Exploring Processes and Deviations

Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Eindhoven University of Technology, the Netherlands
{s.j.j.leemans, d.fahland, w.m.p.v.d.aalst} @tue.nl

Abstract In process mining, one of the main challenges is to discover a process
model, while balancing several quality criteria. This often requires repeatedly set-
ting parameters, discovering a map and evaluating it, which we refer to as process
exploration. Commercial process mining tools like Disco, Perceptive and Celonis
are easy to use and have many features, such as log animation, immediate param-
eter feedback and extensive filtering options, but the resulting maps usually have
no executable semantics and due to this, deviations cannot be analysed accu-
rately. Most more academically oriented approaches (e.g., the numerous process
discovery approaches supported by ProM) use maps having executable semantics
(models), but are often slow, make unrealistic assumptions about the underlying
process, or do not provide features like animation and seamless zooming. In this
paper, we identify four aspects that are crucial for process exploration: zooma-
bility, evaluation, semantics, and speed. We compare existing commercial tools
and academic workflows using these aspects, and introduce a new tool, that aims
to combine the best of both worlds. A feature comparison and a case study show
that our tool bridges the gap between commercial and academic tools.

Keywords: process exploration, multi-perspective process mining, process deviation
visualisation, conformance analysis

1 Introduction

Process mining, and in particular process discovery, have gained traction as a technique
for analysing actual process executions from event data recorded in event logs. Process
mining is typically used to learn whether, where, and how a process deviated from the
intended behaviour. However, such information is usually not obtained by just running a
single algorithm on an event log. A wide variety of (combinations of) algorithms can be
used [20,19,18,2,14], typically heavily relying on various parameter settings to reveal
and analyse specific aspects and features of a process, depending on the specific inter-
ests of the process stakeholder. Here we coin the term process exploration which refers
to repeated parameter selection and tuning, iteratively performing process discovery,
and continuously evaluating the resulting process map [1].

Interestingly, academic and commercial process mining tools support different as-
pects of process exploration. In this paper, we demonstrate that process exploration can
be improved by combining beneficial features of academic and commercial tools. Ex-
isting commercial and some academic tools for process exploration, such as the Fuzzy
Miner (FM) [11], Fluxicon Disco (FD) [12], Celonis Discovery (CD) and Perceptive

2 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Process Mining (PM), are based on showing directly-follows graphs: nodes are pro-
cess steps, and in general edges mean that an activity followed another. Thus, one can
inspect the process by considering the arrows between them. These visualisations are
intuitive, an example is shown in Figure 1, and some tools allow for extensive log fil-
tering. Although directly-follows graph-based maps are useful for global analysis, they
have some limitations. For instance, pure directly-follows based maps do not show par-
allelism, implying that in a map, the state of the system unrealistically solely depends
on the last executed process step. Some tools support parallelism by sacrificing exe-
cutable semantics, but their maps cannot be used for automated analysis; the maps do
not show crucial features (e.g., types of splits and joins) and it is impossible to reason
over them (e.g., which traces are possible). (In this paper, we refer to a process map
with executable semantics as a process model.)

To evaluate a model with respect to its event 1
log, several established quality metrics exist, for |}:\ b
instance fitness, precision and generalisation [7].

Fitness describes what part of the log is expressed

by the model, precision what part of the model is

present in the log, and generalisation what part of -
future behaviour will be expressible by the model. |:
While useful for model comparison, these mea-
sures are coarse grained: they provide a number
for a model. Using more fine-grained measures
and visualisations, a detailed analysis of where |d |
the model deviates from the log and where other : *
problems occur can be performed. These evalu- Figure 1: Example of a process
ations require executable semantics and certain map, discovered by Perceptive.
guarantees, for instance that the model contains

no deadlocks, livelocks or other anomalies: that the model is sound. On an unsound
model, for instance, only an upper bound of fitness can be computed reliably [13]. Only
if a discovered process map is sound and has executable semantics, its quality with
respect to the event log can be assessed accurately.

