduce
the amount of instantiations which need to be analysed. This reduction
only removes those instantiations which do not need to be considered by
an organisation. This yields the same result (a collection of best config-
urations), but in a faster way.

Keywords: Configurable Process Model, Business Process Performance,
Analysis, Monotonicity, Petra

1 Introduction

To go abroad, travellers typically need to have a passport. To obtain a new
passport, a traveller needs to go to his own municipality. For example, Fry has
to go to the New New York municipality, while Homer has to go to the Springfield
municipality. Although the New New York municipality will create a passport
for Fry, they will not do so for Homer, as he is not living in New New York,
but in Springfield. As such, the municipalities all offer the service to create a

? This research has been carried out as part of the Configurable Services for Local
Governments (CoSeLoG) project (http://www.win.tue.nl/coselog/).



new passport, but they are not competing with each other as they only offer
this service for their own inhabitants. As a result of the latter, municipalities
are quite eager to share their processes with other municipalities, and to learn
from each other. Although all municipalities offer the service to create a new
passport, they do not all use the exact same process. Some “couleur locale”
may exist between different municipalities. For example, the New New York
municipality may create the passport first and have Fry pay when he collects his
passport, while the Springfield municipality, being smaller, may require Homer
to pay when he requests for it, that is, before they create it. Even though the
steps in the process may be the same (request for a passport, pay for it, create
it, and collect it), the process may still differ to some extent.

The combination of this “couleur locale” and the openness mentioned earlier
makes municipalities natural candidates to benefit from co-called configurable
process models. A configurable process model contains variation points which
can be set to tailor the configurable process model to the preferences of an
organisation. Setting preferences for the variation points is called a configuration.
If all variation points are set by a configuration, the resulting process model
is called an instantiation. Please note that a configurable process model that
contains a multitude of variation points allows for an exponential amount of
possible configurations and instantiations.

A configurable process model may contain instantiations that are not used
by any of the municipalities. An interesting question now is, whether some in-
stantiations score better for a given municipality than the instantiation they are
now using. Given a set of Key Performance Indicators (KPIs), we could check
how every instantiation scores on these KPIs, and return the corresponding best
configurations. In [1], we have introduced Petra, a generic framework that au-
tomatically analyses KPIs on all instantiations of a configurable process model
for instance by simulating all the instantiations. By exhaustively searching all
instantiations, Petra returns a Pareto front [2] of the best instantiations to the
municipality, which can then select the configuration they like best.

As mentioned earlier, a configurable process model may allow for many vari-
ation points and, as a result, very many configurations and instantiations. As
a result, the amount of instantiations may be too large to analyse, or it may
simply take too much time to analyse them all. Therefore, in this paper, we aim
to reduce the amount of instantiations which need to be analysed by exploiting
the fact that they all stem from the same configurable process model. For ex-
ample, if we take the passport example as introduced earlier, it is clear that the
Springfield instantiation allows for less financial risks than the New New York
one. For this reason, if financial risk would be the KPI at hand, it would make
no sense to analyse the New New York instantiation, as it will be dominated
anyways by the Springfield instantiation.

To achieve this reduction in the amount of instantiations to analyse, we pro-
pose to exploit structural properties of the configurable process model by means
of a monotonicity notion. This paper introduces this monotonicity framework,
applies it for a concrete KPI, and evaluates the application empirically on an

2



artificial configurable process model. The monotonicity framework creates, per
KPI, an ordering of the instantiations. This ordering starts with the instantia-
tion most probably to have a high score on that KPI. Using these orderings, the
monotonicity framework starts analysing the most promising instantiations. It
keeps on analysing until no more instantiations can be found which score higher
on a KPI than the already analysed models.

For our concrete KPI, we have selected throughput time and we show how
the monotonicity can be computed between two instantiations. We apply this
monotonicity notion on a running example to order the instantiations. After-
wards, we use simulation to obtain concrete values for the KPI. Using these
values, we can conclude that we achieve a reduction of more than 90% on the
amount of instantiations which need to be analysed for this particular model.

The remainder of this paper is organised as follows. In Sect. 2, we elaborate
on related work. Afterwards, we present some preliminaries in Sect. 3. Sections 4
and 5 contain our monotonicity framework and concrete results for the concrete
throughput time KPI. We finish the paper with an empirical evaluation and the
conclusions and future work in Sect. 6 and Sect. 7.

