
Decomposed Process Mining: The ILP Case

H.M.W. Verbeek and W.M.P. van der Aalst

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

{h.m.w.verbeek,w.m.p.v.d.aaalst}@tue.nl

Abstract. Over the last decade process mining techniques have matured and
more and more organizations started to use process mining to analyze their op-
erational processes. The current hype around “big data” illustrates the desire to
analyze ever-growing data sets. Process mining starts from event logs—multisets
of traces (sequences of events)—and for the widespread application of process
mining it is vital to be able to handle “big event logs”. Some event logs are “big”
because they contain many traces. Others are big in terms of different activities.
Most of the more advanced process mining algorithms (both for process discov-
ery and conformance checking) scale very badly in the number of activities. For
these algorithms, it could help if we could split the big event log (containing
many activities) into a collection of smaller event logs (which each contain fewer
activities), run the algorithm on each of these smaller logs, and merge the results
into a single result. This paper introduces a generic framework for doing ex-
actly that, and makes this concrete by implementing algorithms for decomposed
process discovery and decomposed conformance checking using Integer Linear
Programming (ILP) based algorithms. ILP-based process mining techniques pro-
vide precise results and formal guarantees (e.g., perfect fitness), but are known
to scale badly in the number of activities. A small case study shows that we can
gain orders of magnitude in run-time. However, in some cases there is tradeoff
between run-time and quality.

Key words: Process discovery, conformance analysis, big data, decomposition

1 Introduction

The current attention for “big data” illustrates the spectacular growth of data and the po-
tential economic value of such data in different industry sectors [1, 2]. Most of the data
that are generated refer to events, e.g., transactions in financial systems, interactions in
a social network, events in high-tech systems or sensor networks. The incredible growth
of event data provides new opportunities for process analysis. As more and more ac-
tions of people, organizations, and devices are recorded, there are ample opportunities
to analyze processes based on the footprints they leave on event logs. In fact, we believe
that the analysis of purely hand-made process models will become less important given
the omnipresence of event data [3].

Process mining aims to discover, monitor, and improve real processes by extracting
knowledge from event logs readily available. Starting point for any process mining task
is an event log. Each event in such an event log refers to an activity (i.e., a well-defined



2 H.M.W. Verbeek and W.M.P. van der Aalst

step in some process) and is related to a particular case (i.e., a process instance). The
events belonging to a case are ordered and can be seen as one “run” of the process. It
is important to note that an event log contains only example behavior, i.e., we cannot
assume that all possible runs have been observed. In fact, an event log often contains
only a fraction of possible behavior [3].

Petri nets are often used in the context of process mining. Various algorithms em-
ploy Petri nets as the internal representation used for process mining. Examples are
the region-based process discovery techniques [4, 5, 6, 7, 8], the α-algorithm [9], and
various conformance checking techniques [10, 11, 12, 13]. Other techniques use alter-
native internal representations (C-nets, heuristics nets, etc.) that can easily be converted
to (labeled) Petri nets [3].

In this paper, we present a generic framework for decomposing the following two
main process mining problems:

Process discovery: Given an event log consisting of a collection of traces, construct a
Petri net that “adequately” describes the observed behavior.

Conformance checking (or replay): Given an event log and a Petri net, diagnose the
differences between the observed behavior (the event log) and the modeled behav-
ior (the Petri net) by replaying the observed behavior on the model.

To exemplify the use of this framework, we have implemented a decomposed discov-
ery algorithm and a decomposed replay algorithm on top of it that both use ILP-based
techniques [8, 10]. We have chosen these ILP-based techniques as they provide formal
guarantees and precise results. Since ILP-based techniques scale badly in the number
of activities, there is the desire to speed-up analysis through smart problem decomposi-
tions.

The remainder of this paper is organized as follows. Section 2 briefly introduces
basic concepts like event logs and Petri nets. Section 3 presents the generic framework,
which consists of a collection of objects (like event logs and Petri nets) and a collection
of algorithms (to import, export, visualize these objects, and to be able to create new
objects from existing objects). Section 4 introduces the specific ILP-based discovery
and replay algorithms implemented using our generic framework. Section 5 introduces
a small case study, which shows that we can achieve better run-times, but that there are
also tradeoffs between speed and quality. Section 6 concludes the paper.

