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Abstract— Process Mining represents an important research
field that connects Business Process Modeling and Data Mining.
One of the most prominent task of Process Mining is the
discovery of a control-flow starting from event logs. This paper
focuses on the important problem of control-flow discovery
starting from a stream of event data. We propose to adapt
Heuristics Miner, one of the most effective control-flow dis-
covery algorithms, to the treatment of streams of event data.
Two adaptations, based on Lossy Counting and Lossy Counting
with Budget, as well as a sliding window based version of
Heuristics Miner, are proposed and experimentally compared
against both artificial and real streams. Experimental results
show the effectiveness of control-flow discovery algorithms for
streams on artificial and real datasets.

I. INTRODUCTION

Process Mining is an emerging research field that comes
from two areas: Data Mining on one hand, and Business
Process Modeling (BPM) on the other [1]. In typical sce-
narios, Process Mining algorithms take an event log as
input. An event log is a set of observations that refer
to executions of a business process. One of the possible
outcome of Process Mining algorithms is a control-flow,
which is a formal description of the relationships among
activities. Several control-flow discovery algorithms have
been proposed in the past [2]. The first work in the field
of Process Mining is reported in a paper by J. Cook and
A. Wolf [3], where three approaches (based on recurrent
neural networks, transition systems, and Markov chains)
were proposed. These approaches, however, do not gener-
ate models that are considered useful for business people.
R. Agrawal et al. [4] presented an approach that might
be considered as the first Process Mining algorithm in
the context of BPM. Specifically, they generate a directed
graph where nodes represent activities and arcs represent
dependencies between activities. Several other works have
been produced in the meanwhile [5], [6], [7], generating
models represented in different formalisms (i.e., Stochastic
Activity Graph, dependency graph, and a custom “block-
based” language), whose semantics, however, is not always
well-defined. The first approach capable of mining a Petri
Net [8] is reported in [9]. A Petri Net is a bipartite graph
that represents a concurrent and distributed system. Nodes
can either be “transitions” or “places”. Transitions, typically,
represent activities; nodes represent the states (intermediate
or final) that the process can reach. Petri Nets are also
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Fig. 1: General idea of SPD: the stream miner continuously
receives events and, using the latest observations, updates the
process model (in this case, a Petri Net).

characterized by a well defined “dynamic semantic”, which
allows them to express “high level” control-flow patterns
(such as sequence, parallelism, synchronization, exclusive
choice, and simple merge) [10]. Several other control-flow
discovery algorithms have been subsequently defined and
experimentally evaluated. All these control-flow discovery
algorithms have been defined for “batch processing”, i.e.,
on a complete event log. Nowadays, however, information
systems supporting business processes are able to produce a
huge amount of events thus creating new opportunities and
challenges from a computational point of view. In fact, in
case of streaming data it is impossible to store all events.
In addition to that, a business process may evolve over
time. Manyika et al. [11] report possible ways for exploiting
large amount of data to improve the company business. In
their paper, stream processing is defined as “technologies
designed to process large real-time streams of event data”
and one of the example applications is process monitoring.
The challenge to deal with streaming event data is also
discussed in the Process Mining Manifesto1.

This paper proposes and compares some algorithms for the
discovery of control-flow models, starting from streaming
event data. In the remainder of this paper we refer to
this problem as Streaming Process Discovery (SPD). The
fundamental characteristics of our approach consist in the
ability of generating a model with a well-defined semantics2.
The general representation of the SPD problem that we adopt
in this paper is shown in Figure 1: one or more sources emit
events (represented as solid dots) which are observed by the
stream miner that keeps the representation of the process
model up-to-date.

According to [12], [13], [14], a data stream consists of
an unbounded sequence of data items with a very high

1The Process Mining Manifesto is authored by the IEEE CIS Task Force
on Process Mining (http://www.win.tue.nl/ieeetfpm/).