2 Related Work

Our research builds on three existing lines of research: configurable process mod-
els, performance analysis, and business process reengineering.

2.1 Configurable Process Models

Configurable process models (see Sect. 3.1 for an example configurable process
model) have been developed by extending existing modelling languages, e.g.,
C-EPC (Configurable Event-driven Process Chain) [3], C-BPEL (Configurable
Business Process Execution Language), and C-YAWL (Configurable Yet Another
Workflow Language) [4]. A more complete overview of variability support is pro-
vided in [5]. All these approaches are mainly focussed on supporting variability
and not so much on the analysis of the resulting instantiations.

2.2 Performance Analysis

Within the field of queueing theory, work has been conducted in defining mono-
tonicity notions between queueing networks and between queueing stations.
In [6], the author defines a notion between queueing stations and between queue-
ing networks for closed queueing networks. The definition of monotonicity em-
ployed is similar to our notion of monotonicity. However, this paper is mainly
focussed on the parameters of the network (number of jobs, processing speed of
networks) and not on the relation between two topologically different networks.

The authors in [7] consider performance monotonicity on continuous Petri
nets. Similar to the work in [6], the authors consider monotonicity in terms of
the parameters of the Petri net and not in terms of the structure of the Petri

3



net. However, since our used formalism can be translated to Petri nets, this is
an interesting approach to consider for future work.

Although the papers consider monotonicity in a similar way as us, they focus
on the parameters instead of the topology of the network. However, one of our
future directions is to take the parameters also into account in which this work
might be applicable.

2.3 Business Process Reengineering

In [8], the author presents a tool KOPeR (Knowledgebased Organizational Pro-
cess Redesign) for identifying redesign possibilities. These redesign possibilities
are simulated to obtain performance characteristics such that they can be com-
pared. The analysis of process models focusses mainly on the analysis of a single
model and not on various instantiations. An approach evaluating when certain
changes to the structure of the process model are appropriate is presented in [9].
The paper starts from a number of commonalities in reengineered business pro-
cesses and deduces, based on queueing theory models, under which circumstances
a change to the structure of the process model is beneficial. Some ideas of their
paper can be applied to our setting but the majority of ideas is not tailored
towards throughput time.

In [10], so-called Knock-Out systems are discussed and heuristics are defined
for optimising these. Similar to [9], heuristics are defined and formally shown if it
is beneficial to apply a certain heuristic in a particular setting. Their approach
allows for more flexibility in defining the processes than configurable process
models, i.e., in the paper only a precedence relation is defined between tasks. At
the same time, the processes considered are less flexible as they do not include
choices, i.e., every task has to be executed. As with the previous approach, some
ideas can be used in our approach.

The approach closest to our approach is presented in [11]. In their approach,
various process alternatives are analysed. These alternatives are obtained by ap-
plying redesign principles instead of starting from a configurable process model.
Their approach can benefit of the work presented here as it might remove the
need to analyse some instantiations due to monotonicity.

3 Preliminaries

Before introducing the monotonicity framework, this section introduces the con-
figurable process models used by the framework and the Petra framework.

3.1 Configurable Process Models

Configurable process models contain predefined variation points. By configuring
these variation points, that is, by selecting appropriate values for these points,
the configurable process model can be tailored to an organisation (like a mu-
nicipality). If all variation points have been configured properly, that is, if the

4



Fig. 1: Running example of a configurable process model in BPMN notation.

Fig. 2: Running example from Fig. 1 in Process Tree notation.

configuration is complete, the configurable process model is instantiated into a
process model ready that is ready for enactment (an instantiation).

As an example, Fig. 1 shows the control-flow of a configurable process model
using a BPMN (Business Process Model and Notation) notation augmented with
curved arrows and no-entry signs. A curved arrow on an incoming edge indicates
a variation point that allows the following part of the configurable process model
to be hidden. For example, the curved arrow on the incoming edge of the task
labelled “B” indicates that this activity can be hidden. Note that if this curved
arrow would have been positioned on the outgoing edge of this task, that then
the entire following choice part, including the tasks labelled “C” and “D”, would
then have the option be hidden. Likewise, the no-entry sign indicates a variation
point that allows the following part of the configurable process model to be
blocked.

If a part of the configurable process model is hidden, this results in this part
being substituted by an automatic task. If a part of the configurable process
model is blocked, this results in removing this part in total. As a result, if a part
of a sequential execution of tasks is blocked, then the entire sequence is blocked,
as we would run into a deadlock otherwise.