2 Preliminaries

This section introduces basic concepts such as event logs, accepting Petri nets, discov-
ery algorithms, log alignments, and replay algorithms.

2.1 Event Logs

Event logs are bags (or multisets) of event sequences (or traces). Events in an event log
may have many attributes (like the activity, the resource who executed the activity, the
timestamp the execution was completed, etc.). In the context of this paper, we are only



Decomposed Process Mining: The ILP Case 3

Table 1. Activity log LA
1 in tabular form.

name trace frequency

c1 〈a1, a2, a4, a5, a6, a2, a4, a5, a6, a4, a2, a5, a7〉 1
c2 〈a1, a2, a4, a5, a6, a3, a4, a5, a6, a4, a3, a5, a6, a2, a4, a5, a7〉 1
c3 〈a1, a2, a4, a5, a6, a3, a4, a5, a7〉 1
c4 〈a1, a2, a4, a5, a6, a3, a4, a5, a8〉 2
c5 〈a1, a2, a4, a5, a6, a4, a3, a5, a7〉 1
c6 〈a1, a2, a4, a5, a8〉 4
c7 〈a1, a3, a4, a5, a6, a4, a3, a5, a7〉 1
c8 〈a1, a3, a4, a5, a6, a4, a3, a5, a8〉 1
c9 〈a1, a3, a4, a5, a8〉 1
c10 〈a1, a4, a3, a5, a8〉 1
c11 〈a1, a4, a2, a5, a6, a4, a2, a5, a6, a3, a4, a5, a6, a2, a4, a5, a8〉 1
c12 〈a1, a4, a2, a5, a7〉 3
c13 〈a1, a4, a2, a5, a8〉 1
c14 〈a1, a4, a3, a5, a7〉 1

interested in the activity an event refers to and abstract from other information. For this,
we introduce the notion of a classifier, which maps every event onto its corresponding
activity. As a result, we can map an entire trace onto an activity sequence, and an event
log onto an activity log, where activity logs are bags of activity sequences.

Table 1 describes the activity log LA
1 = [c1, c2, c3, c4

2, c5, c6
4, c7, c8, c9, c10, c11,

c12
3, c13, c14] defined over A1 = {a1, . . . , a8}. Activity sequence c6 = 〈a1, a2, a4, a5,

a8〉 occurs 4 times in LA
1 .

In the remainder of this paper, we will still often use the term event log, but we will
use it often in conjunction with a classifier, which induces an activity log that will be
used by the discovery and replay algorithms.

2.2 Accepting Petri Nets

For discovery algorithms, labeled Petri nets would suffice. However, for replay algo-
rithms, we also need information on the initial marking of the net and of its possible
final (or accepting) markings. For this reason, we introduce the concept of accepting
Petri nets, which correspond to labeled Petri nets with an initial marking and a collec-
tion of final markings.

For example, Fig 1 shows an accepting Petri net N1 = (P1, T1, F1, l1,B1,�1) over
A1, where B1= [p1] and �1 = {[p10]}. As a result of the labeling, the transitions t4,
t6, and t9 are invisible. The firing sequence 〈t1, t2, t4, t5, t7, t10〉 runs from the initial
marking to the only final marking and generates the trace 〈a1, a2, a4, a5, a7〉.

2.3 Discovery Algorithms

A discovery algorithm [9, 4, 5, 6, 7, 8] is an algorithm that takes an event log (with
classifier) as input, and generates an accepting Petri net as output. It is typically as-
sumed that the behavior of the resulting accepting Petri net fits the behavior as captured



4 H.M.W. Verbeek and W.M.P. van der Aalst

t1

p2

p3

p4

p5

p6

p7

t2

t4

t5

t7

t6

t10

t11

p1

a1

a4

a5

a6

a2

a3

t9

p8

p9

p10a7

a8

t3

t8

Fig. 1. An example accepting Petri net N1 = (P1, T1, F1, l1,B,�).

by the event log in some way. However, also other quality dimensions like precision,
generalization and simplicity need to be considered [3].