Academic tools are usually focused, powerful and the maps produced by them usu-
ally have executable semantics. Therefore, deviations and quality metrics can be stud-
ied. However, academic tools or plug-ins are often designed for one particular pur-
pose, and combining tools, if possible, challenges usability. The ProM framework [9]
streamlines cooperation between tools, as input and output formats of plug-ins of the
framework are standardised. However, consider for instance a typical process explo-
ration workflow in the ProM framework: to mine a model from a log using ILP miner
and assessing the quality of the model, one has to click through 10 pop-up screens of
parameters and options.

In this paper, we aim to bridge this gap between commercial and academic tools
by introducing a process exploration tool, Inductive visual Miner (IvM), that provides
the features of commercial tools and aims to be as user-friendly, while providing maps
with semantics and built-in deviation visualisation. We consider some desirable features
from both commercial and academic tools, and describe how IvM improves on them.

Exploring Processes and Deviations 3

A prototype of IvM has been implemented as a plug-in of the ProM framework and
is available for download from http://promtools.org. We perform a feature comparison
and a case study on real-life logs.

The remainder of this paper is organised as follows: we first provide some back-
ground on process exploration. In Section 3 we analyse existing process exploration
tools and discuss design decisions for [IvM. A high-level feature comparison and a case
study are performed in Section 4; Section 5 concludes the paper.

2 Process Exploration

Process exploration enables users to learn information from an event log. In this section,
we first give an example of a process exploration case study, after which four aspects of
process exploration are explored: zoomability, evaluation, speed and semantics.
Example. We illustrate process exploration using the winning case study of BPIC12 [4].
In this case study, first a high-level overview was generated to get an initial idea of the
complexity of the given event log. The complexity was reduced by applying activity and
life cycle filters to the event log. Next, a filter leaving only successful traces was applied
and a high-level map was created, showing the ‘happy flow’ through the process, i.e.
the path taken by an average trace. On this happy flow, business impact was measured,
i.e. how many traces were successful or rejected with respect to each activity in the
happy flow, leading for instance to the conclusion that “Nearly 23% of the applications
that go to validation stage are declined, indicating possibilities for tightening upfront
scrutiny at application or offer stage”. Further on in the case study, an analysis was
made whether the outcome of a trace (successful or rejected) was predictable during
execution, which for instance led to the conclusion that “slow moving applications had
a less than 6% chance of getting to approval”. The authors note that this analysis, which
was performed using decision tree miners, could be repeated at other stages.

This single case study already clearly shows the repeated process of setting param-
eters, selecting filters, generating process maps and continuously evaluating the results.
Zoomability. In the case study of [4], the log was examined on a high level, and then
repeatedly examined in detail for different perspectives, e.g. by applying filters and
using both high-level and detailed process maps. Compare it to electronic road maps:
users can get a high-level view to see highways, or can zoom in to see alleys. Moreover,
different perspectives can be shown, such as bicycle or public transport maps. A process
exploration tool should support similar features by enabling a user adjust the level of
detail in a process map (e.g. highways and alleys) and to filter it in several ways (e.g.
bycicle maps); we refer to this ability as zoomability.

As the case study shows, a plethora of filtering options must be available: filters on
event name (prefix), frequency, redundancy, data attributes and on resources were all
used. Moreover, as used, the tool should be able to provide both a process map showing
only the frequent paths of the process, as well as one with the outliers; i.e. maps with
several levels of noise filtering. Many more filters are imaginable, however giving an
exhaustive list of them is outside the scope of this paper.

Another powerful zoomability parameter is time: using log animation, a user can
inspect this time perspective: the event log is visually replayed on the map, which re-

4 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

veals frequent paths and bottlenecks over time, and makes concept drift explicit. If an
animation can be paused, it gives a frozen view of the map with the traces that were in
the process at a particular point in time.

Evaluation. Given that the quality criteria fitness, precision, generalisation and simplic-
ity compete [7], a perfect model often does not exist. Any process discovery algorithm
has to make a trade-off between these criteria, so there may be many Pareto optimal
models without there being a clear “best” one. For instance, low fitness could indicate
a high-level model that is well-suited for getting the idea, but ill-suited for drawing
high-confidence detailed conclusions. High precision indicates that the model closely
resembles the behaviour of the event log, while a low precision indicates that the model
allows for much behaviour that never happened. A model with bad generalisation has
little predictive value (overfits), as it only describes the behaviour of the event log.
More specifically, for instance the question whether a violation to the four-eyes prin-
ciple occurred, i.e. whether two different persons looked at a certain case, should not
be answered using a model with 80% fitness, as roughly 20% of the behaviour is not
shown in it. Another example: a question whether something could happen in the future
should be answered on a model with high generalisation, rather than an overfitting one.