For our configurable process model formalism, we use so-called Process Trees [1].
Figure 2 shows the Process Tree representation of the process model as shown in
Fig. 1. A Process Tree is a block-structured process modelling formalism and is
specifically developed in the CoSeLoG project. The main advantage of Process
Trees over other formalisms is that it ensures soundness, e.g., there cannot be
any deadlocks [12]. The various node types in the Process Tree and their seman-
tics in BPMN are depicted in Fig. 3. Nodes come in three flavours; tasks, blocks,
and events. Tasks form the units of work and can be either automatic (without

5



A A

Manual

Automatic

A Z

A Z

seq

and

A Z

xor
[gz][ga]

[ga]

[¬ga]

A Z

[gz][ga]
or

D R E

[gr]
loopxor

do redo exit

A

Z

A Z

A Z

def
A

Z

[ga]

[gz ∨ ¬ga]

A

Z

D R E

loopdef

do redo exit

D

R

E

[gr]
[¬gr]

A

Z

D

R

E

Fig. 3: The various nodes of a Process Tree and their BPMN semantics. For
choices we have a default option being the last child. This means that if all
expressions evaluate to false the last branch is chosen. For the xor, this is
encoded by annotating the last branch with the negation of the other branch.
Note that we have shown the case with two children. It is trivial to extend this
to more children.

a resource) or manual (with a resource). Blocks indicate the causal dependency
of the children, i.e., the nodes directly underneath the block. Events indicate a
point in the process where input from the environment is required. Only events
that match the actual input will be executed, the other events will be dropped.
In principle a block can have any number of children except for the loop nodes
(loopxor and loopdef), which always have 3 children, and the event nodes,
which have a single child. At the top of the Process Tree we have a root node.

Next to hiding and blocking, a Process Tree allows for a third type of variation
points, called placeholder nodes. Where hiding and blocking can be configured by
selecting either “yes” or “no”, a placeholder node can be configured by selecting
one of its child nodes. As a result, the placeholder node will be replaced in an
instantiation by its selected child node. For instance, in a configurable process
model, there may be the possibility to select a payment method from a set of
known payment methods (credit card, bank transfer, or cash). The Process Tree
formalism is richer than just the control-flow perspective [1], but here we limit
ourselves to the control-flow perspective, i.e., we assume the other perspectives
remain unchanged.

6



3.2 Petra

Petra [13] (Process model based Extensible Toolset for Redesign and Analysis)
is a framework for analysing configurable process models. Petra employs an
iterative brute force approach in traversing the instantiations of a configurable
process model. In each iteration, Petra chooses an instantiation and applies
various analysis tools to this. As a result, the values for the required KPIs become
known for this instantiation, and this instantiation can be added at the specific
point in the Pareto front [2]. As the Pareto front only keeps track of the best (non-
dominated) points, instantiations that may have been added may be removed at
some point in time. In the end, only those instantiations that are not dominated
by some other instantiation will survive on the Pareto front. The sets of tools
and KPIs within Petra are extensible with new tools and KPIs. As a result, we
prefer not to limit the monotonicity notion to a predetermined set of KPIs.

4 Monotonicity Framework

The monotonicity framework stems from the observation that it may be possible
to check whether an instantiation dominates another instantiation by comparing
the structure, control flows in or case, instead of the behaviour. This means that
we want to compare two models with respect to a KPI without computing the
actual values for that KPI. Consider, for example, two instantiations from the
running example (see Fig 2), and assume that for the first instantiation nothing
has been blocked or hidden, and that for the second nothing has been blocked
and only the task labelled “B” has been hidden. Clearly, the throughput time of
the second instantiation is always better than the throughput time of the first,
as the only difference is that the first has to execute “B”, which we assume takes
some time, where the second does not. Based on structure, we could claim that
the second instantiation is better as the first w.r.t. the throughput KPI under all
circumstances. As a result, when looking only at the throughput KPI, the first
cannot be better than the latter (assuming independence between the duration
of an activity and the occurrence of another).