2.4 Log Alignments

Log and trace alignments are used by the replay algorithms to match the trace at hand
with a valid firing sequence from the accepting Petri net. For this reason, a trace align-
ment contains a series of moves, which can be divided into three types:

Synchronous move: The trace and the net agree on the next action, as the next event
(activity) in the trace matches an enabled transition in the net.

Log move: The next action is the next activity in the trace, which cannot be mimicked
by the net.

Model move: The next action is an enabled transition in the net, which is not reflected
by an event in the log.

A trace alignment is valid if the sequence of activities in synchronous and log moves
equals the trace, if all transitions in synchronous moves have the corresponding activity
as label, and if the sequence of transitions in synchronous and model moves equals
some valid firing sequence in the net (which starts in the initial marking and ends in
some final marking). We cannot always guarantee this latter requirement (valid firing
sequence) when merging trace alignments. A trace alignment for which only the first
two requirements hold is called a weak trace alignment. A log alignment maps every
trace of the log onto a trace alignment.

2.5 Replay Algorithms

A replay algorithm is an algorithm that takes an event log (with classifier) and an ac-
cepting Petri net as input, and generates a log alignment as output. Typically, a replay
algorithm assigns costs to the different moves. These costs are configurable. However,



Decomposed Process Mining: The ILP Case 5

Discovery
Algorithm

Replay
Algorithm

Event Log

Event Log
and Accepting

Petri Net

Accepting
Petri net

Log
Alignment

Log Alignment

Event Log and
Accepting Petri NetEvent Log

Accepting Petri Net

Causal Activity Matrix
Causal Activity Graph
Activity Clusters Array

Event Logs Array
Accepting Petri Net Array

Log Alignment Array

Accepting Petri Net
Log Alignment

D
iv
id
e

C
on

q
u
er

Fig. 2. Framework overview.

in this paper we use the following default costs. Synchronous moves have cost 0 as
these correspond to a perfect match. A log move costs 5 and a visible model move
costs 2. Model moves corresponding to invisible transitions have cost 0 (as these are
not captured by the log) [10].

3 Generic Divide and Conquer Framework

This section introduces the generic framework for decomposed discovery and replay.
Key ingredients for the framework are: objects (matrices, graphs, cluster arrays, etc.)
and algorithms to process these objects (importing, exporting, visualizing, and creating
a new object from existing objects) [14].

Figure 2 shows an overview of the framework, which contains many of the objects
supported by the framework. The algorithms in the framework allow the user to cre-
ate new objects from existing objects. The Discovery and Replay Algorithms on the
sides symbolize existing discovery and replay techniques that can be connected to the
framework.

3.1 Objects

To decompose an event log or an accepting Petri nets into sublogs or subnets, we need
to divide the set of activities into so-called clusters. Then, we can create a sublog and
a subnet for every cluster. There are different approaches that can be used to create an
array of clusters. In this paper, we take a three-step approach:

1. Discover from the event log (or create from the accepting Petri net) a causal activity
matrix. This matrixM maps every combination of two activities onto a real number
in [−1.0, 1.0], where M [a, a′] ≈ 1.0 means that we are quite sure that there is a
causal dependency from a to a′, M [a, a′] ≈ −1.0 means that we are sure that there



6 H.M.W. Verbeek and W.M.P. van der Aalst

is no causal dependency from a to a′, and M [a, a′] ≈ 0.0 means that we do not
really know whether or not there is a causal dependency from a to a′.

2. Create a causal dependency graph from this matrix by taking the causal dependen-
cies of which we are most certain.

3. Create an array of clusters from this graph using the technique as described in [14].

After having obtained the clusters, we can decompose the event log and accepting
Petri net in an event log array and an accepting Petri net array, where the i-th sublog
and subnet correspond to the i-th cluster in the array.

For the discovery case, we can then run the target discovery algorithm on every
sublog, and merge the resulting subnets into a single accepting Petri net.

For the replay case, we can then replay every sublog on the corresponding subnet,
and merge the resulting log alignments into a single log alignment. Although this ap-
proach provides various formal guarantees (e.g., the fraction of fitting cases computed
in this manner is exact [14]), there may be some complications:

– Experiments have shown [15] that replaying a sublog on a subnet which is obtained
by removing all transitions that do not correspond to an activity in the cluster can
take more time than replaying the original log on the original net. For this reason, the
framework also supports subnets that are obtained by making all transitions that do
not correspond to an activity in the cluster invisible. This also reduces the number of
activities in the subnets, but keeps the structure of the net intact.

