
Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

International Journal of Cooperative Information Systems
c© World Scientific Publishing Company

QUALITY DIMENSIONS IN PROCESS DISCOVERY:

THE IMPORTANCE OF FITNESS, PRECISION,

GENERALIZATION AND SIMPLICITY

J.C.A.M. BUIJS and B.F. VAN DONGEN and W.M.P. VAN DER AALST

Faculty of Mathematics and Computer Science, Eindhoven University of Technology

Den Dolech 2, Eindhoven, the Netherlands

Received (Day Month Year)

Revised (Day Month Year)

Process discovery algorithms typically aim at discovering process models from event

logs that best describe the recorded behavior. Often, the quality of a process discovery

algorithm is measured by quantifying to what extent the resulting model can reproduce
the behavior in the log, i.e. replay fitness. At the same time, there are other measures

that compare a model with recorded behavior in terms of the precision of the model and
the extent to which the model generalizes the behavior in the log. Furthermore, many

measures exist to express the complexity of a model irrespective of the log.

In this paper, we first discuss several quality dimensions related to process discovery.
We further show that existing process discovery algorithms typically consider at most

two out of the four main quality dimensions: replay fitness, precision, generalization and

simplicity. Moreover, existing approaches cannot steer the discovery process based on
user-defined weights for the four quality dimensions.

This paper presents the ETM algorithm which allows the user to seamlessly steer

the discovery process based on preferences with respect to the four quality dimensions.
We show that all dimensions are important for process discovery. However, it only makes

sense to consider precision, generalization and simplicity if the replay fitness is accept-

able.

Keywords: process mining, process discovery, process model quality

1. Introduction

The goal of process mining is to automatically produce process models that accu-

rately describe processes by considering only an organization’s records of its op-

erational processes. Such records are typically captured in the form of event logs,

consisting of cases and events related to these cases. Using these event logs process

models can be discovered.

Over the last decade, many such process discovery techniques have been devel-

oped, producing process models in various forms, such as Petri nets, BPMN-models,

EPCs, YAWL-models etc. Furthermore, many authors have compared these tech-

niques by focusing on the properties of the models produced, while at the same

time the applicability of various techniques have been compared in case-studies.

1

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

2

In this paper, we first present a new high-level view on quality measures for pro-

cess discovery. This is then related to the four commonly known quality dimensions

for process discovery. We then also present the ETM algorithm, which is a genetic

algorithm able to optimize the process discovery result towards any of these di-

mensions. By making use of so-called process trees [15] this algorithm ensures that

the resulting model is a sound process model describing the observed log, while,

at the same time, the model can be steered to emphasize different quality dimen-

sions. Using the ETM algorithm, we can easily explore the effects of focusing on

one dimension in isolation and on combinations of these dimensions.

Traditionally, when determining the quality of a mined process model, four qual-

ity dimensions are considered, e.g. simplicity, replay fitness, precision and general-

ization, where simplicity is a property of the model and the others relate the model

to the event log. In this paper, we reconsider the notion of quality of a process

mining result, by explicitly assuming the notion of a “system” outside the process

model. In previous work the system was not explicitly considered while determin-

ing the quality of a process mining result. Nevertheless, the notion of the system is

often implicitly assumed when discussing quality issues. In this work, a system can

be a concrete information system implementation but can also refer to the context

of the process, e.g. the organization, rules, economy, etc. This system may allow for

people involved in the operational processes to deviate from the intended behavior

of the information system, sometimes for good reasons. We show that explicitly

considering the presence of such a “system” leads to new insights into the role of

existing quality dimensions in process mining.

The remainder of this paper is structured as follows. In Section 2 we discuss

related work in the area of process model quality assessment. Section 3 discusses the

research approach and relates the various contributions of this paper. In Section 4

we discuss how the behavior of the system, event log and discovered process model

are related and which measures are of importance during process discovery. In

Section 5, we present our ETM algorithm. Furthermore, we present one measure

for each of the four common quality dimensions and we present process trees as a

convenient means of modeling sound process models. In Section 6, we then present

a running example which we use throughout the remainder of the paper. Using this

example, we show the quality of various existing process discovery algorithms in

terms of the presented measures in Section 7. Section 8 then shows the results of

focusing on a subset of the quality dimensions during process discovery. Here, we

use our ETM algorithm to show that not considering all quality dimensions results

in poor models. Subsection 8.4 shows the results when considering all dimensions

and assigning different weights them. In Section 9 we apply existing techniques and

our ETM algorithm on several real life event logs. Section 10 then discusses an

extension of the approach that produces a collection of process models. Section 11

concludes the paper.

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

3

replay fitness

precisiongeneralization

simplicity
“able to replay event log” “Occam’s razor”

“not overfitting the log” “not underfitting the log”

process

discovery

Fig. 1: Different quality dimensions for Process Model Discovery [2]

2. Related Work

As mentioned in the introduction, the goal of process mining is to automatically

produce process models that accurately describe processes by considering only an

organization’s record of its operational processes [2]. Over the last decade many of

such process discovery techniques have been developed [6, 8, 12,20,22,28,29,34,45,

46]. Each of these techniques uses a different approach to obtain a process model

describing the observed behavior. To measure how well a process model describes

the observed behavior, different quality dimensions are used, which are shown in

Fig. 1.

The four different quality dimensions each cover a different aspect of the quality

of a process model [2–4]:

Simplicity The simplicity dimension evaluates how simple the process model is to

understand for a human. This dimension is therefore not directly related

to the observed behavior but can consider the process model solitarily.

Since there are different ways to describe the same behavior using differ-

ent process models, choosing the simplest one is obviously best. This is

also expressed by Occam’s razor: “one should not increase, beyond what is

necessary, the number of entities required to explain anything”. However,

sometimes a complex process model can only be simplified by changing the

behavior, hence influencing the other quality dimensions. Several measures

exist to measure how simple a process model is, for an overview we refer

to [35]. However, research has also shown that size is the main complexity

indicator [36].

Replay Fitness The quality dimension of replay fitness describes the fraction

of the behavior in the event log that can be replayed by the pro-

cess model. Several different measures exist for this quality dimension

[2, 4, 7, 19, 21, 25–27, 34, 40, 44, 45]. Some measures [27, 45] consider traces

of behavior as whole, checking if the whole trace can be replayed by the

process model. Other measures consider the more detailed level of events

within a trace and try to get a more fine-grained idea of where the devia-

tions are. Another important difference between existing measures is that

some enforce a process model to be in an accepted end state when the

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

4

whole trace is replayed. Others ignore this and allow the process model to

remain in an active state when the trace ends. The most recent and robust

technique [4,7] uses a cost-based alignment between the traces in the event

log and the most optimal execution of the process model. This allows for

more flexibility and distinction between more and less important activities

by changing the costs.

Precision The quality dimension of precision estimates the extent of the behavior

allowed by the process model that is not observed in the event log. Be-

cause of the possibly unlimited behavior of the process model, in case of

loops, only estimations of precision can be made. Several measures for pre-

cision have been suggested [27, 37, 40]. One of the most recent and robust

techniques considers the partial state space constructed while replaying the

event log on the process model [37]. The unused escaping edges from states

that are visited are counted. The higher the fraction of unused edges the

more additional behavior is allowed and the less precise the model is.

Generalization Replay fitness and precision only consider the relationship be-

tween the event log and the process model. However, the event log only

contains a part of all the possible behavior that is allowed by the system.

Generalization therefore should indicate if the process model is not “overfit-

ting” to the behavior seen in the event log and describes the actual system.

Another explanation for generalization is the likelihood that the process

model is able to describe yet unseen behavior of the observed system [2].

To date only few measures for generalization exist. In [40] two mea-

sures for something related to generalization are proposed. However, these

measures don’t consider the event log and only measure the number of du-

plicate transitions in the process model. A measure that is more in line

with the notion of generalization is presented in [4] and is based on the

work in [13, 16, 17]. This measure uses how often certain states are visited

and the number of different activities observed in each state. If a state is

visited very often and only few activities are observed, it is unlikely that a

new activity will be observed at the next visit. Vice versa, if each visit to

a state is followed by a different activity, chances are very high that a next

visit will be followed by a new activity.

Unlike existing approaches, we provide a process discovery technique that can seam-

lessly integrate the different quality dimensions (and possibly new criteria). More-

over, we provide new insights in the trade-off between these dimensions (e.g., by

analyzing the Pareto front).

3. Research Approach

In this paper, we present a process mining algorithm that is flexible with respect

to the quality dimensions it focusses on when discovering a process model and, us-

ing this algorithm, we show the relative importance of all four quality dimensions.

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

5

Fig. 2: Research approach and the role of the various sections in this paper

Figure 2 shows an overview of the approach followed in this paper. First, we care-

fully analyze the different quality dimensions starting from the viewpoint that we

know the “real” process model. Our findings support the importance of the four

classical quality dimensions described before (simplicity, replay fitness, precision,

and generalization). Then, we present the ETM discovery algorithm. This discov-

ery algorithm has two distinctive features compared to traditional approaches: (1)

models are by definition free of deadlocks and other anomalies and (2) it is possible

to seamlessly prioritize the different quality dimensions. Next to presenting the al-

gorithm it is shown (using a running example) that traditional approaches indeed

suffer from the problems the ETM discovery algorithm aims to avoid. Subsequently,

the ETM algorithm is used to analyze the relationships between the different qual-

ity dimensions. This analysis shows that all quality dimensions are necessary, but

that an acceptable replay fitness is a prerequisite for any form of evaluation. The

findings are validated using real-life logs from the CoSeLoG project involving 10

Dutch municipalities. These experiments show that it is difficult to balance the dif-

ferent dimensions. Therefore, the ETM discovery algorithm does not provide one

model but a collection of complementary models characterizing the Pareto front.

This paper follows the ‘design science’ research methodology [30]. Process dis-

covery is clearly a “wicked problem” [39], i.e., it involves unstable requirements

and constraints based on ill-defined environmental contexts, complex interactions

among subcomponents of the problem, and a critical dependence upon human cog-

nitive abilities to interpret results. This justifies the chosen research methodology.