For this reason, the monotonicity framework introduces an acyclic (partial)
order on the possible instantiations. Throughout the paper, we use the term “at-
least-as-good” to denote the monotonicity ordering between instantiations/nodes
for a particular KPI. We define this relation formally as:

Definition 1 (At-least-as-good). A node n is at-least-as-good as another node
n′ (denoted n ≥ n′) w.r.t. KPI K if ∀cP [K(n) ≤ c] ≤ P [K(n′) ≤ c], i.e., the cu-
mulative distribution function (CDF) of the distribution K(n) is for every point
c at most the CDF of the distribution of K(n′) in that point. An instantiation
M is at-least-as-good as another instantiation M ′ w.r.t. KPI K if and only if
the root node of M is at-least-as-good as the root node of M ′ w.r.t. K.

Note that it is possible that individual values of K(n′) are better than K(n),
but overall the values for n are better than n′.

7



Fig. 4: Using monotonicity, we can transform the set of possible instantiations
to a partial order indicating the most promising order of analysing the instanti-
ations for various KPIs.

If we have that a model M is at-least-as-good as a model M ′ for all (relevant)
KPIs, then clearly M should dominate (or at least equal) M ′ and as a result it
only makes sense to analyse M ′ if M needs to be analysed. Later on, we will see
how we can derive this at-least-as-good relation. First, however, we will show
how Petra uses this relation.

Graphically, the monotonicity transforms the collection of possible instan-
tiations to a collection of possible related instantiations. Since there might be
multiple KPIs in the framework, we obtain (different) relations for each of the
KPIs (Fig. 4). The dots are the instantiations and an arrow between two dots
indicates that the instantiation at the tail of the arrow is at-least-as-good as the
instantiation at its head. The open dots indicate the most promising instanti-
ations. By transitivity, if there exists a directed path from one instantiation to
another instantiation, then the former instantiation is at-least-as-good as the
latter w.r.t. the corresponding KPI.

With the monotonicity framework added, Petra analyses the possible instan-
tiations in a specific order. If M is at-least-as-good as M ′ on all KPIs, then M
will be analysed by Petra before M ′ will be analysed. If M ′ is to be analysed
by Petra and if at that point in time M has been dominated by some other
model M ′′, then M ′ cannot dominate M ′′ and there is no use in analysing it.
Otherwise, if M is not dominated, M ′ is analysed by Petra.

When an instantiation is dominated by other models, it creates a cut-off
point along the partial orders for the various KPIs, as this instantiation is at-
least-as-good (w.r.t. the KPI at hand) as every instantiation that can be reached
by a directed path. As a result, if an instantiation is below the cut-off points for
all KPIs, it is dominated by the previously analysed models and there is no use
in analysing it.

To determine whether an instantiation is at-least-as-good as another instan-
tiation, we need to check whether its root node is at-least-as-good-as the other
root node. To determine this, we use a bottom-up approach, which uses the fact
that both are instantiations of the same configurable process model. As a result
of this, we can relate two nodes in both instantiations in a straightforward way
by determining whether they stem from the same node in the configurable pro-
cess model: They are related if and only if they stem from the same node. Note
that hiding a part of the configurable process model results in an automatic task

8



with duration 0 in the instantiation. As a result, such an automatic task can
be related to any other node. Furthermore, note that if a placeholder node is
configured as a node of one type (like seq) in one instantiation, and as a node
of another type (like and) in another instantiation, it is possible that a node of
one type is related to another node of another type.

For a task node, it is usually quite straightforward to check whether or not
they are at-least-as-good as their related nodes: As both stem from the same
node, they are equal, and hence at-least-as-good. For a block node, we need to
look whether all relevant child nodes are at-least-as-good as their related nodes,
which is where the bottom-up approach comes in. Based on the structures of
both instantiations and using the fact which child nodes are at-least-as-good as
their related nodes, we determine whether a give node in one instantiation is at-
least-as-good as its related node in the other instantiation. With this approach,
we decompose the problem into smaller problems and basically use patterns to
identify which of the elements is better. If we can conclude that the one root
node is at-least-as-good as the second root node, then we can conclude that the
one process model is at-least-as-good as the second process model.

In our monotonicity framework, we assume there is a correspondence between
node types and the effects on the value of a KPI. This stems from the observation
that some KPIs behave monotone in two flavours, i.e., more is better (monitoring
activities in the process for compliance) or less is better (costs). KPIs which do
not behave monotone in that respect, e.g., wait time which can increase and
decrease with the addition/removal of activities, cannot be captured in this
framework.