– The current implementation of the replay algorithms uses integer costs. This is a
problem, as we need to divide the costs of an activity evenly over the clusters where
the activity appears (see [14]). If the activity appears in three clusters, how can we
divide the costs of its log move (5) evenly over the clusters? For this reason, we
introduce a cost factor in the framework. Every cost in the replay problem will first
be multiplied by this factor, and the replay algorithms will run using these multiplied
costs.

3.2 Algorithms

All objects in the framework can be exported, imported, and visualized. Furthermore,
it is possible to create new objects from existing objects. Some of the algorithms sup-
ported in our framework:

Create Accepting Petri Net: Create an accepting Petri net from a Petri net.
Create Activity Clusters: Create a (valid maximally decomposed [14]) activity cluster

array from an accepting Petri net.
Create Clusters: Create an activity cluster array from a causal activity graph.
Create Matrix: Create a causal activity matrix from an accepting Petri net.
Determine Activity Costs: Determine the cost factor for an activity cluster array.
Discover Accepting Petri Nets: Discover an accepting Petri net array from an event log

array using a (wrapped) existing discovery algorithm.
Discover Clusters: Discover an activity cluster array from an event log.
Discover Matrix: Discover a causal activity matrix from an event log.
Filter Graph: Filter a causal activity graph from a causal activity matrix.



Decomposed Process Mining: The ILP Case 7

Filter Log Alignments: Filter a log alignment array using an accepting Petri net array.
All uncovered transition are filtered out.

Merge Accepting Petri Nets: Merge an accepting Petri net array into an accepting Petri
net. One supported way to merge nets (the one used in this paper) is by copying all
objects (transitions, places, arcs) into a new net, and then fuse all visible transitions
with the same label. However, other ways to merge nets are also supported.

Merge Log Alignments: Merge a log alignment array into a log alignment. The result
will be a weak alignment. The supported way to merge alignments is to (1) accu-
mulate costs and (2) ‘zip’ both alignments in such a way that in case of a conflict
always the cheapest option is ‘zipped in’.

Replay Event Logs: replay an event log array on an accepting Petri net array.
Split Accepting Petri Net: Create an accepting Petri net array from an activity cluster

array and an accepting Petri net. The most straightforward supported way to split a
net into subnets is by copying the net and removing all parts that do not correspond
to the cluster at hand. However, as mentioned, this may result in excessive replay
times. An alternative supported way is by copying the net and making all visible
transitions that do not correspond to the cluster at hand invisible. This alternative
way is used in this paper.

Split Event Log: Create an event log array from an activity cluster array and an event
log. The most straightforward supported way to split a log is by starting with an
empty log and adding all events that correspond to the cluster at hand. However,
this may introduce additional causal dependencies between exit and entry activities
of loops. An alternative supported way is by copying the log and renaming all
events that do not correspond to the cluster at hand with a special activity, say γ.
This paper uses the first way.

Please note that every one of these plug-ins may have its own set of parameters. Some
parameters will be mentioned (and given actual values) later on.

3.3 Implementation

The entire framework and all algorithms have been implemented in the DivideAnd-
Conquer package1 of ProM 62. For every framework object (like a causal activity
matrix), this package does not only implement the object itself, but it also implements an
import plug-in, an export plug-in, and at least one visualizer plug-in. Every algorithm is
implemented as a regular plug-in, and comes with variants for both the UITopia context
(that is, the ProM 6 GUI) and the headless context (which allows the plug-ins to be used
from scripts and the like).

4 Decomposed Discovery and Replay using ILP

Fig. 3 shows how the “Discover with ILP using Decomposition” plug-in has been im-
plemented on top of the framework, using a Petri net. In this Petri net, the places corre-
1 The DivideAndConquer package is available through https://svn.win.tue.nl/
trac/prom/browser/Packages/DivideAndConquer

2 ProM 6 is available through http://www.promtools.org/prom6



8 H.M.W. Verbeek and W.M.P. van der Aalst

spond to the framework objects, whereas the transitions correspond to framework plug-
ins. The numbers in the plug-ins indicates the order in which the “Discover with ILP
using Decomposition” plug-in invokes the framework plug-ins, where “Merge Clus-
ters” (step 4) is an optional step that is only needed to merge all clusters into a single
cluster. This optional step is only used to run the discovery algorithm on the entire event
log, as filtering the event log on a single cluster containing all activities would result in
the same event log. This way, it is certain that the discovery plug-in used is similar in
both the decomposed and the non-decomposed setting.