Thus, conclusions based on discovered models should be drawn carefully while
accounting for the quality criteria, and in order to find the best model to answer the
question at hand, a process exploration tool should enable a user to evaluate a map.

A quality measure is typically expressed as a number, e.g., a fitness of 0.8. However,
a single number for a complete model might be less informative. For example, one half
of the process model could have a fitness of 0.6, while the other half might have a fitness
of 1.0. A process exploration tool should provide detailed quality indicators, to locate
problems in specific parts of the model.

Speed. The speed of process exploration is determined by two elements: the learning
curve for users and the responsivity of the tool. Many aspects influence the learning
curve of a tool; we highlight two: the map should use a representation that is easy to
read by people who are not computer scientists, and the learning curve can be more
gradual if the tool invites users to play with its parameters (for which the tool should be
responsive).

Responsivity is a challenge that comes with zoomability; exploration requires in-
teraction: a user should neither have to wait long nor have to perform many actions to
adjust the zoom; understanding a process requires a quick and responsive user interface.

Semantics & Guarantees. As described in the introduction, executable semantics and
guarantees are essential for evaluation in a process exploration tool. Executable seman-
tics allow for replay, which enables decision point analysis (which was performed in
the BPIC12 case study: for a specific point in the process it was analysed what made
a trace likely to succeed, and the authors note that they would like to repeat this ex-
periment for other points in the process; using a model, the decision points would be
known, allowing for automation [15]), enables prediction [22], and enables compliance
checking [16].

Exploring Processes and Deviations 5

3 Existing Tools and Design Decisions

In this section, we analyse existing tools with respect to the requirements discussed
in Section 2. Meanwhile, we describe the design decisions we made for the Inductive

visual Miner (IvM).

Tools. In this paper, we consider the following
commercial tools: Fluxicon Disco (FD)! [12],
Celonis Discovery (CD)? and Perceptive Pro-
cess Mining (PM)*. For the academic tools,
we consider three chains of plug-ins within
the ProM framework: 1) Fuzzy Miner [11]
(FM), 2) the chain (IMi-C), consisting of In-
ductive Miner - infrequent (IMi) [13], followed
by PNetReplayer [3] and Project Manifest to
Model for Conformance, and 3) the chain (/LP-
(), consisting of ILP miner (ILP) [21], fol-
lowed by PNetReplayer [3] and Project Man-
ifest to Model for Conformance. We need to
consider chains of plug-ins to allow for a fair
comparison.

Representation and Process Discovery Tech-
nique. The first choice to make for a process ex-
ploration tool is what discovery technique and
which representation to use.

The existing tools use three categories of
discovery techniques: directly-follows based
(FD, CD, PM, FM)*, inductive mining (IMi)
and optimisation problem mining (ILP). Directly-
follows based tools either provide no semantics
(FD, CD, FM) or do not support parallelism
(PM), but are fast and allow for filtering; ILP
provides semantics, and guarantees perfect fit-
ness and best-possible precision, but does not
guarantee soundness; IMi strikes a balance: it
is fast, guarantees soundness, can guarantee fit-
ness, and allows for noise filtering.

(a) Parallelism clutter.

®

o ¢] b .
1000 1000 1000 1000 1000

@

1000 1000
© @

a
1000

(c) IvM.

Figure 2: Examples of tools applied
to a log containing five parallel activ-
ities.

The learning curve of a tool is important for the speed aspect. We consider the
directly-follows based representations to have the most gradual learning curve, and the
Petri net based representations to have the steepest. Therefore, in order to obtain the
most gradual learning curve, we design our representation to be as close as possible to

! hutp:/fluxicon.com/disco/; April/May 2014

2 http://www.celonis.de/en/discover/our-product; April/May 2014
3 http://www.perceptivesoftware.co.uk/products/perceptive-process/process-mining; fast miner, April/May 2014
4 Some tools (FM) can also take the eventually-follows relation into account.