Because we only take the structure of the instantiations into account, we
restrict ourselves to the control-flow perspective in this paper. However, to be
able to compare choice nodes (xor, def, or), we assume there is a probability
associated with the outgoing edges of the choice node. This probability indicates
the (relative) probability that the flow of control follows that path. Likewise,
to be able to compare loop nodes (loopxor and loopdef), we assume that
there is a probability associated with the outgoing edges to the redo and exit
blocks. In the next section, we demonstrate the applicability of our approach by
focussing on a single KPI.

5 Throughput Time

The example KPI to be used in our monotonicity framework is the throughput
time (sometimes also called sojourn time or lead time). The throughput time is
the time it takes a case from start to end. We have chosen the throughput time
since this KPI is well-studied and often considered for analysing process models.
Using our monotonicity framework, we need to be able to take two instantiations
(two Process Trees) and decide which instantiation is at-least-as-good (if any).
As mentioned, we focus on the control-flow perspective. Therefore, we assume
the other perspectives do not change between different instantiations. However,
we do not disregard the other perspectives as this might lead to counter-intuitive

9



≥

≥

≥

b b′

τ

Fig. 5: The general constraints for comparing two block nodes. Note that if the
child of b is a silent task (black square with white τ), it does not need to be
related to a child of b′.

results, e.g., if we have a choice between a fast and a slow branch, then reducing
the amount of work for the slow branch and increasing the amount of work for
the fast branch might actually increase the throughput time since the fast branch
cannot handle more work. Therefore, we focus on reducing the amount of work
for branches without increasing the amount of work for other branches. We go
through the collection of nodes and present when a node is at-least-as-good as
the related node (w.r.t. throughput time).

5.1 Tasks

A silent task (an automatic task with duration 0) is always at-least-as-good as
any node, and can be ignored (when not related) in a seq or and block. Any
other automatic task can be compared according Def. 1 with another automatic
task. In all other cases, we cannot say whether an automatic task is at-least-as-
good as the other node.

A manual task is at-least-as-good as the same manual task. In all other cases,
we cannot say whether a manual task is at-least-as-good as the other node. Please
note that, as mentioned earlier, we only take the control-flow perspective into
account. If we would take the resource perspective into account, then we could
check whether the same manual task would be performed by generally faster or
less overloaded employees.

5.2 Blocks

In Fig. 5, the general case is depicted where every comparison between block
nodes has to adhere to. A block node b is at-least-as-good as a related block
node b′ if every child node c of b (except for silent tasks) is related to a child
node c′ of b′ such that node c is at-least-as-good as node c′.

The general case is sufficient for the seq, and, and event nodes which are
related to nodes of the same type. Next to this, if b is an and node and b′

is a seq node and the general case holds, then we can also conclude that b is
at-least-as-good as b′ since doing things is parallel is at-least-as-good as doing
things in sequence for the throughput time. Finally, if b is a seq or and node and

10



≥

≥

≥

b b′

P1 P2

P3 P′
1 P′

2

P′
3

τ

Fig. 6: The general case but now the edges are annotated with probabilities.

b′ is a loop node (loopxor, loopdef) and the do and the exit are the only
children related of the loop, then b is at-least-as-good as b′. This comparison to
the loop stems from the fact that do is executed at least once and is eventually
followed by exit. Thus they are in a sequence.

For choices, we need more information, i.e., we need to know the probabil-
ity of executing a particular child. Therefore, we extend the general case with
probabilities yielding Fig. 6. Note that implicitly the general case also contains
probabilities but these are all 1, e.g., in a sequence there is no option to not
execute a particular child.

Comparing two xor/def nodes with each other requires that, apart from the
comparison of the general case, the probabilities for the related nodes are the
same. Note that in the general case, unrelated children of b are only allowed to be
silent tasks, which means that these have a throughput time of 0 making them
at-least-as-good as any unmapped child of b′. From this, with the requirement of
equal probability between the related nodes, we know the same fraction of cases
goes to unrelated nodes in both b and b′. For this fraction of cases, we know
the unrelated children in b are at-least-as-good as the unrelated children in b′.
Comparing two or nodes is similar to two xor/def nodes, only the probabilities
of the children in b have to be at most the probabilities of the related children
of b′. Note that the sum of the probabilities on the outgoing edges of an or
is at least 1. The reasoning behind this at most is that more cases having to
be executed by a particular node (i.e., a higher probability) does not lower the
throughput time and thus is that node at-least-as-good as the related node. This
also holds when comparing a xor/def with an or, i.e., the probabilities of the
children of the xor/def have to be at most the probabilities of the related
children in or whilst adhering to the general case.