2We also require that the model can easily be converted, preserving its
semantics, to a Petri Net.



throughput. In addition to that, the following assumptions
are typically made: i) data is assumed to have a small and
fixed number of attributes; ii) mining algorithms should be
able to process an infinite amount of data, without exceeding
memory limits; iii) the amount of memory available to a
learning/mining algorithm is considered finite, and typically
much smaller than the data observed in a reasonable span of
time; iv) there is a small upper bound on the time allowed
to process an item, e.g. algorithms have to scale linearly
with the number of processed items: typically the algorithms
work with one pass of the data; v) stream “concepts” (i.e.
models generating data) are assumed to be stationary or
evolving [15]. The task of mining data streams is typically
focused on specific types of algorithms [16], [15], [13], [17].
In particular, techniques have been developed for clustering,
classification, frequency counting, time series analysis, and
changes diagnosis (concept drift detection).

The remainder of this paper is organized as follows:
Section II reports on related work; Section III introduces
the basic concepts required to analyze the SPD problem;
Sections IV to VII describe and discuss the three approaches
we propose; Section VIII reports experimental results; Sec-
tion IX concludes the paper.

II. RELATED WORK

Over the last decade, dozens of process discovery tech-
niques have been proposed [2], e.g., Heuristics Miner [18].
Few works in Process Mining literature touch issues related
to mining event data streams. In [19], the authors focus
on incremental workflow mining and task mining (i.e. the
identification of the activities starting from the documents
accessed by users). The basic idea of this work is to mine
process instances as soon as they are observed; each new
model is then merged with the previous one so to refine
the global process representation. The approach described
is thought to deal with the incremental process refinement
based on logs generated from version management systems.
However, as authors state, only the initial idea is sketched.
Another approach for mining legacy systems is described
in [20]. In particular, after the introduction of monitoring
statements into the legacy code, an incremental process
mining approach is presented. The idea is to apply the
same heuristics of the Heuristics Miner into the process
instances and add these data into AVL trees (Adelson-Velskii
and Landis’ trees, a kind of self-balancing binary search
trees), which are then used to find the best holding relations.
Actually, this technique operates on “log fragments”, and
not on single events, so it is not really suitable for an online
setting. An interesting contribution to the analysis of evolving
processes is given in [21]. The proposed approach, based on
statistical hypothesis testing, aims at detecting concept drift,
i.e. changes in event logs, and to identify regions of change
in a process. Maggi et al. [22] propose an online technique
to extract a declarative process model (using the Declare
language). Declare models, however, are sets of constraints
over activities (the language is based on Linear Temporal
Logic) which cannot be used to model full control-flows.

TABLE I: Example of event log.

# Case Id Activity Timestamp

1 C1 A 01-10-2013 00:01
2 C1 B 01-10-2013 01:12
3 C2 A 01-10-2013 15:23
4 C2 B 01-10-2013 15:52
5 C2 C 01-10-2013 18:34
6 C1 D 01-10-2013 20:45
7 C2 D 01-10-2013 22:56

None of the above works, however, is able to address the
stream processing requirements and to generate a process
model using an imperative language.

III. BASIC CONCEPTS

In this section we introduce the basic concepts required to
comprehend the rest of the paper.

In order to better understand how an event log is com-
posed, it is necessary to clarify that each execution of a
business process constitutes a case. Each case, therefore, is
a process instance that produces a trace. Each trace consists
of the list of events that refer to specific executed activities.
The fundamental attributes of an event are the name of
the executed activity and the timestamp (that reports the
execution time of the given activity). Table I presents a
brief example of an event log, which consists of 7 events,
divided into two cases (C1 and C2), and referring to 4
activities (A, B, C, and D). Please note that the data fields
that we assume in this log structure, should be considered
typically available in real-world event logs (all process-aware
information systems need to encode the described entities
somehow). More formally, given the set of all possible
activity names A, the set of all possible case identifiers C
and the set of timestamps T , it is possible to define:

Definition 1: An event e is a triplet e = (c, a, t) ∈ C ×
A× T , and it describes the occurrence of activity a for the
case c at time t. The set of all possible events is called event
universe E = C × A× T .
An event log is then defined as a set of events. Starting
from an event log, it is useful to isolate the set of observed
activities, and the set of observed case ids: given an event e =
(c, a, t), we get each field using #case(e) = c; #activity(e) =
a; and #time(e) = t.