In Table 1 we reflect on the well-known seven design-science research guidelines [30].

4. Quality Dimensions for Discovered Process Models

Traditionally, next to simplicity three quality dimensions are considered when re-

lating an event log to a model [2–4]. Replay fitness quantifies the fraction of the log

supported by the model, precision quantifies the fraction of the model not observed

in the log and generalization quantifies the likelihood that previously unseen behav-

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

6

Table 1: The design-science research guidelines by Hevner, March, Park and Ram

[30] can be used to justify the chosen research approach

Guideline 1: De-

sign as an Arti-
fact

Design science research must produce

a viable artifact in the form of a con-
struct, a model, a method, or an in-

stantiation.

Clearly identifiable artifacts are

the ETM algorithm and corre-
sponding ProM implementation.

Guideline 2: Pro-

blem relevance

The objective of design science re-

search is to develop technology-based
solutions to important and relevant

business problems.

Process mining techniques are in-

creasingly being used in industry
and there is a clear need for better

discovery algorithms.

Guideline 3: De-

sign evaluation

The utility, quality, and efficacy of

a design artifact must be rigorously
demonstrated via well-executed evalu-

ation methods.

Different quality dimensions de-

scribed in literature are used and
discussed. The corresponding met-

rics are used to empirically evalu-

ate the performance of the ETM
algorithm using both syntectic and

real-life data.

Guideline 4: Re-

search contribu-
tions

Effective design science research must

provide clear and verifiable contribu-
tions in the areas of the design arti-

fact, design foundations, and/or design

methodologies

The paper demonstrates that the

ETM algorithm overcomes limita-
tions of existing approaches using

logical argumentation and experi-

ments.

Guideline 5: Re-

search rigor

Design science research relies upon

the application of rigorous methods in
both the construction and evaluation

of the design artifact.

The approach defines clear and un-

ambiguous criteria to evaluate dis-
covered models.

Guideline 6: De-

sign as a search
process

The search for an effective artifact

requires utilizing available means to
reach desired ends while satisfying laws

in the problem environment.

Starting point is a detailed analysis

of the weaknesses of existing pro-
cess discovery approaches. More-

over, various data sets are used for

evaluation.

Guideline 7:
Communication

of research

Design science research must be pre-
sented effectively to both technology-

oriented and management-oriented au-

diences.

The paper aims to motivate the
need for better discovery algo-

rithms by showing many examples

and discussing the desired outcome
in a non-technical manner.

ior is supported by the model. In other words, the notion of generalization considers

more than just the log and the model. Instead, it also uses an implicit notion of a

“system” that is being observed. In this section, we make this notion more explicit

and we consider the effect of doing so on the other quality dimensions.

4.1. A Theoretical View

In Fig. 3, we explicitly depict the behavior of a process model, the behavior observed

in the event log and the behavior of an observed system. It is shown how the behavior

included in these three entities can overlap, but also where they may be disjoint. In

practice there are many forms in which behavior can be described, such as traces [3],

behavioral profiles [44], α-relations [6], process algebra’s [10], etc. However, for the

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

7

Process

Model

Event

Log

System

1

2

2

3

4

5

6

7
M

L

S

Fig. 3: Venn diagram showing how the behavior of the process model (M), event

log (L) and system (S) can be disjoint or overlapping.

discussion in this paper, this is irrelevant.

The Venn diagram shown in Fig. 3 shows seven areas. We can intuitively describe

the behavior contained in each area as follows:

(1) Modeled and observed system behavior (L ∩M ∩ S). The central black

area in the Venn diagram contains all behavior that is the behavior of the

system which is observed in the event log and possible in the process model.

(2) Unmodeled exceptions ((L \ M) \ S). All the observed behavior that is

actually non-system behavior is considered an exception. The exceptions that

are not supported by the process model are contained in this area.

(3) Modeled and observed exceptions ((L ∩M) \ S). Modeled and observed

exceptions are those exceptions observed in the event log that are described by

the process model.

(4) Modeled but unobserved and non-system behavior ((M \ S) \L). This

contains all the behavior described by the process model which is non-system

behavior and is also not found in the event log.

(5) Modeled but unobserved system behavior ((M ∩ S) \ L). The behavior

described by the process model that is the system’s behavior but is not seen in

the event log.

(6) Unmodeled and unobserved system behavior ((S\L)\M). All the system

behavior that is neither observed in the event log nor modeled by the process

model.

(7) Unmodeled but observed system behavior ((S ∩ L) \M). The system

behavior that is observed in the event log but not described by the process

model.

It is important to realize that there is generally no way to explicitly describe

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

8

the behavior of the system, first of all since this behavior is typically infinite, but

more so because there is always the possibility of unforeseen behavior in any real-

world system that may even change over time. Nonetheless, the traditional goal of

process mining is to find a process model that describes this system as accurately as

possible, using nothing more than the observed behavior in the log. In the remainder

of Section 4.1, we assume that the behavior of the system is known. In Section 4.2

we show how to deal with the fact that the behavior of the system is generally not

known.

Relating the behavior allowed by the process model and that recorded in the

event log, we can distinguish two measures commonly used in information retrieval.

The precision between the process model and the event log expresses the amount

of behavior not seen in the event log that can be produced by the process model.

This can be expressed as:

Model-Event Log Precision =
|L ∩M |
|M |

The recall between the model and the event log relates the behavior of the event

log that can be produced by the process model versus all the observed behavior in

the event log:

Model-Event Log Recall =
|L ∩M |
|L|

Precision and recall between the process model and the event log follow the

common notions of precision and recall in information retrieval. However, in process

mining the problem setting is a bit different. In information retrieval instances

should be classified correctly from a large set of instances. In process mining however

we have observed instances in the event log that the process model should describe.

This event log is created by, or obtained from, a system. So the behavior observed

in the event log can also be related to the behavior of the system. This can be

expressed by precision and recall between the event log and the system:

Event Log-System Precision =
|L ∩ S|
|L|

This expresses the fraction of the observed behavior in the event log that is

included in the system.

The amount of overlap between the observed behavior recorded in the event log

and the behavior of the system can be expressed as follows:

Event Log-System Recall =
|L ∩ S|
|S|

This expresses the fraction of the behavior of the system and seen in the event

log, with respect to all the behavior of the system.

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

9

The behavior allowed by the process model can also be compared to the behavior

of the system. Then again, precision can be calculated, but now for the process

model w.r.t. the system. This is expressed as:

Model-System Precision =
|S ∩M |
|M |

This fraction thus expresses the fraction of behavior that is allowed by the

process model, but is not part of the behavior of the system.

Finally, recall between the model and the system expresses the fraction of the

behavior expressed by the process model that is also the behavior of the system:

Model-System Recall =
|S ∩M |
|S|

If all these six fractions are one then the three circles of the Venn diagram of

Fig. 3 coincide and if all fractions are zero, then the three circles are disjoint.

In process mining, we start from a given event log L which comes from a given

system S, i.e. L and S are constant. If we assume that S is known then we could

simply use a genetic algorithm to discover a process model M which maximizes all

of the fractions. However, the behavior of the system is unknown, but can, to some

extent, be estimated from L.

4.2. Dealing with an unknown system

When considering the notion of a system, we rephrase the goal of process mining to:

discover a process model M from a given log L taken from an unknown, but constant

system S, which maximizes all fractions listed in Section 4.1.

The notion of Model-Event log precision directly relates to the existing quality

dimension precision discussed in Section 2 and Model-Event log recall relates to

replay fitness discussed there. Furthermore, if L and S are constant, then the Event

log-System precision and recall are constant, i.e. these fractions become irrelevant

for process discovery. In fact, many papers about process mining use the notion of

noise to describe behavior observed in the log, but not part of the system (i.e. the

noise level corresponds to 1−Event log-System precision). Furthermore, a certain

level of completeness is often assumed which refers to the completeness of the log

with respect to the system, i.e. Event log-System recall.

Things become more complex when we consider Model-System precision and

Model-System recall under the assumption that the system is unknown. Basically,

these metrics cannot be computed or estimated without further assumptions. Typi-

cally, process discovery algorithms use a hidden assumption that the process model

they discovered from the event log does not include behavior outside of the system,

i.e. they assume that M ⊆ S, hence model-system precision is one. This leaves the

model-system recall to be estimated.

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

10

Finally, the model-system recall represents the fraction of the system which is

covered by the model, i.e. if this recall is high then any behavior of the system can

be explained with the model, regardless of whether this is observed or unobserved

behavior. Under the assumption that M ⊆ S, this is what is traditionally referred

to as generalization.

In Section 5 of this paper, we present the ETM algorithm, which is a process

discovery algorithm that in many aspects makes the same assumptions about the

relations between the log, the system and the model as other algorithms. The im-

portant difference is that the focus on the quality dimensions can be parameterized.

However, before we introduce this algorithm, we present some requirements on how

the various quality aspects should be measured.

4.3. Measure Requirements

Several measures can be created to indicate the quality of a process model in a cer-

tain dimension. However, there are some important requirements that each measure

should follow.

Efficient Implementation Although in general the quality of a process model

is only measured when it is required by the user, the implementation should

still be efficient. For some measures the most easy way of calculation is also

the most time consuming one. However, the user likely wants an almost instant

answer. Furthermore, genetic algorithms, as the one we will present in Section 5,

need to call each measure very often. Therefore, the performance of a genetic

algorithm mainly depends on the time required by the measures to evaluate the

process models [31, 32]. Approximation of the quality can greatly improve the

performance of algorithms depending on the measurement.

Intuitive Results The main requirement for measures is that the results are in-

tuitive. Process models that are extremely good or bad according to a certain

measure should also be considered the best or worst according to the quality

dimension the measure is related to. The same holds for a process model that

according to the measure is slightly better or worse than another process model.

Why it is better or worse, and by ‘how much’ should follow the philosophy of the

quality dimension [11]. Probably even more important is that the user agrees

with the result, since fitness evaluation is mainly an estimation of the user’s

preference [31].