Next to comparing choices with each other, we can also compare choices to
seq and and using the earlier observation that the children of the seq and and
have implicitly a probability of 1. The rules are the same as for the comparison
with the or, i.e., the probabilities are at most the probabilities of the seq and
and, and the general case is adhered to.

We can also compare choices to loop nodes. For this it is sufficient to adhere
to the general case and the probability of the child of b related to the redo
should be at most the probability of the redo in b′. The intuition behind this is
that the probability of the do and exit are both 1, i.e., they both are executed at

11



Table 1: The rules the combinations of nodes have to adhere to in order to deduce
that b is at-least-as-good as b′. An explanation of the used numbers can be found
at the bottom.
HHH

HHb
b′

seq and event loop xor/def or

seq 0 - - 1 - -

and 0 0 - 1 - -

event - - 0 - - -

loop - - - 4 - -

xor/def 0 0 - 4 2 3

or 0 0 - 4 - 3

0: general case

1: general case and only the do and exit are mapped.

2: general case and the probabilities of mapped nodes are equal.

3: general case and the probabilities are at most the probability of the mapped node.

4: general case and the probability for the redo is at most the probability of the
mapped node

-: not (yet) supported.

least once. Thus we have to make sure the child related to the redo is executed
at most as often as the redo, i.e., the probability of the node related to the
redo is at most the probability of the redo.

Finally, in order to compare two loop nodes, we need to have the general
case. On top of this, we need that the probability of executing the redo of b
is at most the probability of executing the redo of b′. The idea behind this is
that the higher the probability of the redo, the more often the loop will be
executed yielding a higher throughput time.

The requirements on the relation between two blocks are summarised in Table
1. The numbers indicate which requirements are to be adhered to in order for b
to be at-least-as-good as b′. An explanation of the numbers is at the bottom of
Table 1.

6 Empirical Evaluation

We have chosen an empirical evaluation over an asymptotic analysis since worst-
case we still have to analyse all the possible instantiations. This comes from the
fact that some models are incomparable (due to choices), and that, although
some are at-least-as-good, the models have values for a KPI which are too close
to each other making none of the models strictly better than another model.

For our empirical evaluation, we use the configurable process model from
Fig. 2. We want to show that we can prune a significant part of the instantiation
space prior to analysis. To analyse an instantiation, we simulate it at least 30

12



Fig. 7: The various rounds of analysis with the instantiations which were analysed
and their 95% confidence intervals. We started in round 1 with the 4 most
promising instantiations. In round 2, we continued with the 5 most promising
instantiations from the only model that survived the first round. Finally, in
round 3, we could conclude that all other instantiations are dominated.

times using L-SIM: a simulation tool developed by Lanner3. To enable simula-
tion, we have extended our configurable process model with resource and timing
information.

There are 144 possible instantiations from our running example (Fig. 2). Thus
the collection of possible instantiations in Fig. 4 contains 144 dots. In Fig. 7, the
various analysis rounds of our approach are depicted. Each round corresponds
to analysing a group of instantiations which do not share an at-least-as-good
relation and for which all instantiations that are at-least-as-good have already
been analysed and are not dominated (yet) by another model. In the first round,
we start with 4 instantiations (depicted by the 4 ovals at the top) which were
most promising, i.e., there was no instantiation which was at-least-as-good as
one of these 4 instantiations.

After simulating the most promising instantiations (the 95% confidence in-
tervals of the throughput times are depicted in the ovals), only 1 of these instan-
tiations was significantly better than the other instantiations and was kept as
one of the best models. For the second round, we obtained 5 other models which
were most promising (and not yet analysed) from our monotonicity. Simulating
each of these models resulted in 1 model being better than the other models
in the second round. This model was added to the set of best models. In the
third round, again 5 models were most promising and not yet analysed. By our
monotonicity notion, we knew 4 of them did not need to be analysed as non-best
models from the second round were at-least-as-good as these 4. The remaining

3 http://www.lanner.com/en/l-sim.cfm

13



model was simulated and was significantly worse than the best models. Since
none of the models from the third round made it to the set of best models,
we could conclude that all other 130 instantiations were dominated. Therefore,
there was no need to analyse the other models.