Definition 2: Given a finite set N+
n = {1, 2, . . . , n} and

a “target” set A, we define a sequence σ as a function σ :
N+
n → A. We say that σ maps indexes to the corresponding

elements in A. For simplicity, we refer to a sequence using
its “string” interpretation: σ = 〈s1, . . . , sn〉, where si = σ(i)
and si ∈ A.
In our context, we use timestamps to sort the events. There-
fore, it is safe to consider a trace just as a sequence of activity
recordings. For example, assuming again the event log of
Table I, we observe these two traces: C1 = 〈A,B,D〉 and
C2 = 〈A,B,C,D〉.

Definition 3: Given the event universe E , an event stream
S is a sequence of events S : N+ → E .
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Fig. 2: Graphical representation of an event stream. Boxes
represent events: their background colors represent the case
id, and the letters inside are the activity names. First line
reports the stream, following lines are the single cases.

An event stream is an unbounded sequence of events. We
make the assumption that sequence indexes comply with the
time order of events (i.e. given the sequence S, for any index
i ∈ N+, #time(S(i)) ≤ #time(S(i + 1))). Figure 2 reports a
simple representation of an event stream. Please note that two
subsequent events of an event stream may belong to different
process instances. Our on-line algorithms assume to analyze
an event stream one item per time. Specifically, given an
event stream S, we will use the notation e← observe(S) to
indicate that we are going to assign to e the first element not
yet taken into account. Therefore, two successive calls of the
observe(S) function will return two successive elements of
the sequence S.

One of the most used control-flow discovery algorithm
is Heuristics Miner [23], [18]. It is composed of a set of
heuristics specifically designed to handle real-world data
(e.g., to be noise tolerant). The algorithm discovers, via
statistical measures and user defined acceptance thresholds,
sets of dependencies from the event log and then builds a
control-flow model on the basis of these observed causal
relations.

A core concept of the algorithm is the directly-follows
measure. This measure counts the number of times that two
activities, a and b, are directly followed each other on an
event log (within the same trace). Its value is indicated as
|a > b|. If we consider again the event log reported in Table I,
we have |A > B| = 2 (it appears in C1 and C2), |B > C| =
1 (it appears only in C2), |A > D| = 0 (there are no traces
with A directly followed by D), and so on.

Using this frequency measure, Heuristics Miner can cal-
culate the dependency measure, a measure of the strength of
the causal relation between two activities a and b:

a⇒ b =
|a > b| − |b > a|
|a > b|+ |b > a|+ 1

∈ [−1, 1]. (1)

When the value is close to 1, there is a strong dependency
between a and b (b requires a). If the value is close to
−1, then there is a strong dependency between b and a (a
requires b). Using the dependency measure and a set of user
defined thresholds, Heuristics Miner builds a control-flow
model which is represented as a Heuristics Net, i.e. a directed
graph in which nodes represent activities and arcs represent
causal dependencies. Moreover, outgoing (ingoing) arcs of a

node are annotated as XOR or AND splits (joins) in case
they constitutes exclusive choices or parallel alternatives,
respectively.

Given a log, the Heuristics Net is constructed as follows.
First of all, the dependency measure is computed for all
couples of activities occurring in the log. These dependency
values are collected into a dependency matrix DM with
as many rows and columns as the number of occurring
activities. After that, a dependency graph is constructed with
a node for each activity. The node corresponding to the
activity for which none of the column (row) entries in DM
are positive is marked as start (resp. end) node. If the Use
All-Activities-Connected parameter is set to true (i.e., the
default value), the graph is connected by identifying, for
each activity a, successors (the activities with the largest
value in the row of DM indexed by a), and predecessors (the
activities with the largest value in the column of DM indexed
by a). Moreover, additional arcs are added between activities
a and b for which all the following conditions are satisfied:
i) |a > b| ≥ τPO, where τPO is a user defined positive
observations threshold; ii) a ⇒ b ≥ τdep, where τdep is a
user defined dependency threshold; iii) [(a⇒ amax)− (a⇒
b)] < τbest or [(bmax ⇒ b) − (a ⇒ b)] < τbest, where amax

(bmax) is any of the strongest (i.e. with highest dependency
value) followers (predecessors) of a (b), i.e., a ⇒ amax is a
maximum of the row of DM indexed by a (bmax ⇒ b is a
maximum of the column of DM indexed by b), and τbest is
a user defined relative-to-best threshold.