Clear Specification The specification of the measure, e.g. the way it is calcu-

lated, should also be clear. If the specification cannot be understood, it cannot

be verified why a certain process model has a certain value assigned to it. Fur-

thermore, the measures should require as few parameters as possible since they

make interpreting the results difficult if the parameter settings are unknown.

Furthermore, in certain situations, parameters can change the results of a mea-

sure dramatically. This makes a measure unclear and less authoritative. The

measure should be robust to different situations without requiring parameters.

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

11

Where possible, the measurement should be a proper metric [33], where triangle

inequality is the most important property.

Orthogonal Different measures should be orthogonal to each other. If two mea-

sures both punish or reward certain aspects of a process model then that aspect

is over-emphasized. This should be expressed by aiming at a good score for

one measure that considers this aspect. If two measures overlap, the results be-

come unclear and one of the measures is redundant. Furthermore, each measure

should only cover a single quality dimension for the same reason.

An exception to this rule is incorporating additional specific user preferences.

Those preferences are rarely independent of functional requirements on the

process model. They should however be incorporated if the user desires to do

so. However, the measurements for the recall and precision between the system,

event log and process model should only be concerned with that aspect.

5. Process Trees and the ETM Algorithm

As stated in the introduction, we use the ETM algorithm to see the effects of (not)

considering either of the four quality dimensions in process discovery. To this end,

we first introduce process trees, which we use throughout the paper.

5.1. Process Trees

Traditional languages like BPMN, Petri nets, UML activity diagrams may be con-

venient ways of representing process models. However, only a small fraction of all

possible models in these languages is sound [5], i.e. many models contain deadlocks,

livelocks and other anomalies. Especially for the results presented in this paper,

where the focus is on measuring the quality of the resulting models, it is essen-

tial that such unsound constructs are avoided. Therefore, we choose to use process

trees to describe our models since all possible process trees represent sound process

models.

Fig. 4 shows the possible operators of a process tree and their translation to a

Petri net. A process tree contains operator nodes and leaf nodes. Operator nodes

specify the relation between its children. Possible operators are sequence (→), paral-

lel execution (∧), exclusive choice (×), non-exclusive choice (∨) and loop execution

(). The order of the children matters for the operators sequence and loop. The

order of the children of a sequence operator specify the order in which they are exe-

cuted (from left to right). For a loop, the left child is the ‘do’ part of the loop. After

the execution of this ‘do’ part the right child, the ‘redo’ part, might be executed.

After this execution the ‘do’ part is again enabled. The loop in Fig. 4 for instance

is able to produce the traces 〈A〉, 〈A,B,A〉, 〈A,B,A,B,A〉 and so on.

Although also making use of a tree structure, a slightly different approach is

taken by the Refined Process Structure Tree (RPST) [43]. The RPST approach

provides “a modular technique of workflow graphs parsing to obtain fine-grained

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

12

A

B

B

A

A

B

A

B

Sequence

Exclusive Choice

Loop

Parallellism

Or Choice

A B

Fig. 4: Relation between process trees and block-structured Petri nets.

fragments with a single entry and single exit node” [43]. The content of these frag-

ments are graphs themselves and are not necessarily block-structured nor sound.

Each operator in a process tree however results in a block structured process part

with a single entry and single exit node. Each block in a process tree can only

contain a predefined control flow construct, which are shown in Fig. 4. Therefore,

workflow graphs decomposed into an RPST can be more expressive than process

trees but an RPST is not necessarily sound while a process tree always is.

5.2. The Representational Bias of Process Trees

As mentioned, the main benefit of working with process trees is the inherent sound-

ness of block structured process models. This is an especially important property

when working with genetic algorithms since they evaluate many process models.

Because process trees are inherently sound, no additional effort has to be spend

in detecting or fixing unsound process models. Besides soundness, there are other

aspects that should be considered when determining the representation used by a

process discovery algorithm. As discussed in [1] the internal representation chosen

by a discovery algorithm can imply important limitations on the results it can pro-

duce. The main limitation that process trees have is the inability to express non-local

dependencies without duplicating some of the activities involved. The genetic miner

by Alves de Medeiros [34] for instance uses a causal matrix to represent petri nets.

This allows them to produce process models that contain non-local dependencies.

However they also often result in unsound process models, as is shown in Section 9.

On the other hand, process models containing only local dependencies often pro-

vide a good compromise between expressive power and analyzability. Therefore,

by using process trees as our internal representation we ensure soundness while at

the same time maintaining enough expressive power. Furthermore, as we discuss in

Section 10, our algorithm can easily be extended to return multiple process mod-

els. This allows us to return different process models that either ignore non-local

dependencies or that explicitly capture these by duplicating certain activities.

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

13

5.3. Translation of Process Trees to other Notations

Process trees can be quite trivially translated to any of the well-known process

modeling languages such as BPMN, EPC, Petri-net, etc. Because of its inherent

block structure, the translation of process trees to other modeling languages results

in clean process models with a clear structure. One of the most commonly used

process modeling languages in industry is the BPMN notation [38]. All process

trees that we will present as a result of our ETM algorithm will therefore also

be shown in the BPMN process modeling notation. The translation is done in a

similar way as the translation to Petri nets, as shown in Fig. 4. It should be noted

however that process trees can easily be translated to any of the well-known process

modeling languages.

5.4. Quality of Process Trees

To measure the quality of a process tree, we consider one measure for each of the four

quality dimensions discussed in Section 4.2. We based these measures on existing

work in each of the four areas and we adapted them for process trees [2, 4, 19, 35–

37,40].

Simplicity quantifies the complexity of the model. Simplicity is measured by com-

paring the size of the tree with the number of activities in the log. This is

based on the observation that the size of a process model is the main factor for

perceived complexity and introduction of errors in process models [36]. Further-

more, since we internally use binary trees, the number of leafs of the process

tree corresponds to the number of operator nodes. Thus, if each activity is rep-

resented exactly once in the tree, that tree is considered to be as simple as

possible. Therefore, simplicity is calculated as follows:

Qs = 1− #duplicate activities + #missing activities

#nodes in process tree + #event classes in event log

Duplication of activities is measured by counting the number of times the ac-

tivity is repeated in the process model. An activity is missing from the process

model if it is not included in the process model while it is present in the event

log. These numbers are summed up and normalized by the total number of

nodes in the process tree and event classes (or activities) in the event log.

This simplicity metric breaks the orthogonal requirement since leaving out,

or duplicating activities in the process model, can be beneficial for the quality

dimensions replay fitness and precision. However, this metric is mainly used to

encode user preferences.

Replay fitness quantifies the extent to which the model can reproduce the traces

recorded in the log. We use an alignment-based fitness computation defined

in [4] to compute the fitness of a process tree. Basically, this technique aligns

as many events as possible from the trace with activities in an execution of the

model (this results in a so-called alignment). If necessary, events are skipped, or

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

14

activities are inserted without a corresponding event present in the log. Penalties

are given for skipping and inserting activities. The final replay fitness score is

calculated as follows:

Qrf = 1− cost for aligning model and event log

Minimal cost to align event log on model with no synchronous moves

where the denominator is the minimal costs when no match between event log

and process model can take place (e.g. worst case scenario). This is used to

normalize the replay fitness to a value between 0 and 1.

Calculating the alignments is a complex task and therefore takes relatively

much time. This breaks with the first measurement requirement of efficient

implementation. However, currently it is the most robust way of relating the

process model with the event log. Moreover, the next two quality measures

use the information provided by the alignments without requiring additional

complex computations.

Precision indicates how much additional behavior the process model allows that

is not seen in the event log. It therefore compares the state space of the tree

execution while replaying the log. Our measure is inspired by [37] and counts

so-called escaping edges, i.e. decisions that are possible in the model, but never

made in the log. If there are no escaping edges, precision is considered to be

perfect. We obtain the part of the state space used from information provided

by the replay fitness, where we ignore events that are in the log, but do not

correspond to an activity according to the alignment. In short, we calculate the

precision as follows:

Qp = 1−
∑

visited markings #visits ∗ #outgoing edges−#used edges
#outgoing edges

#total marking visits over all markings

Generalization estimates how well the process model describes the (unknown)

system, and not only the event log. If all parts of the process model are fre-

quently used, the process model is likely to be generic. However, if some parts

of the process model are rarely used, chances are high that the system actually

allows for more behavior. Therefore we base the generalization measure on how

often parts of the process model have been used while replaying the event log.

For this we use the alignment provided by the replay fitness. If a node is visited

more often then we are more certain that its behavior is (in)correct. If some

parts of the tree are very infrequently visited, generalization is bad. Therefore,

generalization is calculated as follows:

Qg = 1−
∑

nodes(
√

#executions)−1

#nodes in tree

The square root is taken from the number of executions because the effect of

having 10 executions instead of 1 is considered a more significant improvement

than from 10 to 100 executions. From each of these values the power of −1 is

taken to normalize it to a value between 0 and 1. Then these values are summed

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

15

and divided by the total number of nodes in the tree to get the average for the

whole tree.

Generalization is currently the quality dimension that is most difficult to

express. However, results show that this measure for generalization follows the

intuition for this quality dimension.

The four measures above are computed on a scale from 0 to 1, where 1 is optimal.

Replay fitness, simplicity and precision can reach 1 as optimal value. Generalization

however can only reach 1 in the limit i.e., the more frequent the nodes are visited,

the closer the value gets to 1. The flexibility required to find a process model that

optimizes a weighted sum over the four measures can efficiently be implemented

using a genetic algorithm.

5.5. The ETM Algorithm

As discussed in Section 1 we propose the use of a genetic algorithm [14,15] for the

discovery of process models from event logs. Evolutionary algorithms have been

applied to process mining discovery before in [34]. Our approach follows the same

high-level steps as most evolutionary algorithms [24]. The overall approach is shown

in Fig. 5. The main improvements with respect to [34] are the internal representation

and the fitness calculations. By using a genetic algorithm for process discovery we

gain flexibility: by changing the weights of different fitness factors we can guide the

process discovery.