From the 144 instantiations, we only had to analyse 10, which means that
only 6.9% of the possible instantiations had to be analysed. Analysing all models
took a bit more than 50 minutes on a single core of 2.80 GHz (including some
I/O handling). The average time per model is a little bit more than 20 seconds.
Computing the monotonicity of the 144 models took a bit more than 2 seconds.
Only analysing the 10 models, took around 3 minutes. Note that, in Def. 1, we
used the CDF for determining whether one model is at-least-as-good as another
model. Since with simulation we cannot determine the CDF, we have used the
confidence intervals as an approximation of this CDF.

7 Conclusions and Future Work

Within Petra, we analyse large amounts of instantiations from a configurable
process model. These analysed instantiations are projected on a Pareto front to
only keep the instantiations that are most promising, according to some Key
Performance Indicators (KPIs), for an organisation. Due to the possible large
amount of variation point in a configurable process model, and the resulting very
large amount of possible instantiations, analysing each and every instantiation
is very time consuming and unnecessary as most will never be considered by an
organisation.

To prevent having to analyse all possible instantiations, using the fact that
most instantiations will never be considered, we sort them according to their
likelihood of appearing on the Pareto front. The sorting of the instantiations
happens using our monotonicity framework. This framework can be extended to
work with a multitude of KPIs.

We have applied our framework with a concrete KPI (throughput time) on
the configurable process model that was used as running example, and have
shown that we can achieve a significant decrease in the amount of instantia-
tions which need to be analysed (exceeding 90%). But these results are highly
dependent on the model and on the characteristics of the KPIs.

This work shows promising results and we plan to extend this into a multitude
of directions. We briefly sketch a panorama of future extensions. Currently, we
still need to traverse the entire instantiation space to compute the ordering
between models. In the ideal case, we can constructively create the configuration
for the instantiations most promising for a particular KPI. Next to this, we
also want to incorporate more KPIs into the framework. Furthermore, we want
to generalise this work to also be able to compute monotonicity between two
process models which are not necessarily instantiations from a single configurable
process model. Finally, we want to leverage some of the related work which
defines monotonicity on the parameters of the configurable process model to our
framework.

14



References

1. Schunselaar, D.M.M., Verbeek, H.M.W., Aalst, W.M.P. van der, Reijers, H.A.: Pe-
tra: Process model based Extensible Toolset for Redesign and Analysis. Technical
Report BPM Center Report BPM-14-01, BPMcenter.org (2014)

2. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM 22(4) (1975) 469–476

3. Rosemann, M., Aalst, W.M.P. van der: A Configurable Reference Modelling Lan-
guage. Information Systems 32(1) (2007) 1–23

4. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M., Rosa, M.L.: Config-
urable workflow models. International Journal on Cooperative Information Sys-
tems 17(2) (2008) 177–221

5. Ayora, C., Torres, V., Weber, B., Reichert, M., Pelechano, V.: Vivace: A framework
for the systematic evaluation of variability support in process-aware information
systems. Information and Software Technology (0) (2014) –

6. Suri, R.: A concept of monotonicity and its characterization for closed queueing
networks. Operations Research 33(3) (1985) pp. 606–624

7. Mahulea, C., Recalde, L., Silva, M.: Basic server semantics and performance mono-
tonicity of continuous petri nets. Discrete Event Dynamic Systems 19(2) (2009)
189–212

8. Nissen, M.E.: Redesigning reengineering through measurement-driven inference.
MIS Quarterly 22(4) (1998) 509–534

9. Buzacott, J.A.: Commonalities in reengineered business processes: Models and
issues. Manage. Sci. 42(5) (May 1996) 768–782

10. van der Aalst, W.M.P.: Re-engineering knock-out processes. Decision Support
Systems 30(4) (2001) 451–468

11. Netjes, M.: Process Improvement: The Creation and Evaluation of Process. PhD
thesis, Eindhoven University of Technology (2010)

12. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Asp. Comput. 23(3) (2011) 333–363

13. Schunselaar, D.M.M., Verbeek, H.M.W., van der Aalst, W.M.P., Reijers, H.A.:
Petra: A tool for analysing a process family. In Moldt, D., Rölke, H., eds.: Inter-
national Workshop on Petri Nets and Software Engineering (PNSE’14). Number
1160 in CEUR Workshop Proceedings, Aachen, CEUR-WS.org (2014) 269–288
http://ceur-ws.org/Vol-1160/.

15