Finally, splits and joins types are identified using the AND-
measure. Given a dependency graph with an activity a and
two successor nodes b and c, their AND-measure is:

a⇒ (b ∧ c) =
|b > c|+ |c > b|
|a > b|+ |a > c|+ 1

∈ [0, 1]. (2)

When the value of the AND-measure is high (i.e. close to 1),
it is likely that a is an AND-split (parallelism) and, therefore,
that b and c can be executed in parallel. If the value of this
measure is close to 0, then b and c are in mutual exclusion
and then a is a XOR-split (exclusive choice). Using the
AND-measure and the AND-threshold, which is a parameter
of the algorithm, Heuristics Miner “decorates” all the splits
of the dependency graph (either as AND or XOR split).

Heuristics Miner considers few other heuristics, to handle
special cases (such as self loops or long distance dependen-
cies) that we are not going in details here. The dependency
graph that Heuristics Miner generates, decorated with the
AND/XOR information, can be easily converted into a Petri
Net [18].

IV. BASELINE ALGORITHM FOR STREAM MINING (SW)

The simplest way to exploit the Heuristics Miner algorithm
with data coming from an event stream is to feed it with
the more recently observed events. We call this approach
“Heuristics Miner with Sliding Window” (SW).

The basic idea is to: i) collect events for a given time
span; ii) generate a finite event log; iii) apply the “standard
version” of the algorithm. This idea is described in Alg. 1.



Algorithm 1: Heuristics Miner with SW
Input: S: event stream; M : memory; maxM : maximum

memory size

1 forever do
2 e← observe(S) /* Observe a new event,

where e = (ci, ai, ti) */

/* Memory update */
3 if size(M) = maxM then
4 shift(M)

5 insert(M, e)

/* Mining update */
6 if perform mining then
7 L← convert(M) /* Conversion of the

memory into an event log */
8 HeuristicsMiner(L)

Specifically, an event e = (ci, ai, ti) from the stream S
is observed (e ← observe(S)). After that, it is checked
whether there is room in memory to accommodate the event.
If the memory is full (size(M) = maxM ) then a sliding
window policy is adopted [13, Ch. 8], and the oldest event
is deleted (shift). Subsequently, e is inserted in memory.
Periodically (according to user’s requirement, line 6) the
memory is converted into an event log (L← convert(M)),
and the model is updated by executing the Heuristics Miner
algorithm (HeuristicsMiner(L)).

The above-mentioned approach has several advantages.
The most important one consists in the possibility of mining
the log with any process mining algorithm already available
in the literature. For example, it is possible to extract
information about the social network of people working for
the business process. However, the notion of “history” is not
very accurate: only the more recent events are considered,
and equal importance is assigned to all of them. Moreover,
the model is not constantly updated since each new received
event triggers only the update of the memory, not necessarily
an update of the model: performing a model update for each
new event would result in a significant computational burden,
well outside the computational limitations assumed for a
true online approach. In addition to that, the time required
by this approach is completely unbalanced: when a new
event arrives, inexpensive operations are performed (shift
and insert); instead, when the model needs to be updated,
the log retained in memory is mined from scratch. So, every
event is handled at least twice: the first time to store it into a
log and subsequently any time the mining phase takes place
on it. In online settings, it is more desirable to process each
event only once (“one pass algorithm” [24]).

V. HEURISTICS MINER WITH LOSSY COUNTING (LC)

The approach presented in this section is an adaptation of
an existing technique, used for approximate frequency count.
In particular, we adapted the “Lossy Counting” (LC) algo-
rithm described in [25]. The same paper proposes another
approach, named Sticky Sampling. However, we preferred

Lossy counting since, as authors stated, in practice, it reaches
better performances.