By using process trees as our internal representation we only consider sound

process models. This drastically reduces the search space and therefore improves

the performance of the genetic algorithm. Furthermore, we can apply standard

tree change operations on the process trees to evolve them further. Finally, in our

fitness calculation we consider all four quality dimensions for process models: replay

fitness, precision, generalization and simplicity. The user can specify the relative

importance of each dimension beforehand. The ETM algorithm (which stands for

Evolutionary Tree Miner) will then favor those candidates that have the correct

mix of the different quality dimensions.

In general, our genetic algorithm follows the process as shown in Fig. 5. The

input of the algorithm is an event log describing observed behavior. In the initial

Result

Fig. 5: The different phases of the genetic algorithm.

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

16

step a population of random process trees is generated where each activity occurs

exactly once in each tree. Next the four quality dimensions are calculated for each

candidate in the population. Using the weight given to each dimension the overall

fitness of the process tree is calculated. In the next step certain stop criteria are

tested such as finding a tree with the desired overall fitness. If none of the stop

criteria are satisfied, the candidates in the population are changed and the fitness is

again calculated. This is continued until at least one stop criterion is satisfied and

the fittest candidate is then returned.

5.5.1. Change Operations

We apply three different change operations to the process trees in the population:

replacement, crossover and mutation. The replacement operation is a rather drastic

one: it replaces the worst process trees in the population with random new ones. The

next change operation, crossover, takes two process trees and swaps two subtrees

between them, resulting in two new process trees. Currently the subtrees are selected

randomly. However, crossover in general does not guarantee to improve the overall

quality of a process tree. Therefore we only apply it in a few cases to increase the

diversity of the population.

The most important change operation we apply is that of mutation. Several

mutation operations have been implemented where we make a distinction between

random mutation and guided mutation. Currently, three random mutations have

been implemented: adding a node, removing a node and changing a node. Exam-

ples of these mutations are shown in Fig. 6. None of these mutations guarantee

improvement in any of the quality dimensions, since the operations are applied ran-

domly. Furthermore, since we use binary trees in the current implementation, these

mutation operations need to perform additional actions to maintain this binary

form.

Using the information provided by the replay fitness measure, mutation can be

applied more efficiently. For instance, when the replay fitness indicates that a certain

activity is often observed in the event log but cannot be replayed in the process tree,

we can add the activity in that location. Vice versa, if the replay fitness indicates

that an activity, or even a whole subtree, is often skipped then this can be removed.

→
×

CB
A

(a) Refer-

ence tree.

→
×

CB

∧

DA

(b) Adding D

in parallel to
A

→

CA

(c) Re-

moving
B

∧
×

CB
A

(d)
Change
root to ∧.

Fig. 6: Examples of possible edits on a tree (a).

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

17

A combination of these operations is updating an activity to a more appropriate

activity. Finally, information is also recorded about the behavior of the control-flow

nodes. For instance, if we observe that an ∧ operator always first executes the whole

left hand side tree and then the complete right hand side tree, we can change the

operator type to a → to improve precision. Please note that the guided mutation

operations are applied using thresholds. Since the importance of different quality

dimensions can be changed, it might be beneficial to improve precision at the cost

of replay fitness for instance. None of the mutation operations guarantee improving

one quality dimension without reducing another but in general improve at least one

quality dimension.

Our genetic algorithm has been implemented as a plug-in for the ProM frame-

work. We used this implementation for all experiments presented in the remainder.

The algorithm stops as soon as a perfect candidate was found, i.e. with optimal

fitness, or after 1.000 generations. In [15] we have shown that 1.000 generations

are typically enough to find the optimal solution, especially for processes with few

activities. All other settings were selected according to the optimal values presented

in [15].

6. Running Example

Throughout the remainder of the paper, we use a running example, describing a

simple loan application process of a financial institute, providing small consumer

credit through a webpage. When a potential customer fills in a form and submits

the request on the website, the process is started by activity A which is sending an

e-mail to the applicant to confirm the receipt of the request. Next, three activities

are executed in parallel. Activity B is a check of the customer’s credit history with a

registration agency. Activity C is a computation of the customer’s loan capacity and

activity D is a check whether the customer is already in the system. This check is

skipped if the customer filled in the application while being logged in to the personal

page, since then it is obsolete. After performing some computations, the customer

is notified whether the loan was accepted (activity E, covering about 20% of the

cases) or rejected (activity F, covering about 80% of the cases). Finally, activity G

is performed, notifying the applicant of the outcome.

A Petri net of the loan application model is shown in Fig. 7 and the log we

obtained through simulation is shown in Tab. 2.

7. Results of Current Process Discovery Algorithms

In order to validate that our small running example provides enough of a challenge

for existing process discovery techniques, we applied several existing techniques,

many of which resulted in unsound process models. We translated the behavior of

each model to a process tree, in order to measure the quality of the result. Where

applicable, we stayed as close as possible to the parallel behavior of the original

model. Fig. 8 to 14 show the results of the various algorithms.

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

18

Table 2: The event log

Trace # Trace #

A B C D E G 6 A D B C F G 1

A B C D F G 38 A D B C E G 1

A B D C E G 12 A D C B F G 4

A B D C F G 26 A C D B F G 2

A B C F G 8 A C B F G 1

A C B E G 1

Fig. 7: Petri net of a loan application pro-

cess. (A = send e-mail, B = check credit,

C = calculate capacity, D = check system,

E = accept, F = reject, G = send e-mail)

For all algorithms, unless mentioned otherwise, the publicly available version,

as included in the ProM process mining frameworka, version 6.2, has been used.

7.1. The α Algorithm

One of the earliest process discovery algorithms is the α algorithm [6]. The α-

algorithm is one of the most basic process discovery algorithms, and does not take

any parameters. The result of the α algorithm is exactly the Petri net shown at

the left hand side of Fig. 8. This Petri net can be easily translated to the process

tree notation without changing the intended behavior. The process tree that is the

result of this translation is shown at the right hand side of Fig. 8. Please note that

activities E and F in the Petri net also function as a silent parallel join. In the

process tree this has been split in a control flow node (as parents of B, C and D) and

a choice between activities E and F.

→
→

G

×

FE

→
∧
∧

DC
B

A

f: 0.992 p: 0.995

s: 1.000 g: 0.889

Fig. 8: Result of the α algorithm [6] (sound)

Next to the process tree obtained after conversion is a table that shows the

results of the applied metrics, one for each of the four quality dimensions. The

replay fitness of 0.992, indicated by the ‘f’ character, indicates that the process tree

is able to replay almost all behavior. Only skipping activity D, which sometimes

happens in the event log, is not possible in the process models. The precision score

of 0.995, as is indicated by the ‘p’ character, shows that the process model does not

allow for too much additional behavior. This is caused by the fact that the event log

does not include all the possible orders of B, C and D. Simplicity is perfect (s=1.000)

aThe ProM Framework can be obtained via www.promtools.org

www.promtools.org

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

19

since all activities are included exactly once. Generalization is not bad with a score

of 0.889, especially considering that generalization can only reach 1.000 in the limit.

7.2. The ILP Miner

A process discovery algorithm that ensures perfect replay fitness is the ILP

miner [46]. The result of running this algorithm on the running example‘s event

log is shown at the left hand side of in Fig. 9. This result is obtained by using the

following, mostly default, parameters: ‘Java-ILP and LpSolve’ as solvers, ‘Petri net

(empty after completion)’ as ILP variant, number of places per causal dependency

and enabled the option of ‘Search for separate initial places’. None of the ILP ex-

tensions were enabled. The ILP miner directly produced the Petri net as shown in

Fig. 9.

→
→

G

×

FE

→
∧
∧
�

Dτ
C

B
A

f: 1.000 p: 0.784

s: 0.933 g: 0.830

Fig. 9: Result of the ILP miner [46] (Ensuring empty net after completion, sound)

Also this Petri net can be directly translated to a process tree, without changing

its behavior. The guarantee of the ILP miner, that it always produces a perfectly

fitting process model, is indicated by the perfect score for replay fitness. However,

this comes as the cost of precision, as is shown by the precision value of 0.784. This

is caused by the model allowing for loops of activity D while the event log never

contains more than one instance of D per trace. Simplicity is not perfect because

a τ transition has been introduced and because of this generalization is also a bit

worse than for the previous process model.

7.3. Language-based region theory

The result of the language-based region theory [12] can be obtained by running the

ILP miner plug-in and set the number of places to ‘Basic Representation’, disable

the ‘search for separate initial places’ checkbox and check the option to discover an

‘Elementary Net’. This produces the Petri net that is shown in Fig. 10. It is clear

to see that the resulting model is overly complex and incomprehensible.

The translation to a process tree results in the process tree as is shown in

Fig. 10. Since there is no option to skip D the replay fitness score is only 0.992. The

process model also includes activities E, F and G in the parallel part, which results

in a precision of 0.957 since these are always strictly executed at the end of the

process. Simplicity on the process tree is perfect since each activity occurs exactly

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

20

→
∧
→
→

G

×

FE

∧

CB

D
A f: 0.992 p: 0.957

s: 1.000 g: 0.889

Fig. 10: Result of the language-based region theory [12] (The model is overly com-

plex and incomprehensible, but sound)

once. Note that the translation from the Petri net to the process tree simplified the

model drastically, while maintaining its behavior. Finally generalization is at the

best value that can be obtained for this particular event log.

7.4. Heuristic Miner

The heuristics miner [45] has been developed to be more noise-resistant than most

other process discovery algorithms. When applied to running example the Petri net

as shown in the left hand side of Fig. 11 is obtained, after converting the Heuristics

net to a Petri net. All thresholds and other default settings (e.g. ‘all tasks connected’

enabled and ‘long distance dependency’ disabled) were maintained. Other settings

were experimented with but did not result in a process model with a better quality

score. Unfortunately, the resulting Petri net is not sound. Tokens are left in the

Petri net for instance before task B when the following firing sequence is executed:

〈A,C,E,G〉.