However, there is one exception, one situation where the decomposed discovery
uses a different setting than the regular discovery. The regular ILP-based discovery
algorithm depends on the causal dependencies that are detected in an event log. For
every casual dependency, it will search for a corresponding place [16]. As a result, if no
causal dependency is detected from one activity to another, then the algorithm will not
search for a place from the corresponding first transition to the second. In the presence
of loops, this may be problematic in the decomposed setting, especially if small clusters
are involved. Because of the loop, a transition a′ that exits the cluster will typically be
followed by a transition a that enters it. If in the cluster a can directly be followed by a′,
no causal dependency between a and a′ will be detected as a can be directly followed
by a′ and vice versa. For this reason, the decomposed discovery algorithm does not use
these causal dependencies to search for places. Instead, it uses a way of searching which
is described as basic in [16].

Fig. 4 shows the same for the “Replay with ILP using Decomposition” plug-in. Note
that this plug-in is more complex than the “Discover with ILP using Decomposition”,
which is mainly caused by the two catches on the replay mentioned earlier:

1. It is better to obtain subnets by hiding external (to the cluster at hand) transitions.
Steps 6, 7 and 11 are the result of this. Step 6 filters the subnets by hiding external
transitions, whereas step 7 filters the subnets by removing external transitions. Step
11 uses the result of step 7 to filter the subalignments, which is required by step
12, as merging the log alignments assumes that all external transitions have been
removed from the subalignments.

2. We need to scale up costs before the replay, and scale them down afterwards. Step
8 determines the cost factor, that is, the amount by which so scale up an down, step
9 scales the costs up before replay, and step 10 scales them down again.

Except for the underlying ILP-based discovery algorithm (step 6 in Fig. 3) and
the underlying ILP-based replay algorithm (step 9 in Fig. 4), all plug-ins have been
implemented in the framework, that is, in the DivideAndConquer package. This
includes the “Discover with ILP using Decomposition” and “Replay with ILP using
Decomposition” plug-ins.



Decomposed Process Mining: The ILP Case 9

D
is

co
ve

r
M

at
ri

x
C

la
ss

ifi
er

=
cl

as
si

fie
r

M
in

er
=

M
id

i
M

in
er

E
ve

nt
L

og

C
au

sa
l

A
ct

iv
it

y
M

at
ri

x

F
ilt

er
G

ra
ph

Z
er

o
va

lu
e

=
0.

5
C

on
cu

rr
en

cy
ra

ti
o

=
0.

00
5

In
cl

ud
e

th
re

sh
ol

d
=

0.
00

5

C
au

sa
l

A
ct

iv
it

y
G

ra
ph

C
re

at
e

C
lu

st
er

s
In

cl
ud

e
al

l
=

tr
ue

C
he

ck
ba

ck
w

ar
d

ar
c

=
fa

ls
e

A
ct

iv
it

y
C

lu
st

er
A

rr
ay

S
pl

it
E

ve
nt

L
og

C
la

ss
ifi

er
=

cl
as

si
fie

r
R

em
ov

e
em

pt
y

tr
ac

es
=

fa
ls

e
F

ilt
er

=
F

ilt
er

In

E
ve

nt
L

og
A

rr
ay

D
is

co
ve

r
A

cc
ep

ti
ng

P
et

ri
N

et
s

C
la

ss
ifi

er
=

cl
as

si
fie

r
M

in
er

=
IL

P
M

in
er

T
ra

ns
it

io
n

b
or

de
re

d
=

fa
ls

e
R

em
ov

e
ga

m
m

a
=

fa
ls

e

A
cc

ep
ti

ng
P

et
ri

N
et

A
rr

ay

M
er

ge
A

cc
ep

ti
ng

P
et

ri
N

et
s

P
la

ce
b

or
de

re
d

=
fa

ls
e

M
er

ge
in

te
rn

al
ac

ti
vi

ti
es

=
fa

ls
e

A
dd

W
F

pl
ac

es
=

fa
ls

e

A
cc

ep
ti

ng
P

et
ri

N
et

M
er

ge
C

lu
st

er
s

1 2 3

(4
)