The basic idea of Lossy Counting is to conceptually
divide the stream into buckets of width w =

⌈
1
ε

⌉
, where

ε ∈ (0, 1) represents the maximum approximation error
allowed. The current bucket (i.e., the bucket of the latest
seen element) is identified with bcurr =

⌈
N
w

⌉
, where N is

the progressive events counter. The basic data structure used
by Lossy Counting is a set of entries of the form (e, f,∆)
where: e is an element of the stream; f is the estimated
frequency of the item e; and ∆ is the maximum number of
times e has already occurred. Every time a new element e
is observed, the algorithm looks whether the data structure
contains an entry for the corresponding element. If such
entry exists then its frequency value f is incremented by
one, otherwise a new tuple is added: (e, 1, bcurr − 1). Every
time N ≡ 0 mod w, the algorithm cleans the data structure
by removing the entries that satisfy the following inequality:
f + ∆ ≤ bcurr . Such inequality ensures that, every time the
cleanup procedure is executed, bcurr ≤ εN .

Our proposal consists in adapting the Lossy Counting
algorithm to the SPD problem, by creating an online version
of Heuristics Miner. Specifically, since the two fundamental
measures of Heuristics Miner (i.e., the dependency measure
and the AND-measure) are based on the directly-follows
measure (e.g. |a > b|), our idea is to “replace” the batch
version of this frequency measure, with statistics computed
over an event stream. To achieve this goal, we need a couple
of instances of the basic Lossy Counting data structure. In
particular, we need a first instance to count the frequencies
of the activities (we will call it DA), and another to count the
frequencies of the direct succession relations (DR). However,
since the event stream may contain several overlapped traces,
a third instance of the same data structure is used to keep
track of different cases running at the same time (DC). In
DA, each item is of the type (a, f,∆), where a ∈ A (set of
activity names); f and ∆ correspond to the frequency and to
the maximum possible error, respectively. In DR, each item
if of the type (r, f,∆), where r ∈ A × A (set of possible
direct succession relations). Finally, in DC , each item is of
the type (c, a, f,∆) where c ∈ C represents the case identifier
and a ∈ A is the latest activity observed for case c. This
last instance of the data structure has to behave slightly
differently from the typical Lossy Counting data structures:
it does not count the frequencies of the two stored items (c
and a), but just the frequency of c (a is just updated with
the latest observed value).

The entire procedure is presented in Alg. 2. Specifically,
every time a new event e = (ci, ai, ti) is observed (i indicates
that we observed the i-th item), DA is updated with the
new observation of the activity ai. After that, the procedure
checks if there is an entry in DC associated to the case
id of the current event (ci). If this is not the case a new
entry is added to DC (by adding the current case id and
the activity observed). Otherwise, if the data structure DC
already contains an entry for ci, it means that the new event



Algorithm 2: Heuristics Miner with LC
Input: S event stream; ε: approximation error

1 Initialize the data structure DA, DC , DR
2 N ← 1
3 w ←

⌈
1
ε

⌉
/* Bucket size */

4 forever do
5 e← observe(S) /* Event e = (ci, ai, ti) */

6 bcurr =
⌈
N
w

⌉
/* current bucket id */

/* Update the DA data structure */
7 if ∃(a, f,∆) ∈ DA such that a = ai then
8 Remove the entry (a, f,∆) from DA
9 DA ← DA ∪ {(a, f + 1,∆)}

10 else
11 DA ← DA ∪ {(ai, 1, bcurr − 1)}

/* Update the DC data structure */
12 if ∃(c, alast, f,∆) ∈ DC such that c = ci then
13 Remove the entry (c, alast, f,∆) from DC
14 DC ← DC ∪ {(c, ai, f + 1,∆)}

/* Update the DR data structure */
15 Build relation ri as alast → ai
16 if ∃(r, f,∆) ∈ DR such that r = ri then
17 Remove the entry (r, f,∆) from DR
18 DR ← DR ∪ {(r, f + 1,∆)}
19 else
20 DR ← DR ∪ {(ri, 1, bcurr − 1)}
21 else
22 DC ← DC ∪ {(ci, ai, 1, bcurr − 1)}