→
→

G

×

FE

→
×
∧

D

∧

CB

∧

CB

A
f: 1.000 p: 0.986

s: 0.875 g: 0.852

Fig. 11: Result of the heuristic miner [45] (Unsound, tokens are left behind.)

Since the Petri net is not sound, it is not possible to directly translate it to

a process tree. Therefore the process tree as shown in Fig. 11 represents a sound

interpretation of the intended behavior of the Petri net. Most notably is the choice

between two different parallel branches, one with D and the other without. This is

as the process model was meant as discovered by the heuristic miner, as is indicated

by the two silent transitions in the beginning of the Petri net.

The different quality measures of the process tree show that the process tree can

correctly replay all the behavior recorded in the event log. The precision is however

not perfect and a bit worse than the process tree discovered by the α algorithm.

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

21

Simplicity is not perfect because of the duplication of activities B and C. Finally,

generalization is low considering the other process models.

7.5. Multi-phase Miner

The result after running the Multi-phase miner [22] as included in ProM 5.2, with

the default settings, results in an EPC model. Converting this EPC to a Petri net

results in the Petri net as shown at the left hand side of hand side of Fig. 12. The

process model is relaxed sound but is not easy to understand due to all the silent

transitions before and after activities B, C and D. The process tree relations show

that all these three activities are included in an ∨ construct, and can therefore be

skipped. Although this results in a perfect replay fitness, it is not very precise since

activities B and C are never skipped in the event log. Generalization is as high as it

reasonably can be for this event log and simplicity is perfect.

→
→

G

×

FE

→
∨
∨

DC
B

A

f: 1.000 p: 0.830

s: 1.000 g: 0.889

Fig. 12: Result of the Multi-phase miner [22] (Model is guaranteed “relaxed sound”

and the tree reflects this.)

7.6. The Genetic Miner

The Genetic Miner [34] is run with a population of 20, a target fitness of 1.0 and for

a maximum of 10, 000 generations. The result is an unsound Petri net since tokens

are left behind before task E when executing the activities 〈A,B,C,D, F,G〉.

→

G

→
∧

B

×
→
×

FE
C

×
→

E

∧

DC

∧

D

→

FC

A f: 1.000 p: 0.922

s: 0.737 g: 0.790

Fig. 13: Result of the genetic miner [34] (Unsound, tokens left behind.)

When translating the behavior described by this model, for example the fact that

the activities B and D are parallel to F, we obtained the process tree as shown at the

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

22

right hand side in Fig. 13. Although replay fitness is perfect in the translated process

tree, precision is mediocre. Simplicity is rather low, caused by the duplication of

several activities. This also influenced generalization since the process tree contains

several choices between different process model parts.

7.7. State-based Region Theory

Applying the state-based region theory [9,18,23,41], by executing the plug-in ‘Mine

Transition System’ followed by a conversion to Petri nets using region theory, results

in the Petri net as shown in Fig. 14. For the transition system mining the default

settings the maximum set size has been set to unlimited and all activities have been

included.

→
→

G

×

FE

→
∧
∧
×

Dτ
C

B
A

f: 1.000 p: 0.893

s: 0.933 g: 0.830

Fig. 14: Result of the state-based region theory

The resulting Petri net is sound and includes the option to execute activities

E and F without executing D explicitly by duplicating activities E and F. We have

translated this Petri net to a process tree without duplicating activities E and

F, which would have reduced simplicity and generalization. Replay fitness of the

resulting process tree is perfect. However, precision is rather low because of the

explicit choice to skip D. In this translation simplicity and generalization are rather

high.

7.8. Why Existing Algorithms Fail

The results of existing process discovery algorithms, as shown in Fig. 8 to 14, clearly

indicate that, even on our small example, only the α-algorithm was able to balance

the four quality dimensions well. Several algorithms even produce an unsound re-

sult. Moreover, the α-algorithm was “lucky” for this small example. In general,

this algorithm produces models that are not fitting or not precise. Therefore, in

Section 8, we first investigate combining various dimensions and show that all of

them have to be considered in order to discover a sound, easy to understand process

model, accurately describing the log under consideration. In Subsection 8.4 we show

that assigning different weights to the dimensions results in different process mod-

els. Then, in Section 9, we show that only our ETM algorithm is able to balance

all quality dimensions for real life event logs.

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

23

8. Ignoring Quality Dimensions

The examples shown in figures 8 to 14 show that various existing process mining

techniques perform differently on all four quality dimensions and they often provide

unsound models. In this section, we use the ETM algorithm to discover a process

model on the given log, while varying which of the quality dimensions should be

considered. We show some optimal models that resulted from different runs of the

algorithm and discuss their properties. For each result we show the process tree,

the scores for each of the four quality dimensions and the translation of the process

tree to BPMN.

8.1. Considering Only One Quality Dimension

Fig. 15a shows an example process tree, and the corresponding BPMN model, that

was discovered when focusing solely on the replay fitness dimension. Although the

process model is able to replay the event log perfectly, the model allows for more

behavior than is seen in the event log. Since adding parts to the process tree might

improve replay fitness, and removing parts never does, the process tree will keep

growing until perfect replay fitness is reached. This is bad for simplicity since activ-

ities will be duplicated (activities B and D in Fig. 15a) and certain parts of the tree

will never be used (the rightmost B and the leftmost D are never used when replaying

the event log). And although the BPMN process model looks very structured, it is

harder to understand than the process model used to describe the running example.

In order to obtain trees that do not allow for behavior that is not observed in the

event log, we considered only the precision dimension in the genetic algorithm. An

example of such a tree is shown in Fig. 15b, which has a perfect precision because it

can only generate the trace 〈C,B,C〉. The translation to BPMN shows how simple

the model really is and that it indeed can only produce one trace. A process tree

will have perfect precision if each trace it can generate is used in an alignment.

Since the tree of Fig. 15b can only generate one trace, each alignment between the

event log and the tree uses this path of execution. However, the low replay fitness

score indicates that the process model in Fig. 15b has little to do with the behavior

that is recorded in the event log.

When only considering simplicity, we get trees such as the one in Fig. 15c,

where each activity is included exactly once. The corresponding BPMN model nicely

demonstrates this. However, the process model does not really describe the observed

process executions in the event log well, which is indicated by the low scores on

replay fitness and precision.

Fig. 15d shows the process tree and BPMN model that has the best general-

ization score when solely focusing on generalization. As mentioned before, general-

ization cannot reach 1, as this would require all possible behavior to be observed

infinitely often. Since generalization takes the number of node visits into account,

the score is improved if nodes are visited more often, where the visits are again

measured on the closest matching execution of the model for each trace. By placing

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

24

∧
∧

∨

D

∧
×

B

∨

Eτ

×
×

DC
τ

∧
∧

AB

×

τF

G

f: 1.000 p: 0.341

s: 0.737 g: 0.681

(a) Only replay fitness

→

C

→

BC
f: 0.449 p: 1.000

s: 0.400 g: 0.797

(b) Only Precision

×

G

∧
�
×
�

EA
D

×

BC

F
f: 0.504 p: 0.587

s: 1.000 g: 0.661

(c) Only Simplicity

�

B

�

F

∨

D

∨
×

AG
C

f: 0.961 p: 0.394

s: 0.923 g: 0.916

(d) Only Generalization

Fig. 15: Process trees discovered when considering each of the quality dimensions

separately

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

25

	 operators high in the tree, and activities F and B in the ‘redo’ part, the loops and

the nodes in the ‘do’ part are executed more often, hence improving generalization.

8.2. Always Considering Replay Fitness

The discussion in the previous section showed that none of the quality dimensions

should be considered in isolation. Furthermore, we validated the choice of many

existing process discovery techniques to put emphasis on replay fitness, i.e. if the

replay fitness is not good enough, the other quality dimensions add little value as

the discovered model does not describe the recorded behavior. On the other hand,

achieving a perfect replay fitness is not always necessary or desired.

When focusing on replay fitness and precision, the goal is to find a process

model that describes all traces, and not much more, much like the region-based

algorithms the results of which are depicted in Fig. 9, 10 and 14. In general, a

model that contains an initial exclusive choice between all unique traces in the log

has perfect precision and replay fitness. Each choice is taken at least once and each

trace in the event log is a sequence in the process model. This always results in a

perfect replay fitness. For our running example the process tree and BPMN model

as shown in Fig. 16a also have both a perfect replay fitness and precision. Each part

of the process tree is used to replay a trace in the event log and no behavior that

is not present in the event log can be produced by the process tree. However, since

both process models are fairly big, the simplicity score is low and more importantly,

the generalization is not very high either. This implies that, although this model is

very precise, it is not likely that it explains any future, unseen behavior.

Next we consider replay fitness and simplicity, the result of which is shown in

Fig. 16b. When considering only replay fitness, we obtained fairly large models,

while simplicity should keep the models compact. The process models discovered

when considering both replay fitness and simplicity contain each activity exactly

once and hence has perfect simplicity. At the same time all traces in the event log

can be replayed. However, the process tree contains two ∧, one 	 and three ∨ nodes

that allow for (far) more behavior than is seen in the event log. This is reflected in

the low precision score in combination with the high generalization.

The process tree and BPMN model that are found when focusing on the com-

bination of replay fitness and generalization is shown in Fig. 16c. The process tree

shows many similarities with the process tree found when solely considering gen-

eralization. Activity E has been added to the ‘do’ part of the 	 to improve the

replay fitness. However, it also reduces the generalization dimension since it is only

executed 20 times. Furthermore, the tree is still not very precise.

In contrast to the trees in Section 8.1, the various process trees discussed in

this section mainly capture the behavior observed in the event log. However, they

either are overfitting (i.e. they are too specific) or they are underfitting (i.e. they

are too generic). Hence, considering replay fitness in conjunction with only one

other dimension still does not yield satisfying results. Therefore, in Section 8.3, we

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

26

→
→

G

×
→

F

→

CB

×
→
×

EF

→

BC

×
→
→

FB

∧

DC

→
×

EF

∧
→

CB
D

A

f: 1.000 p: 1.000

s: 0.560 g: 0.657

(a) Replay Fitness and Precision

∧

B

∧

A

�

E

∨

F

∨

C

∨

DG

f: 1.000 p: 0.387

s: 1.000 g: 0.892

(b) Replay Fitness and Simplicity

�
∨

BF

∨

E

∨

D

∨
∨

AG
C f: 1.000 p: 0.214

s: 1.000 g: 0.906

(c) Replay Fitness and Generalization

Fig. 16: Process trees discovered when considering replay fitness and one of the

other quality dimensions

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

27

consider three out of four dimensions, while never ignoring replay fitness.