5 6 7

F
ilt
er
s
in

al
l
ev
en
ts

th
at

co
rr
es
p
on
d
to

th
e
cl
u
st
er

F
u
se
s
vi
si
b
le
tr
an
si
ti
on
s

w
it
h
id
en
ti
ca
l
la
b
el
s

Fig. 3. Discover with ILP using Decomposition.

D
is

co
ve

r
M

at
ri

x
C

la
ss

ifi
er

=
cl

as
si

fie
r

M
in

er
=

M
id

i
M

in
er

E
ve

nt
L

og

C
au

sa
l

A
ct

iv
it

y
M

at
ri

x

F
ilt

er
G

ra
ph

Z
er

o
va

lu
e

=
0.

5
C

on
cu

r.
ra

ti
o

=
0.

00
5

In
cl

ud
e

th
re

sh
ol

d
=

0.
00

5

C
au

sa
l

A
ct

iv
it

y
G

ra
ph

C
re

at
e

C
lu

st
er

s
In

cl
ud

e
al

l
=

tr
ue

C
he

ck
bw

d
ar

c
=

fa
ls

e

A
ct

iv
it

y
C

lu
st

er
A

rr
ay

S
pl

it
E

ve
nt

L
og

C
la

ss
ifi

er
=

cl
as

si
fie

r
R

em
ov

e
em

pt
y

t’
s

=
fa

ls
e

F
ilt

er
=

F
ilt

er
In

E
ve

nt
L

og
A

rr
ay

R
ep

la
y

E
ve

nt
L

og
s

C
la

ss
ifi

er
=

cl
as

si
fie

r
M

ap
=

m
ap

R
ep

la
ye

r
=

IL
P

R
ep

la
y

pa
ra

m
et

er
s

=
..

.

A
cc

ep
ti

ng
P

et
ri

N
et

A
rr

ay

C
on

ve
rt

to
L

og
A

lig
nm

en
t

C
la

ss
ifi

er
=

cl
as

si
fie

r
M

ap
=

m
ap

L
og

A
lig

nm
en

t
A

rr
ay

M
er

ge
C

lu
st

er
s

C
re

at
e

M
at

ri
x

M
ap

=
m

ap
M

in
er

=
P

N

S
pl

it
A

cc
ep

ti
ng

P
et

ri
N

et
In

cl
ud

e
al

l
cl

st
r

t’
s

=
tr

ue
S

tr
at

eg
y

=
R

ep
la

ce
+

F
ilt

er

R
ep

la
yR

es
ul

tA
rr

ay
R

ep
la

yC
os

tF
ac

to
r

D
et

er
m

in
e

A
ct

iv
it

y
C

os
ts

A
cc

ep
ti

ng
P

et
ri

N
et

F
ilt

er
L

og
A

lig
nm

en
ts

R
ep

la
ce

R
ep

la
ce

F
ilt

er

M
er

ge
L

og
A

lig
nm

en
ts

F
ilt

er
F

ilt
er

ed

C
la

ss
ifi

er
=

cl
as

si
fie

r

L
og

A
lig

nm
en

t

1a
1b 2 3 (4
)

5
6+

7

8
9

10

11

12

S
ee

it
em

1
in

te
xt

S
am

e
as

in
F
ig
.
3

Fig. 4. Replay with ILP using Decomposition.



10 H.M.W. Verbeek and W.M.P. van der Aalst

Table 2. Case study results.

description event place nr. of time (in seconds) replay
log search clusters average 95% interval costs

regular discovery aligned causal 1 2245.72 2223.46 2267.99 N/A
decomposed discovery aligned basic 34 97.33 95.92 98.74 N/A

regular replay aligned N/A 1 12.04 11.86 12.22 0.00
decomposed replay aligned N/A 11 12.83 12.68 12.97 0.00

regular replay original N/A 1 92.75 91.57 93.94 14.49
decomposed replay original N/A 11 68.37 67.84 68.90 9.39

5 Case Study

For the case study, we use an event log3 based on the BPI Challenge 2012 [17]. As the
ILP discovery algorithm requires an event log that is free of noise, we have aligned the
event log to the model that was used in [15]. This may sound artificial, but we feel that
for testing the discovery this is justified, as one of the requirements of the original ILP
discovery algorithm is that the log is free of noise. For testing the discovery, we will
only use the aligned event log, for testing the replay, we will use both event logs. For
sake of completeness, we mention that the aligned log contains 13, 807 traces, 383, 836
events, and 58 activities.