/* Periodic cleanup */
23 if N = 0 mod w then
24 foreach (a, f,∆) ∈ DA s.t. f + ∆ ≤ bcurr do
25 Remove (a, f,∆) from DA
26 foreach (c, a, f,∆) ∈ DC s.t. f + ∆ ≤ bcurr do
27 Remove (c, a, f,∆) from DC
28 foreach (r, f,∆) ∈ DR s.t. f + ∆ ≤ bcurr do
29 Remove (r, f,∆) from DR

30 N ← N + 1
31 Update the model as described in Section III. For the directly

follows relations, use the frequencies in DR.

is not the first of the given process instances and, therefore,
we are observing a directly-follows relation. The algorithm
builds the relation ri and updates its corresponding frequency
in DR. After the possible update of DR, the periodic cleanup
operation might be performed. Please note that when an entry
is removed from DA, the corresponding activity cannot ap-
pear in any relations in DR. This happens because, according
to our approach, relations always have lower frequency than
activities, and therefore they are removed sooner. The model
generation follows exactly the same procedure of Heuristics
Miner: the dependency graph is built using the procedure
described in Section III. The only difference with Heuristics
Miner, in this case, is that given two activities a and b, the
directly-follows frequency |a > b| must be retrieved from
the DR data structure. In Section VII we discuss how to
dynamically update the model.

VI. HEURISTICS MINER WITH LOSSY COUNTING WITH
BUDGET (LCB)

The main drawback of the approach based on Lossy
Counting, presented in the previous section, is that the only
parameter of Lossy Counting is the maximum allowed error ε

in the frequency approximation and no information on space
usage can be provided. In a recent work by Da San Martino et
al. [26], a “Lossy Counting with Budget” (LCB) is proposed.

The underlying rationale of Lossy Counting with Budget
is to “adapt” the approximation error according to the stream
and the available budget (i.e. the maximum memory that the
algorithm can use). As stated in the previous section, Lossy
Counting divides the stream in virtual buckets, each of them
with size w = d 1ε e. Lossy Counting with Budget, instead,
divides the stream in buckets of variable sizes. In particular,
each bucket Bi will contain all occurrences that can be
accommodated into the available budget. The approximation
error, for a given bucket Bi, depends on the bucket size
and is defined as εi = 1

|Bi| . Buckets of variable sizes imply
that the cleanup operations do not occur always at the same
frequency, but only when the current bucket cannot store
the new observed item. The cleanup operation iterates the
data structure looking for items to be removed. The remove
condition is the same as in Lossy Counting: given an item
(a, f,∆) the deletion condition is f+∆ ≤ bcurr . The current
bucket bcurr , however, is updated only when no more items
can be stored. Moreover, the deletion condition may not be
satisfied by any item, thus not creating space for the new
observation. In this case, the algorithm has to increase the
bcurr arbitrarily, until at least one item is removed.

The basic structure of the procedure is exactly the same
of Lossy Counting, reported in Alg. 2. There are, however,
two main differences: one related to the cleanup operations,
and another related to the budget. Concerning the first point,
the cleanup operations must be performed before inserting
an item (not after, as in Lossy Counting) and the cleanup
has to update the current bucket accordingly (several updates
might be required, if no elements are removed during the
first attempt). Concerning the budget, since we have three
different data structures, we need to let them share the
memory. Just splitting the available budget, one third per data
structure, may lead to a too raw partitioning. Therefore we
let the three data structures to grow independently of each
other. Once the sum of their sizes has reached the budget
size, the cleanup on the shared memory is performed. This
implies that, for example, a new activity may kick out an
old relation (in this case, the size of DA increases, the size
of DR decreases), thus allowing a dynamic adaptation of the
three partitions.

VII. DYNAMIC MODEL UPDATE

In this section, we discuss how to update the dependency
graph dynamically, as soon as a new event is processed. The
synopsis (i.e. the data structures) maintained by the proposed
LC-based algorithms (LC and LCB) contains counts. After
any update of these synopses (an update occurs when a
new event is observed and when the cleanup operations
are performed) we would like to update the model with
the minimum computational effort, just by looking at the
update data structures. In order to do that, we observe that
the conditions over dependency measures can actually be
rewritten as conditions on the available counts: given two



activities a and b, the condition involving the dependency
threshold τdep can be restated as

|a > b| ≥
(1 + τdep)|b > a|+ τdep

1− τdep
or

|b > a| ≤
(1− τdep)|a > b| − τdep

1 + τdep

according to whether the last updated count has been |a > b|
or |b > a|.