8.3. Ignoring One Dimension

We just showed that replay fitness, in conjunction with one of the other quality

dimensions, is insufficient to judge the quality of a process model. However, most

process discovery algorithms steer on just two quality dimensions. Hence we consider

three of the four quality dimensions.

Fig. 17 shows the three process trees that are discovered when ignoring one of the

quality dimensions, but always including replay fitness. Fig. 17a shows the process

tree and BPMN model found when ignoring precision. The resulting process tree is

similar to the one in Fig. 16c, which was based on replay fitness and generalization

only. The only difference is that the parent of A and G has changed from ∨ to ×.

Since the ∨ was actually only used as an ×, this only influences precision. Hence the

other measures have the same values. The BPMN models of Fig. 16c and Fig. 17a

are also very similar where the latter one only has an additional × block.

The process tree which is discovered when ignoring generalization is the same

a when simplicity is ignored and is shown in Fig. 17b. This is due to the fact that

both simplicity and generalization are optimal in this tree. In other words, when

weighing all four dimensions equally, this tree is the best possible process tree to

�
∨

BF

∨

E

∨
∨
×

AG
D

C
f: 1.000 p: 0.234

s: 1.000 g: 0.906

(a) no precision

→
→
→

G

×

FE

∧

D

∧

BC

A

f: 0.992 p: 0.995

s: 1.000 g: 0.889

(b) no generalization or no simplicity

Fig. 17: Considering 3 of the 4 quality dimensions

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

28

describe the process.

Interestingly, this tree is the same as the result of the α-algorithm (Fig. 8).

However, as mentioned earlier, the α-algorithm is not very robust. This will also be

demonstrated in Section 9 using real life event logs.

8.4. Weighing Dimensions

The process trees shown in Fig. 17 have trouble replaying all traces from the event

log while maintaining a high precision. However, since process discovery is mostly

used to gain insights into the behavior recorded in the log, it is generally required

that the produced model represents the log as accurately as possible, i.e. that both

replay fitness and precision are high. By giving more weight to replay fitness, while

still taking precision into account, our genetic algorithm can accommodate this

importance. Fig. 18a shows the process tree and BPMN model resulting from our

algorithm when giving 10 times more weight to replay fitness than the other three

quality dimensions. As a result the process tree is able to replay all traces from the

event log while still maintaining a high precision.

Let us compare this process with the process tree of Fig. 17b. This is also the

process tree or BPMN model produced when all quality dimensions are weighted

equally. It can be seen that the price to pay for improving fitness was a reduction

in precision. This can be explained by looking at the change made to the process

model: activity D is now in an ∨ relation with activities B and C. Replay fitness

is hereby improved since the option to skip activity D is introduced. However, the

process tree now also allows for skipping the execution of both B and C. Something

which is never observed in the event log.

Furthermore, the process tree of Fig. 18a performs better than the model we

→
→

G

→
×

FE

∨

D

∧

CB

A
f: 1.000 p: 0.923

s: 1.000 g: 0.889

(a) Process tree discovered when replay fitness is 10 times more important than all other dimen-

sions

→
→

G

→
×

FE

∧
∧

BC

×

τD

A

(b) Process tree of the model used for simulation (Translated manually from Fig. 7)

Fig. 18: Weighing dimensions and original process model.

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

29

originally used for simulating the event log as can be seen in Fig. 18b. The original

tree performs equal on replay fitness but worse on the other three quality dimen-

sions. Precision is worse because the state space of the original model is bigger while

some paths are not used. Simplicity is also worse because an additional τ node is

used in the original tree, hence the tree is two nodes bigger than optimal. Further-

more, since the τ node is only executed ten times, the generalization reduces as well

because the other nodes are executed more than 10 times, thus the average visits

per node decreases.

9. Experiments Using Real Life Event Logs

In the previous sections we discussed the results of various existing process discovery

techniques on our running example. We also demonstrated that all four quality

dimensions should be considered when discovering a process model. In this section

we apply a selection of process discovery techniques, and our ETM algorithm, on

three event logs from real information systems. Using these event logs, and the

running example, we show that our ETM algorithm is more robust than existing

process discovery techniques.

In this section we consider the following event logs:

(1) The event log L0 is the event log as presented in Tab. 2. L0 contains 100 traces,

590 events and 7 activities.

(2) Event Log L1 contains 105 traces, 743 events in total, with 6 different activi-

ties.

(3) Event Log L2 contains 444 traces, 3.269 events in total, with 6 different ac-

tivities.

(4) Event Log L3 contains 274 traces, 1.582 events in total, with 6 different ac-

tivities.

Event logs L1, L2 and L3 are extracted from information systems of municipalities

participating in the CoSeLoGb project. Since some of the existing process discovery

techniques require a unique start and end activity, all event logs have been filtered

to contain only those traces that start with the most common start activity and

end with the most common end activity. Furthermore, activity names have been

renamed to the letters A. . . F.

From the process discovery algorithms discussed in Section 7 we selected four

well-known algorithms: the α-algorithm [6], the ILP-miner [46], the heuristics

miner [45] and the genetic algorithm by Alves de Medeiros [34]. Because we do

not have enough space to show all process models we show some important charac-

teristics of the resulting Petri nets in Tab. 3.

The α-algorithm and ILP Miner produce sound Petri nets for each of the four

input logs. In contrast, the Genetic Miner never produces a sound Petri net for the

bSee http://www.win.tue.nl/coselog

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

30

Table 3: Petri Net properties of discovered models.

Legend: s?: whether the model is sound (X) or unsound (7);

#p: number of places; #t: number of transitions; #arcs: number of arcs

L0 L1 L2 L3

s? #p #t #arcs s? #p #t #arcs s? #p #t #arcs s? #p #t #arcs

α-algorithm X 9 7 20 X 3 6 4 X 3 6 4 X 6 6 10

ILP Miner X 7 7 19 X 4 6 9 X 2 6 11 X 4 6 9

Heuristics 7 12 12 30 X 12 15 28 X 12 16 32 7 10 11 23

Genetic 7 10 9 21 7 13 20 42 7 11 20 36 7 10 11 25

Table 4: Quality of Process Tree translations of Several Discovery Algorithms

(italic results indicate unsound models, the best model is indicated by a gray cell

background)

L0 L1 L2 L3

α-algorithm

f: 0.992 p: 0.995 f: 1.000 p: 0.510 f: 1.000 p: 0.468 f: 0.976 p: 0.532

s: 1.000 g: 0.889 s: 0.923 g: 0.842 s: 0.923 g: 0.885 s: 0.923 g: 0.866

overall: 0.969 overall: 0.819 overall: 0.819 overall: 0.824

ILP Miner

f: 1.000 p: 0.748 f: 1.000 p: 0.551 f: 1.000 p: 0.752 f: 1.000 p: 0.479

s: 0.933 g: 0.830 s: 0.857 g: 0.775 s: 0.923 g: 0.885 s: 0.857 g: 0.813

overall: 0.887 overall: 0.796 overall: 0.890 overall: 0.787

Heuristics

f: 1.000 p: 0.986 f: 0.966 p: 0.859 f: 0.917 p: 0.974 f: 0.995 p: 1.000

s: 0.875 g: 0.852 s: 0.750 g: 0.746 s: 0.706 g: 0.716 s: 1.000 g: 0.939

overall: 0.928 overall 0.830 overall: 0.828 overall: 0.983

Genetic

f: 1.000 p: 0.922 f: 0.997 p: 0.808 f: 0.905 p: 0.808 f: 0.987 p: 0.875

s: 0.737 g: 0.790 s: 0.750 g: 0.707 s: 0.706 g: 0.717 s: 0.750 g: 0.591

overall: 0.862 overall: 0.815 overall: 0.784 overall: 0.801

ETM

f: 0.992 p: 0.995 f: 0.901 p: 0.989 f: 0.863 p: 0.982 f: 0.995 p: 1.000

s: 1.000 g: 0.889 s: 0.923 g: 0.894 s: 0.923 g: 0.947 s: 1.000 g: 0.939

overall: 0.969 overall: 0.927 overall: 0.929 overall: 0.983

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

31

event logs. The Heuristics Miner produces a sound solution for two out of the four

event logs.

For each of the discovered Petri nets we created process tree representations,

describing the same behavior. If a Petri net was unsound, we interpreted the sound

behavior as closely as possible. For each of these process trees the evaluation of each

of the four measures, and the overall average fitness, is shown in Tab. 4.

For event log L1 both the α-algorithm and the ILP miner find process mod-

els that can replay all behavior. But, as is also indicated by the low precision,

these allow for far more behavior than observed in the event log. This is caused by

transitions without input places that can occur an arbitrary number of times. The

heuristics miner is able to find a reasonably fitting process model, although it is

also not very precise since it contains several loops. The genetic algorithm finds a

model similar to that of the heuristics miner, although it is unsound and contains

even more loops. The ETM algorithm finds a process tree, of which the BPMN

translation is shown in Fig. 19a, that scores high on all dimensions. If we want to

improve replay fitness even more we can make it 10 times more important as the

other quality dimensions. This results in the process model shown in Fig. 19b. With

an overall (unweighted) fitness of 0.884 it is better than all process models found

by other algorithms while at the same time having a perfect replay fitness.

Event log L2 shows similar results: the α-algorithm and the ILP miner are able

to find process models that can replay all behavior but allow for far more behavior.

The heuristics miner and genetic miner again found models with several loops.