The case study was performed on a Dell Optiplex 9020 desktop computer with In-
ter(R) Core(TM) i7-4770 CPU @ 3.40 GHz processor, 16 GB of RAM, running Win-
dows 7 Enterprise 64-bit, Service Pack 1, and using revision 13851 of the Divide-
AndConquer package.

Table 2 shows the results of the case study. For the decomposed plug-ins in this
table, the times reported are the times it takes the entire plug-in (all steps in Fig. 3 or
Fig. 4) to finish after the user has provided the required additional information, like
the classifier. For the regular plug-ins, the times reported are the times it takes only the
discovery (only step 6 in Fig. 3) or only the replay (only step 9 in Fig. 4) to finish.

5.1 Discovery

Regular discovery (without decomposition) using the ILP miner takes about 37.5 min-
utes, whereas decomposed discovery takes only 1.5 minutes (using 34 clusters). Both
result in the same accepting Petri net, which shows that the decomposed discovery
clearly outperforms the regular discovery for this case.

As a side note, we mention that we have also ran the regular discovery on the aligned
log using the basic place search (cf. Section 4). This run took just under 3 hours (178
minutes), and resulted in a so-called flower model [3]. This indicates that this way of
searching for places in the ILP discovery algorithm is not suitable for regular discovery,
as it takes a long time and yields bad results.
3 The event logs used for this case study can be downloaded from
https://svn.win.tue.nl/trac/prom/browser/Documentation/
DivideAndConquer



Decomposed Process Mining: The ILP Case 11

5.2 Replay

Regular replay takes about 12 seconds for the aligned event log, resulting in no costs,
and takes 1.5 minutes for the original event log, resulting in 14.49 costs.4 In contrast, the
decomposed replay takes about 12 seconds for the aligned event log, using 11 clusters
and resulting in no costs, and takes about 68 seconds for the original event log, using
also 11 clusters but resulting in 9.39 costs. Note that decomposed replay by definition
provides a lower bound for the alignment costs (due to local optimizations) [14]. How
good the lower bound is depends on the decomposition.

So, the decomposed replay is faster on the regular event logs, but may result in only
a lower bound of the actual answer (9.39 instead of 14.49 for the original event log).

6 Conclusions

This paper introduced a generic framework for decomposed discovery and replay. The
framework is based on objects (matrices, graphs, arrays, etc.) required for the decom-
posed discovery and replay, and a collection of algorithms to create these objects, either
from file or from existing objects. The framework can be used for any decomposed
discovery and replay technique.

To illustrate the applicability of the generic framework, we showed how the ILP-
based discovery and replay algorithms can be supported by it. The resulting ILP-based
discovery is straightforward, but the resulting ILP-based replay algorithm is more com-
plex because of efficiency and implementation issues. Both ILP-based process discov-
ery and conformance checking are supported by our framework.

For the BPI2012 Challenge log, the ILP-based decomposed discovery algorithm
has shown to be much faster than the regular discovery algorithm, while resulting in the
same model. For the same log, the ILP-based replay algorithm has shown to be faster,
but resulting in a less accurate answer. Clearly, there is often a tradeoff between running
times and quality.

At the moment, the framework only supports a limited set of discovery and replay
algorithms. As an example, only the α-algorithm and the ILP-based algorithm are sup-
ported as discovery algorithms. In the near future, we plan to extend this set to include
other complex algorithms, like, for example, the evolutionary tree miner and the induc-
tive miner.