A bit more involved is the treatment of the relative-to-
best threshold, since a modification of the maximum row
(column) value may lead to a modification of the dependency
graph involving several arcs. First of all, let best1(a) =
max
x∈A

(a ⇒ x) and best2(b)=max
x∈A

(x⇒b). The condition

[(a⇒ amax)− (a⇒ b)] < τbest can be rewritten as:

|a > b| > (τbest − best1(a)− 1)|b > a| − best1(a) + τbest

best1(a)− 1− τbest
,

while condition [(bmax ⇒ b)− (a⇒ b)] < τbest can be
rewritten as:

|a > b| > (τbest − best2(b)− 1)|b > a| − best2(b) + τbest

best2(b)− 1− τbest
.

Similar disequalities can be derived for |b > a|. In addition,
we observe that the dependency measure is monotonic with
respect to the counts: w.r.t. |a > b|, its derivative is ∂(a⇒b)

∂|a>b| =
2|b>a|+1

(|a>b|+|b>a|+1)2 > 0 (monotonically increasing), and w.r.t.

|b>a|, its derivative is ∂(a⇒b)
∂|b>a| = −2|a>b|−1

(|a>b|+|b>a|+1)2 <0 (mono-
tonically decreasing). Thus, given a new event involving
activity a, it is not difficult to identify the arcs entering and
exiting node a that need to be added or deleted. Therefore,
it is sufficient to keep sorted lists of “counts” where a is, in
turn, the first or the second element of the relation, together
with pointers to the first count not satisfying conditions for
inserting the corresponding arc. Because of monotonicity of
the dependency measure, a local search starting from these
pointed counts allows an efficient update of the model. A
similar approach is adopted to distinguish the “type” of splits
(either AND or XOR). Given three activities a, b, and c (such
that b and c are exiting from a), and the AND threshold τand it
is possible to derive conditions similar to the previous ones:

|b > c| ≤τand(|a > b|+ |a > c|+ 1)− |c > b|
|c > b| ≤τand(|a > b|+ |a > c|+ 1)− |b > c|

|a > b| ≤|b > c|+ |c > b|
τand

− |a > c| − 1

|a > c| ≤|b > c|+ |c > b|
τand

− |a > b| − 1

In this case, as long as all these inequalities are satisfied, the
type of the split is AND, once at least one of these are not
satisfied, the split type becomes XOR.

VIII. EXPERIMENTAL EVALUATION

We performed evaluations on both artificial and real
datasets, with different parameter configurations.
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Fig. 3: Model-to-model metric for the approaches presented
in this work, with different configurations. Vertical black
lines indicate concept drifts.

A. Evaluation on Artificial Models

We evaluated our approach on an artificial dataset, in
order to be able to compare the mined model with the one
that originated the event stream. The comparison between
these two models is performed using the model-to-model
metric reported in [27]. This metric performs a “behavioral
comparison” between the set of “mandatory behavior” and
the set “forbidden behavior” (combined using the Jaccard
similarity) of the two process models.