The ETM algorithm was able to find a process model, shown in Fig. 20a, that

scores high on all dimensions but less so on replay fitness. If we emphasize replay

fitness 10 times more than the other dimensions, we get the process model shown

f: 0.901 p: 0.989

s: 0.923 g: 0.894

(a) All dimensions weight 1

f: 0.996 p: 0.775

s: 0.923 g: 0.843

(b) Replay Fitness weight 10, rest 1

Fig. 19: Process Trees discovered for L1

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

32

in Fig. 20b. Although replay fitness improved significantly, the other dimensions,

especially precision and simplicity, are reduced.

For event log L3 the observations for the last two event logs still hold. Both

the α-algorithm and the ILP miner provide fitting process models that allow for

far more behavior. Both the heuristics miner and the genetic algorithm result in

unsound models. However, the sound interpretation of the heuristics model is the

same as the sound process model found by the ETM algorithm, which is shown

in Fig. 21a. Replay fitness is almost perfect. However, we let the ETM algorithm

discover a process model with real perfect replay fitness, which is shown in Fig. 21b.

This requires making replay fitness 1.000 times more important than the others and

results in a process tree that has perfect replay fitness but scores bad on precision.

However, as we have seen before, this is a common trade-off and the process tree

is still more precise than the one found by the ILP miner which also has a perfect

replay fitness.

Investigating the results shown in Tab. 4 we see that on two occasions a pro-

cess model similar to the one found by the ETM algorithm was found by another

algorithm. However, the α-algorithm was not able to produce sensible models for

any of the three real life event logs. The heuristics miner once produced a process

model of which the sound behavior matched the process tree the ETM algorithm

discovered. However, our algorithm always produced sound process models superior

f: 0.863 p: 0.982

s: 0.923 g: 0.947

(a) All dimensions weight 1

f: 0.964 p: 0.415

s: 0.571 g: 0.838

(b) Replay fitness weight 10, rest weight 1

Fig. 20: Process Trees discovered for L2

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

33

to the others. Furthermore, the ETM algorithm can be steered to improve certain

dimensions of the process model as desired.

10. Building a Pareto Front

By assigning weights to the different dimensions the ETM algorithm is able to

produce a process model that balances the dimensions as desired. However, it is

hard to specify the weights required beforehand. Consider for instance the process

model of Fig. 21b where fitness was weighed 1, 000 times more than the other

dimensions in order to get perfect replay fitness. In Fig. 19b and Fig. 20b however,

fitness was weighed 10 times more important than the other dimensions to get a

similar result. It is sometimes hard to know beforehand how to set the weights to

get the desired results.

Therefore, we prefer to avoid assigning weights to the different dimensions up-

front. By presenting the user with a collection of process models to choose from,

f: 0.995 p: 1.000

s: 1.000 g: 0.939

(a) All dimensions weight 1

f: 1.000 p: 0.502

s: 0.857 g: 0.900

(b) Replay fitness weight 1000, rest weight 1

Fig. 21: Process Trees discovered for L3

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

34

Replay Fitness

P

r

e

c

i

s

i

o

n (Partly Unknown)

Pareto Front

Non-Optimal

Process Models

Truncated

Members

B C D

E F G

A

B C D FA G

Fig. 22: Example of a Pareto front on two dimensions.

the user can pick the process model that has the desired trade-offs. This can be

achieved by constructing a Pareto front [42] of process models. Fig. 22 shows an

example of a Pareto front for the dimensions replay fitness and precision. Each dot

in the graph represents a process model with a certain replay fitness and precision

value. The open dots in the lower middle area are non-optimal process models,

e.g. one of the dimensions can be improved without reducing the quality in any

of the other dimensions. The solid black dots represent the current estimation of

the Pareto front. Currently, for these models there is no model known where one

dimension has a better score without reducing one of the other dimensions. The

ideal or real Pareto front, as indicated by the dotted curved line, shows that some

improvements can still be made.

However, the Pareto front can grow very large because in general at least 4 di-

mensions are considered which each have infinitely many possible values. Therefore,

the Pareto front can be truncated by removing process models that are similar, i.e.,

representative examples are selected from groups of similar models. The bigger dots

shown in Fig. 22 are the most diverse process models in the current front. This is

determined by looking at the distance between the process models in all dimensions.

When the Pareto front is truncated process models that are too similar to others

are removed, until the desired Pareto front size is obtained.

The Pareto front can be easily constructed by the ETM algorithm by replacing

the group of elite process trees with the Pareto front and updating it during the

generations. Since the Pareto front size is not fixed, and in general will grow over

time, the ETM algorithm is slightly adjusted to select a fixed number of process

trees from the current Pareto front as input for the new mutation cycle. After

applying the different mutations, the new trees are considered to be added to the

Pareto front and the Pareto front is updated.

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

35

10.1. Pareto Front for the Running Example

If a Pareto front is constructed for the running example, using the process models

discovered so far by the ETM algorithm, it contains six of the eleven process models

shown in Fig. 15 through Fig. 18. It will not contain the process model discovered

when only replay fitness is taken into account, which is shown in Fig. 15a. This pro-

cess tree is dominated by the process tree discovered when considering both replay

fitness and precision (Fig. 16a) since they both have perfect replay fitness but the

precision of the latter model is better. For the reason the process tree found when

considering replay fitness and simplicity (Fig. 16b) is included since it scores better

on simplicity. Another process tree that is in the Pareto front is the tree discovered

when ignoring precision (Fig. 17a), and the one found when considering only preci-

sion (Fig. 15b. The process tree that is discovered when ignoring either simplicity

or generalization, which is the same as the one discovered by the α algorithm is also

included in the Pareto front.

Additionally, the process tree as shown in Fig. 23 will be included in the Pareto

front since it balances the four quality dimensions very well.

When considering the process models found by the existing process discovery

algorithms, some of them are also in the Pareto front. The model discovered by the

α-algorithm is on the Pareto front: it is the same as the process tree found by the

ETM algorithm. However, also the sound interpretation of the model discovered by

the Heuristics miner (Fig. 11) is included in the Pareto front because of the balance

of the different quality dimensions.

A Pareto front changes over time, i.e. during the execution of the ETM algo-

rithm, process models may disappear from it as they are replaced by better ones.

Therefore, the Pareto front as discussed may be improved if the ETM algorithm is

allowed to run longer.

f: 0.980 p: 0.613

s: 0.923 g: 0.898

Fig. 23: Process Tree that was not discovered before but will be in the Pareto Front.

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

36

10.2. Using the Pareto front to indicate non-local dependencies

Another issue that is addressed by returning multiple process models is that of

modeling non-local dependencies using process trees. Consider for instance a process

for obtaining a driving license for either a car or a motorbike. First driving classes

for either car or motorbike need to be followed. After this a theoretical exam needs

to be taken, which is the same for both. Next the practical test needs to be done,

which is of course different for cars and motorbikes. Two process models describing

this process are shown in Fig. 24, with the activities renamed to A to J. In this

example process activity F (the practical exam for cars) should only be executed if

activity C (driving class for cars) was executed before. Similarly, activity G (practical

exam for motorbike) should only be chosen if earlier activity D (driving class for

motorbike) was executed. However, in between always activity E (theoretical exam)

should be executed.

The Pareto front constructed by the ETM algorithm will include both process

models shown in Fig. 24. In the process model of Fig. 24a the dependencies between

the activities are not modeled and activity F could be executed even if activity D

has been performed earlier. This is not possible in the process model of Fig. 24b

where activity E has been duplicated. The process model of Fig. 24b has a perfect

precision. The process model of Fig. 24a does not have a perfect precision since

this process model can produce traces not observed in the event log. However, this

process model scores better on the dimensions generalization and simplicity.

In general, the process model where the non-local dependency is expressed by

duplicating the activities in between scores better on precision. This process model

restricts certain activity combinations from occurring which are not observed in the

event log, hence increasing precision. This however always comes at the cost of both

generalization and simplicity. Therefore the Pareto front will always include both

process model variants. This allows the user to make the decision which of the two

process models to prefer.

f: 1.000 p: 0.937

s: 0.952 g: 0.407

(a)

f: 1.000 p: 1.000

s: 0.909 g: 0.361

(b)

Fig. 24: Two process trees where activities F and G depend on C and D respectively.

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

37

11. Conclusion

The quality of process discovery algorithms is generally measured using four dimen-

sions, namely replay fitness, precision, generalization and simplicity. Many existing

process discovery algorithms focus on only two or three of these dimensions and gen-

erally, they do not allow for any parameters indicating to what extent they should

focus on any of them. Furthermore, most process discovery algorithms assume that

the event log is complete in describing the behavior of the system. Moreover, they

assume that the event log is noise-free and that the process model is a correct

description of the system.

In this paper we provide an overview of the relationship between the behavior

of the system, the observed behavior in the event log and the possible behavior

of the process model. The existing four quality dimensions are positioned within

this comparison and we present the ETM algorithm to discover process trees on

a log which can be configured to optimize for a weighted average over the quality

dimensions, i.e. a model can be discovered that is optimal given the weights to

each parameter. Finally, the ETM algorithm is guaranteed to produce sound process

models.

We use our ETM algorithm to show that all four quality dimensions are nec-

essary when doing process discovery and that none of them should be left out.

However, the replay fitness dimension, indicating to what extent the model can

reproduce the traces in the log, is more important than the other dimensions.

Using both an illustrative example and three real life event logs we demonstrate

the need to consider all four quality dimensions. Moreover, our algorithm is able to

balance all four dimensions is a seamless manner.

To prevent the need to configure the weights assigned to each quality dimension,

a Pareto front can be constructed by the ETM algorithm. The Pareto front contains

a number of process trees, each balancing the quality dimensions in a different way.

Currently the main challenge is to find a way to present the Pareto front to the

user such that they can understand the differences between the process models and

make an informed choice which process model to select.