6 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

the directly-follows based representation, but we add parallelism while keeping seman-
tics.

For logs containing parallelism, directly-follows based tools usually connect all par-
allel activities, which yields clutter. For instance, the parallel execution of 5 activities
yields a clique containing 20 edges (Figure 2a). A strategy to reduce this clutter is to
manually filter out the parallel activities, as done in the BPIC12 case study [4]. Another
strategy, used in for instance FD and FM, is to filter these edges (Figure 2b). However,
Figure 2b looks exactly like the exclusive choice between 5 activities; only the numbers
on the edges, denoting the frequency with which an edge was taken, tell the difference.
So, while fixing parallelism, ambiguity is introduced.

In IvM, behind the scenes we use a variation of IMi. Internally, IMi and IvM use
so-called process trees to ensure sound models. However, the results are shown to the
user using a directly-follows based representation to stay close to that representation
and its learning curve; we extend it with a start state, an end state and Petri net places to
provide semantics, those are drawn very small and can be safely ignored by considering
them a way to connect edges; to support parallelism and to avoid parallelism clutter, we
extend it with BPMN parallel gateways (Figure 2c). The complete representation is
easily translatable to both BPMN and Petri nets.

Enrichment. The edges and nodes of the map provide an opportunity to enrich the map
with information from the event log, such as frequency (FD, CD, PM, FM, IMi-C, ILP-
C), performance metrics (FD, CD, PM), data, resources, and deviations (PM, IMi-C,
ILP-C) (the latter helping towards evaluation). A perfect process exploration tool would
support all of them, and even more, as many measures can provide valuable insight. For
now, we demonstrate that these metrics contributing to zoomability can be added, by
visualising frequency on the nodes and edges; resources and deviations are visualised
using other means.

Zoomabililty. All directly-follows based tools we considered support zoomability by
filtering. We discuss a few filtering options here, of which the most common, and basic,
are to consider only the most frequent paths (CD, PM, FD), and to consider only the
most frequent activities or edges (PM, CD, FD, FM).

Another way to filter is on time, for
which two options exist: filtering events
on timestamp (FD, CD, PM), which re-
sults in a map valid for the chosen inter-
val, and animation (FD, CD, PM, FM), Figure3: Map discovered by IMi-C from a
which results in a time-based overlay of log in which b and e were not executed in a
the overall map. Animation in these four ~single trace, which is not shown.
tools is realised by showing tokens, rep-
resenting cases, flowing over the edges of the map.

Most tools we considered (PM, CD, FD, FM, IMi-C) have problems discovering
and visualising long-distance dependencies, i.e. showing how a choice in the process
influences a choice later in the process. For instance, consider the log L; = [{a, ¢, e)'°?,
{a, e, dY1 (b, ¢, d)1%], in which b and e are never executed in a single case. This pre-
cision information might be interesting, but, as exemplified by Figures 1 and 3, cannot
be derived directly from the output of any tool we considered. In most tools (PM, CD,

Exploring Processes and Deviations 7

2246

2246

2246 <>

2246

7635 2. 12688

2807

AFANCELLED). O
807

Figure 4: IvM (excerpt). Log animation on part of the BPIC12 log [8].

FD, IMi-C, ILP-C), it is possible to filter all traces not going through b, after which it
can be noted that e disappears or is never used. However, some tools make inspecting a
model difficult by replacing the model with a new one on filtering.

Ideally, a process exploration tool supports as many easily accessible filters as pos-

sible. In IvM, we implemented three filters: 1) frequent paths, 2) frequent activities and
3) specific activities. To streamline long-distance dependency inspection, specific ac-
tivities (3) can be filtered by clicking on nodes in the graph. Moreover, animation was
implemented; Figure 4 shows a screenshot.
Evaluation and Deviations. As explained in Section 2, it is important that a process
exploration tool enables the evaluation of a model with respect to a log. We analyse
evaluation in the existing tools using three levels: model, activity and event. On the
model level, there is a single number for an entire model; on the activity level, evaluation
is possible on activities or other parts of the model; on the event level, for each event in
each trace evaluation is enabled.