Furthermore, the current framework is currently restricted to using a maximal de-
composition of a net (or an event log). A coarser decomposition may be faster, as the
algorithm may run faster on a single slightly larger cluster instead of on a collection
of small clusters. The approach supports any valid decomposition; therefore, we are
looking for better techniques to select a suitable set of clusters. Experiments show that
it is possible to create clusters that provide a good trade-off between running times and
quality.
4 Please note that, by changing the cost structure as suggested in [14], we can accumulate costs

when merging subalignments into a single alignment. However, we do not have a way yet to
accumulate fitness when merging subalignments. For this reason, we restrict ourselves to costs
here.



12 H.M.W. Verbeek and W.M.P. van der Aalst

References

1. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big
Data: The Next Frontier for Innovation, Competition, and Productivity. Technical report,
McKinsey Global Institute (June 2011)

2. Hilbert, M., López, P.: The World’s Technological Capacity to Store, Communicate, and
Compute Information. Science 332(6025) (April 2011) 60–65

3. Aalst, W.M.P.v.d.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. 1st edn. Springer Publishing Company, Incorporated (2011)

4. Aalst, W.M.P.v.d., Rubin, V., Verbeek, H.M.W., Dongen, B.F.v., Kindler, E., Günther, C.W.:
Process mining: a two-step approach to balance between underfitting and overfitting. Soft-
ware and Systems Modeling 9(1) (2010) 87–111

5. Bergenthum, R., Desel, J., 0001, R.L., Mauser, S.: Process Mining Based on Regions of
Languages. In Alonso, G., Dadam, P., Rosemann, M., eds.: BPM. Volume 4714 of Lecture
Notes in Computer Science., Springer (2007) 375–383

6. Solé, M., Carmona, J.: Process Mining from a Basis of State Regions. In: Proceedings of the
31st International Conference on Applications and Theory of Petri Nets. PETRI NETS’10,
Berlin, Heidelberg, Springer-Verlag (2010) 226–245

7. Carmona, J., Cortadella, J., Kishinevsky, M.: A Region-Based Algorithm for Discovering
Petri Nets from Event Logs. In: Business Process Management (BPM2008). (2008) 358–
373

8. Werf, J.M.E.M.v.d., Dongen, B.F.v., Hurkens, C.A.J., Serebrenik, A.: Process Discovery
using Integer Linear Programming. Fundam. Inform. 94(3-4) (2009) 387–412

9. Aalst, W.M.P.v.d., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering process
models from event logs. IEEE Transactions on Knowledge and Data Engineering 16 (2003)
2004

10. Adriansyah, A., Dongen, B.F.v., Aalst, W.M.P.v.d.: Conformance Checking using Cost-
Based Fitness Analysis. In Chi, C., Johnson, P., eds.: IEEE International Enterprise Comput-
ing Conference (EDOC 2011), IEEE Computer Society (2011) 55–64

11. Muñoz-Gama, J., Carmona, J.: A Fresh Look at Precision in Process Conformance. In Hull,
R., Mendling, J., Tai, S., eds.: Business Process Management (BPM 2010). Volume 6336 of
Lecture Notes in Computer Science., Springer-Verlag, Berlin (2010) 211–226

12. Muñoz-Gama, J., Carmona, J.: Enhancing precision in Process Conformance: Stability, con-
fidence and severity. In: CIDM, IEEE (2011) 184–191

13. Rozinat, A., Aalst, W.M.P.v.d.: Conformance checking of processes based on monitoring
real behavior. Inf. Syst. 33(1) (March 2008) 64–95

14. Aalst, W.M.P.v.d.: Decomposing Petri nets for process mining: A generic approach. Dis-
tributed and Parallel Databases 31(4) (2013) 471–507

15. Verbeek, H.M.W., Aalst, W.M.P.v.d.: Decomposing Replay Problems: A Case Study. In
Moldt, D., ed.: PNSE+ModPE. Volume 989 of CEUR Workshop Proceedings., CEUR-
WS.org (2013) 219–235

16. Wiel, T.v.d.: Process mining using integer linear programming. Master’s thesis, Eind-
hoven University of Technology, Department of Mathematics and Computer Science (2010)
http://alexandria.tue.nl/extra1/afstversl/wsk-i/wiel2010.pdf.

17. Dongen, B.F.v.: BPI Challenge 2012 (2012) http://dx.doi.org/10.4121/uuid: 3926db30-f712-
4394-aebc-75976070e91f.