References

1. W.M.P. van der Aalst. On the Representational Bias in Process Mining. In En-
abling Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2011
20th IEEE International Workshops on, pages 2–7. IEEE, 2011. pages

2. W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer-Verlag, Berlin, 2011. pages

3. W.M.P. van der Aalst. Mediating Between Modeled and Observed Behavior: The
Quest for the “Right” Process. In IEEE International Conference on Research Chal-
lenges in Information Science (RCIS 2013), pages 31–43. IEEE Computing Society,
2013. pages

4. W.M.P. van der Aalst, A. Adriansyah, and B.F. van Dongen. Replaying History on
Process Models for Conformance Checking and Performance Analysis. Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery, 2(2):182–192, 2012. pages

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

38

5. W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede, N. Sidorova, H.M.W.
Verbeek, M. Voorhoeve, and M.T. Wynn. Soundness of Workflow Nets: Classification,
Decidability, and Analysis. Formal Aspects of Computing, 23(3):333–363, 2011. pages

6. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Dis-
covering Process Models from Event Logs. IEEE Transactions on Knowledge and Data
Engineering, 16(9):1128–1142, 2004. pages

7. A. Adriansyah, B. van Dongen, and W.M.P. van der Aalst. Conformance Checking
using Cost-Based Fitness Analysis. In IEEE International Enterprise Computing Con-
ference (EDOC 2011), pages 55–64. IEEE Computer Society, 2011. pages

8. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Workflow
Logs. In Sixth International Conference on Extending Database Technology, volume
1377 of Lecture Notes in Computer Science, pages 469–483. Springer-Verlag, Berlin,
1998. pages

9. E. Badouel and P. Darondeau. Theory of Regions. In W. Reisig and G. Rozenberg,
editors, Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture Notes in
Computer Science, pages 529–586. Springer-Verlag, Berlin, 1998. pages

10. J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge tracts in
theoretical computer science. Cambridge University Press, Cambridge, 1990. pages

11. F.D. Banzhaf, W.and Francone, R.E. Keller, and P. Nordin. Genetic programming: an
introduction: on the automatic evolution of computer programs and its applications.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998. pages

12. R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process Mining Based on Regions
of Languages. In G. Alonso, P. Dadam, and M. Rosemann, editors, International
Conference on Business Process Management (BPM 2007), volume 4714 of Lecture
Notes in Computer Science, pages 375–383. Springer-Verlag, Berlin, 2007. pages

13. C. Boender and A. Rinnooy Kan. A Bayesian Analysis of the Number of Cells of a
Multinomial Distribution. The Statistician, 32(1-2):240–248, 1983. pages

14. J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. On the Role of Fitness,
Precision, Generalization and Simplicity in Process Discovery. In OTM Federated Con-
ferences, 20th International Conference on Cooperative Information Systems (CoopIS
2012), volume 7565, pages 305–322, 2012. pages

15. J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. A Genetic Algorithm for
Discovering Process Trees. In Evolutionary Computation (CEC), 2012 IEEE Congress
on, pages 1 –8, june 2012. pages

16. J.A. Bunge and M. Fitzpatrick. Estimating the Number of Species: A Review. Journal
of the American Statistical Association, 88(421):pp. 364–373, 1993. pages

17. K.P. Burnham and W.S. Overton. Robust Estimation of Population Size When Cap-
ture Probabilities Vary Among Animals. Ecology, 60(5):pp. 927–936, 1979. pages

18. M.P. Cabasino, A. Giua, and C. Seatzu. Identification of Petri Nets from Knowledge
of Their Language. Discrete Event Dynamic Systems, 17(4):447–474, 2007. pages

19. T. Calders, C. W. Günther, M. Pechenizkiy, and A. Rozinat. Using Minimum De-
scription Length for Process Mining. In Proceedings of the 2009 ACM symposium on
Applied Computing, SAC ’09, pages 1451–1455, New York, NY, USA, 2009. ACM.
pages

20. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-Based
Data. ACM Transactions on Software Engineering and Methodology, 7(3):215–249,
1998. pages

21. J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively Measuring the
Correspondence of a Process to a Model. ACM Transactions on Software Engineering
and Methodology, 8(2):147–176, 1999. pages

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

39

22. B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Mining: Aggregating In-
stances Graphs into EPCs and Petri Nets. In D. Marinescu, editor, Proceedings of the
Second International Workshop on Applications of Petri Nets to Coordination, Work-
flow and Business Process Management, pages 35–58. Florida International University,
Miami, Florida, USA, 2005. pages

23. A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures - Part 1 and Part 2. Acta
Informatica, 27(4):315–368, 1989. pages

24. A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer Verlag,
2003. pages

25. K. Gerke, J. Cardoso, and A. Claus. Measuring the compliance of processes with
reference models. In Robert Meersman, Tharam Dillon, and Pilar Herrero, editors,
On the Move to Meaningful Internet Systems: OTM 2009, volume 5870 of Lecture
Notes in Computer Science, pages 76–93. Springer Berlin Heidelberg, 2009. pages

26. S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens. Robust Process Discovery
with Artificial Negative Events. Journal of Machine Learning Research, 10:1305–1340,
2009. pages

27. G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Discovering Expressive Process Models
by Clustering Log Traces. IEEE Transaction on Knowledge and Data Engineering,
18(8):1010–1027, 2006. pages

28. C.W. Günther and W.M.P. van der Aalst. Fuzzy Mining: Adaptive Process Simplifica-
tion Based on Multi-perspective Metrics. In G. Alonso, P. Dadam, and M. Rosemann,
editors, International Conference on Business Process Management (BPM 2007), vol-
ume 4714 of Lecture Notes in Computer Science, pages 328–343. Springer-Verlag,
Berlin, 2007. pages

29. J. Herbst and D. Karagiannis. Integrating Machine Learning and Workflow Manage-
ment to Support Acquisition and Adaptation of Workflow Models. International Jour-
nal of Intelligent Systems in Accounting, Finance and Management, 9:67–92, 2000.
pages

30. A.R. Hevner, S.T. March, J. Park, and S. Ram. Design science in information systems
research. MIS Q., 28(1):75–105, March 2004. pages

31. Y. Jin. A comprehensive survey of fitness approximation in evolutionary computation.
Soft Computing Journal, 9(1):3–12, 2005. pages

32. J.R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, 1992. pages

33. M. Kunze, M. Weidlich, and M. Weske. Behavioral similarity - a proper metric. In
Business Process Management (BPM 2011), pages 166–181, 2011. pages

34. A.K. Alves de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic Pro-
cess Mining: An Experimental Evaluation. Data Mining and Knowledge Discovery,
14(2):245–304, 2007. pages

35. J. Mendling, G. Neumann, and W.M.P. van der Aalst. Understanding the Occur-
rence of Errors in Process Models Based on Metrics. In F. Curbera, F. Leymann, and
M. Weske, editors, Proceedings of the OTM Conference on Cooperative information
Systems (CoopIS 2007), volume 4803 of Lecture Notes in Computer Science, pages
113–130. Springer-Verlag, Berlin, 2007. pages

36. J. Mendling, H.M.W. Verbeek, B.F. van Dongen, W.M.P. van der Aalst, and G. Neu-
mann. Detection and Prediction of Errors in EPCs of the SAP Reference Model. Data
and Knowledge Engineering, 64(1):312–329, 2008. pages

37. J. Munoz-Gama and J. Carmona. Enhancing Precision in Process Conformance: Sta-
bility, Confidence and Severity. In N. Chawla, I. King, and A. Sperduti, editors, IEEE
Symposium on Computational Intelligence and Data Mining (CIDM 2011), Paris,

Tuesday 25th June, 2013 14:45 WSPC/INSTRUCTION FILE IJCIS

40

France, April 2011. IEEE. pages
38. OMG. Business Process Model and Notation (BPMN). Object Management Group,

dtc/2010-06-05, 2010. pages
39. H. Rittel and M. Webber. Dilemmas in a General Theory of Planning. Policy Sciences,

4(2):155–169, 1973. pages
40. A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based on

Monitoring Real Behavior. Information Systems, 33(1):64–95, 2008. pages
41. M. Sole and J. Carmona. Process Mining from a Basis of Regions. In J. Lilius and

W. Penczek, editors, Applications and Theory of Petri Nets 2010, volume 6128 of
Lecture Notes in Computer Science, pages 226–245. Springer-Verlag, Berlin, 2010.
pages

42. D.A. Van Veldhuizen and G.B. Lamont. Evolutionary Computation and Convergence
to a Pareto Front. In Late Breaking Papers at the Genetic Programming 1998 Con-
ference, pages 221–228, 1998. pages

43. J. Vanhatalo, H. Völzer, and J. Koehler. The Refined Process Structure Tree. Data
and Knowledge Engineering, 68(9):793–818, 2009. pages

44. M. Weidlich, A. Polyvyanyy, N. Desai, and J. Mendling. Process compliance measure-
ment based on behavioural profiles. In Advanced Information Systems Engineering,
pages 499–514. Springer, 2010. pages

45. A.J.M.M. Weijters, W.M.P. van der Aalst, and A.K. Alves de Medeiros. Process Min-
ing with the Heuristics Miner-algorithm. BETA Working Paper Series, WP 166, Eind-
hoven University of Technology, Eindhoven, 2006. pages

46. J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik. Process
Discovery using Integer Linear Programming. Fundamenta Informaticae, 94:387–412,
2010. pages

	Introduction
	Related Work
	Research Approach
	Quality Dimensions for Discovered Process Models
	A Theoretical View
	Dealing with an unknown system
	Measure Requirements

	Process Trees and the ETM Algorithm
	Process Trees
	The Representational Bias of Process Trees
	Translation of Process Trees to other Notations
	Quality of Process Trees
	The ETM Algorithm
	Change Operations

	Running Example
	Results of Current Process Discovery Algorithms
	The Algorithm
	The ILP Miner
	Language-based region theory
	Heuristic Miner
	Multi-phase Miner
	The Genetic Miner
	State-based Region Theory
	Why Existing Algorithms Fail

	Ignoring Quality Dimensions
	Considering Only One Quality Dimension
	Always Considering Replay Fitness
	Ignoring One Dimension
	Weighing Dimensions

	Experiments Using Real Life Event Logs
	Building a Pareto Front
	Pareto Front for the Running Example
	Using the Pareto front to indicate non-local dependencies

	Conclusion