The tools CD, FM and FD provide some model level evaluation by means of their
parameters. For instance, FD allows to set a percentage of most frequent paths that
should be visualised, giving an estimation of fitness. These measures provide little guid-
ance on the quality of the map. Better model-level fitness metrics are given by FM and
PM, indicating what percentage of the events in the log have a corresponding edge in
the map. A detailed event-level view is available (FM) that shows for each event in each
trace whether it has such a corresponding edge.

The chains IMi-C and ILP-C first compute a model-log alignment, after which the
results are visualised in a plug-in common to both. Such an alignment, given a trace
t and a model M, is intuitively a best guess of what run of M could have produced
t (minimising the number of deviations between the trace and the path through the
model). An alignment consists of synchronous moves, in which M and ¢ agree on the
step taken; model moves, in which M took a step and ¢ did not; and log moves, in
which the ¢ took a step and M did not. For more information about alignments, please
refer to [3]. Both IMi-C and ILP-C provide model level statistics as well as activity-
level based aggregations (see Figure 5a). An event-level visualisation similar to FM’s is
available in another plug-in.

Instead of using alignments to visualise deviations, they could be used to repair
the model [10]. While repairing a model, the model is updated to allow steps at the
position of log moves; model moves are accounted for using circumvention constructs.
After repair, perfect fitness is guaranteed, but precision can only deteriorate. Given
that process exploration should enable a user to find the right balance between quality
dimensions, we cannot use model repair directly.

8 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

ol : o} :
(8/0) (8/0) (7/1) (8/0)

(a) IMi-C. Non-white places contain log moves and their size indicates the frequency.
The third activity has model moves as is indicated by a bar and a thick border.

1 1

1 7 2 -
”"n " " 1
8 (&) © RS I B

(b) IvM. Dashed edges denote deviations: self-edges are log moves; the bypassing edge
is a model move.

Figure 5: Visualisation of deviations.

Therefore, in IvM we combine the ideas of model repair and alignment visualisa-
tion: we perform a model repair, however do not apply it to the model, but add it to
the visualisation of the model in dashed/red edges. (we reduce the information about
log moves to frequencies for readability reasons) Figure 5b shows an example; if all
dashed/red edges would be transformed to normal edges, the model would have perfect
fitness, which suits a deviations visualisation.

Ideally, a process exploration tool should enable evaluation on all three levels,
thereby providing zoomable evaluation. We implemented both the event and the activity-
level; the event-level visualisation is similar to the one used in FM.

4 Comparison

In this section, we compare IvM to existing process discovery tools in two ways: 1) we
summarise the feature comparison of Section 3 and 2) perform a case study on two real-
life examples. Table 1 contains the feature comparison. Most features were introduced
in Section 3.3 ¢

Case Study. In this section, we compare the tools used in this paper on two real-life logs:
a log of a financial institution (BPIC12) [8], and a log from a building permit approval
process of a Dutch municipality (WABO1BB) [5] 7. All tools were applied using their
default settings.

The BPIC12 log was filtered to only contain the 23 ‘complete’ activities; Figure 6
shows the results of process exploration tools applied to it. These figures exemplify
problems of tools we tested: Figures 6¢ (CD), 6d (PM) and 6e (ILP-C) provide little
information by their omnipresence of edges; Figures 6a (FD) and 6b (FM) could be
useful for analysis, but conclusions should be drawn carefully: note that in FD, from

> “Local tool’ denotes whether the tool can run on the machine of the user; ‘Representational
bias’ refers to the class of models that can be discovered with a tool.

6 Remarks in Table 1: (1) lower bound on fitness (2) vector screenshot export broken; (3) vector
screenshot results in embedded bitmap; (4) PM provides a genetic ‘thorough’ miner, but that
does not guarantee termination; we excluded it from the comparison; (5) available in a separate
plug-in; (6) perfect fitness until a filter is applied; (7) could possibly be achieved by writing
PQL queries.

" The WABOI1BB log has been published between submission and acceptance or this paper.

Exploring Processes and Deviations 9

Table 1: Feature comparison of process discovery tools.