We generated three artificial processes, and corresponding
execution logs, using PLG [28]. Then, we combined the three
logs in a single stream, in order to simulate two concept
drifts. In total, this stream contains 17265 events, referring
to 16 activities (the most complex model has 3 splits: 1
AND and 2 XOR). We compared our three approaches using
different configurations: for LC we tested ε = 0.000001 and
ε = 0.001; for LCB we tested B = 300 and B = 100; and
for SW we tested W = 300 and W = 100. Fig. 3 reports the
values of the model-to-model metric (computed every 200
events). SW is almost always the worst approach. The other
two approaches are basically equivalent and both of them
(with all configurations) are able to detect the drifts and cor-
rect the model. Fig. 4 reports the space requirements of the
approaches (computed every 200 events). As we expected,
LC is very eager in terms of space requirements. SW requires
constant space. LCB is the most parsimonious. Comparing
the results of LC and LCB, both in terms of model-to-model
similarity and space requirements, LCB clearly outperforms
LC. Fig. 5 reports the average time required to process each
event (computed every 200 events). LC and LCB require,
basically, half of the time that SW requires. Fig. 6 reports the
memory partitioning, for LCB, over its three data-structures
DA, DR and DC . As we expect, the space required by DA
and DR is almost constant (except when drifts occur, in this
case, new events and relations are observed), while most of
the space is reserved for cases, which are many more in
number and covering a relatively small span of time. This
is the reason that makes the cleanup procedure prefers the
deletion of old cases.
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B. Evaluation on Real Dataset

We performed some evaluations also against a real dataset.
This dataset is called BPIC-12, and it has been used for
the Business Processing Intelligence Challenge 20123. The
dataset we used is publicly available4 and comes from
a Dutch Financial Institute. This stream contains 262198
events, distributed among 13087 process instances. The
process originating the events consists in the application
process for a personal loan or overdraft within the financing
organization. Since a formalization of the original process
model is not available, it is impossible to compare the mined
models with the target one (as we did for the artificial
case). In order to compute the quality of the results, we
considered the adaptations to Process Mining of fitness [29]
and precision [30] measures. The first considers the ability,
for the model, to replay the log. The latter indicates whether
the model does not allow for “too much” behavior. We
compute these two measures against finite logs generated
using the latest n observed events. Since we do not know
the original process, and since we are not able to discuss it
with the data producer, we are not going to dive into details
on the quality of the mined processes.

Fig. 7 reports the average values of fitness and precision
of the three approaches, with different configurations and

3More information are reported at http://www.win.tue.nl/
bpi2012/doku.php?id=challenge.

4The dataset can be downloaded from http://dx.doi.org/10.
4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
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Fig. 7: Average precision and fitness of SW (top), LC
(middle), and LCB (bottom), on the BPIC-12 dataset, with
different window sizes/budget and evaluation log sizes.

against logs generated with a different number of events.
Analyzing the two graphs referring to LCB (bottom), it is
interesting to note, as we expected, that the two measures
are capturing orthogonal quality perspectives: we can use
these graphs to identify the best parameters configuration (to
maximize both qualities and avoiding over- and underfitting).
Concerning LCB, as the available budget and the evaluation
log size increase, the precision increases proportionally, but
the fitness decreases. The fitness of LC (middle) behaves
similarly to LCB, but the model precision values, when
ε = 0.1, instead, are so high because of ε which allows the
approach to store too few elements and so to be extremely
small. It is also interesting to note that the fitness measure of
SW (top) tends to be higher when the window sizes and the
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evaluation log sizes are “synchronized”. Instead, its precision
is extremely unstable, as shown in Fig. 8. This phenomenon
indicates that the extracted model, although it is capable of
replaying the log (high fitness), it is not very precise (i.e., it
is too general).

To analyze the BPIC-12 dataset, the three approaches
required (per event): i) SW: 24.59 ms; ii) LC: 5.68 ms;
and iii) LCB: 2.56 ms. These time performance demonstrate
the applicability of the approaches in real-world business
scenarios.

IX. CONCLUSIONS

In this paper, we addressed the problem of discovering
process models from streams of event data. As baseline ap-
proach we have considered a sliding window-based approach,
where the standard batch-based Heuristics Miner algorithm
is applied to logs obtained using a moving window. Two
adaptations of Lossy Counting and Lossy Counting with
Budget5 are proposed and experimentally evaluated. These
algorithms extend the ideas of Heuristics Miner in the context
of stream. Discussions on time/space requirements and on-
line model generation are reported. The approaches we
proposed show important improvements, w.r.t. the baseline,
in terms of quality of the mined models, execution time,
and space requirements as well. As future work, we plan to
improve the process analyst “experience” by extending the
current approach to mine different perspectives (such as data
or time) and to generate animations that point out evolution
points of the process.
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