FD CD FM PM(4) IvM IMi-C ILP-C
X v X v v
v v 7/ v v
X(2) X(3) X(2) X(3) X@3)
X v
X X

Log import from XES
Log import from CSV/XLS
Map export to vector image
Local tool
Executable semantics
Guaranteed soundness
Guaranteed perfect fitness (6)
Best-possible precision
Representational bias 3 parallelism
Representational bias = ILP-C
Representational bias > process trees
Model export to Process Tree
Model export to Petri net
Avoid parallelism-clutter
Frequency enrichment
Performance enrichment
Path frequency filter
Activity/edge frequency filter
Specific activity/edge filter
Timestamp filter
Performance filter
Animation
Model level
Activity level
Event level
Model repair-semantics
Immediate parameter feedback
Long-distance dependency filter without model replacement

X v X X v X X

IR SN NEN
ANEN

Semantics

1 1 1 1 1
. A
Do

~
-~

Zoomability

~
R L R N

—~

—

~
—~
W
~

NS XACNNNCANSNCCS S XX XXX XXSSN NS
SNSRI X RXRCACNIXNISNSNIRCXSSKNISNANS
EalRati NI N N R TR T NS NSL.NE A T Y N N T N T N NN

9]
EalRal N N N Rk TRl N IR N N N N ot Y U N N

9]

Yxxxx/Lissssag N

Ux e xxfaxaaax s>

Speed | Evaluation

only six activities the bottom/end state can be reached, and in both maps it is unclear
what the presence or absence of edges actually means. As IvM and IMi-C use a sim-
ilar discovery algorithm and both visualise deviations, their outputs closely resemble
one another. However, considering the speed aspect of process exploration, it took 10
screens of parameters/pop-ups to obtain Figure 6g (IMi-C), and none to obtain Figure 6f
(IvM).

The WABO1BB log was filtered to only contain the 22 ‘BB’ activities. Given the
sensitive nature of this log, we were not allowed to upload it to cloud services at time of
writing; CD had to be excluded from the analysis. Figure 7 shows the results. Figures
7a (FD) and 7c (FM) are again useful for analysis, but should be read with care: it is
clear that the map deviates from the log as activity 01_BB_730 occurred 13 times and
has only 4 outgoing edges in FD, but it is not clear how and where the map deviates.
Figure 7b (PM) is a quite readable model, however some of the most-used activities
appear to be parallel. The model returned by ILP-C (Figure 7d) is not a workflow net
and replay requires some log and model moves (this could be avoided using the ‘empty
after completion’ parameter). Figures 7e and 7f show excerpts of the similar models

10 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

(f) IvM (excerpt). (g) IMi-C (excerpt).

Figure 6: Tools applied to BPIC12, using default settings.

by IMi-C and IvM. The added value of IvM comes when one would like to explore
the process and fine-tune the parameters; IMi-C and ILP-C require the user to re-run
several plug-ins with each adjustment, IvM does not.

This small case study shows that on the real-life logs we tried, some commercial
tools returned difficult-to-interpret maps and others fail to produce readable maps at all.
Probably, fine-tuning the parameters might improve the readability of maps, especially
in CD and PM. The FM, while academic and a plug-in of ProM, resembles the com-
mercial tools we considered: no executable model semantics but immediate parameter
feedback. As IMi-C and IvM use a similar discovery algorithm, the most notable ob-
jective differences between IvM and IMi-C are that IvM provides log animation and
immediate parameter feedback: exploring a process is easy, while IMi-C and ILP-C re-
quire a user to leave the visualisation, call a mining plug-in, set all parameters, call an
alignment plug-in, and the visualisation plug-in again.

5 Conclusion

In this paper, we identified a gap between commercial and academic process exploration
tools. The commercial tools we considered are easy to use and have many features, such

Exploring Processes and Deviations 11

o " o
@——Q@—oww @

(d) ILP-C. (e) IMi-C (excerpt). (f) IvM (excerpt).

Figure 7: Tools applied to WABO1BB, using default settings.

as log animation, immediate parameter feedback and extensive filtering options, but the
process maps created either do not show parallelism or have no executable semantics
and deviations to the maps cannot be computed. Academic tools often create maps
with executable semantics, and deviations can be analysed in detail using replay and
alignment techniques. However, features important for the exploration of processes are
missing and existing tool chains require many steps, thus making exploration tedious
and non-interactive.

We introduced a process exploration tool: the Inductive visual Miner (IvM). It aims
to bridge this gap between academic and commercial process exploration tools. IvM
immediately discovers an initial model, computes deviations and shows these to the
user, using a new visualisation that allows for the animation of the traces of a log. IvM
is not as feature-rich or scale-oriented as some of the commercial tools, but shows that
it is possible to use powerful academic techniques in a user-friendly package. We hope
that IvM will inspire commercial vendors to consider models with executable semantics
and support deviation analysis.

For future work, one could consider the fast computation of near-optimal align-
ments. This paper focused on visualising fitness deviations; precision and generalisation
problems could be visualised as well, such as in [17]. Furthermore, the Evolutionary
Tree Miner [6] could be integrated to obtain an intuitive interactive guided miner.

Acknowledgement. We thank Robin Wolffensperger for his contributions to the posi-
tioning of log moves.

12

Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business

Processes. Springer (2011)

. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering process models

from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128-1142 (2004)

. Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D. thesis, Eindhoven Univer-

sity of Technology (2014)

. Bautista, A., Wangikar, L., Kumail Akbar, S.: Process mining-driven optimization of a con-

sumer loan approvals process - The BPIC 2012 challenge case study. In: Business Process
Management Workshops. pp. 219-220 (2012)

. Buijs, J.: Environmental permit application process (‘wabo’), CoSeLoG project - municipal-

ity 1 (2014), http://dx.doi.org/10.4121/uuid:c45dcbe9-557b-43ca-b6d0-10561e13dcb5

. Buijs, J., van Dongen, B., van der Aalst, W.: A genetic algorithm for discovering process

trees. In: IEEE Congress on Evolutionary Computation. pp. 1-8. IEEE (2012)

. Buijs, J., van Dongen, B., van der Aalst, W.: On the role of fitness, precision, generalization

and simplicity in process discovery. In: On the Move to Meaningful Internet Systems: OTM
2012, pp. 305-322. Springer (2012)

. van Dongen, B.: BPI Challenge 2012 Dataset (2012),

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

. van Dongen, B., de Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: The ProM

Framework: A new era in process mining tool support. ICATPN 3536, 444-454 (2005)
Fahland, D., van der Aalst, W.: Repairing process models to reflect reality. In: BPM’12.
LNCS, vol. 7481, pp. 229-245. Springer (2012)

Giinther, C., van der Aalst, W.: Fuzzy mining—adaptive process simplification based on multi-
perspective metrics. Business Process Management pp. 328-343 (2007)

Giinther, C., Rozinat, A.: Disco: Discover your processes. In: BPM (Demos). CEUR Work-
shop Proceedings, vol. 940, pp. 40—44. CEUR-WS.org (2012)

Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process models
from event logs containing infrequent behaviour. In: Business Process Management Work-
shops. pp. 66-78 (2013)

Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process models
from incomplete event logs. In: Petri nets 2014. pp. 91-110. Springer (2014)

de Leoni, M., van der Aalst, W.: Data-aware process mining: discovering decisions in pro-
cesses using alignments. In: SAC. pp. 1454-1461. ACM (2013)

Ramezani, E., Fahland, D., van der Aalst, W.: Where did I misbehave? Diagnostic informa-
tion in compliance checking. In: BPM. Lecture Notes in Computer Science, vol. 7481, pp.
262-278. Springer (2012)

Rozinat, A.: Process Mining: Conformance and Extension. Ph.D. thesis, Eindhoven Univer-
sity of Technology (2010)

Schimm, G.: Process miner - a tool for mining process schemes from event-based data. In:
JELIA. LNCS, vol. 2424, pp. 525-528. Springer (2002)

Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Petri Nets. LNCS,
vol. 6128, pp. 226-245. Springer (2010)

Weijters, A., Ribeiro, J.: Flexible Heuristics Miner. In: CIDM. pp. 310-317. IEEE (2011)
van der Werf, J., van Dongen, B., Hurkens, C., Serebrenik, A.: Process discovery using inte-
ger linear programming. Fundam. Inform. 94(3-4), 387-412 (2009)

Wynn, M., Rozinat, A., van der Aalst, W., ter Hofstede, A., Fidge, C.: Process mining and
simulation. In: Modern Business Process Automation, pp. 437-457. Springer (2010)

