
YAWL in the Cloud: Supporting Process Sharing and
Variability

D.M.M. Schunselaar?, H.M.W. Verbeek?, H.A. Reijers?, and W.M.P. van der Aalst?

Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

{d.m.m.schunselaar,h.m.w.verbeek,h.a.reijers,w.m.p.v.d.aalst}@
tue.nl

Summary. The cloud is at the centre of attention in various fields, including
that of BPM. However, all BPM systems in the cloud seem to be nothing more
than an installation in the cloud with a web-interface for a single organisation,
while cloud technology offers an excellent platform for cooperation on an intra-
and inter-organisational level. In this paper, we show how cloud technology can
be used for supporting different variants of the same process (due to “couleur
locale”), and how these organisations can aid each other in achieving the com-
pletion of a running case. In this paper we describe how we have brought a BPM
system (YAWL) into the cloud that supports variants2.

Key words: BPM, Cloud, YAWL, Process Variability, Process Cooperation,
Configurable Process Models

1 Introduction

In the CoSeLoG project?, 10 Dutch municipalities collaborate to see how cloud tech-
nology can be used to share resources and exchange knowledge. Of course, by bringing
these municipalities into the cloud, we gain well-accepted benefits associated with the
cloud. First, instead of having to buy and administer their own servers, the municipali-
ties can simply use the cloud and focus more on their core processes. The municipalities
still have to administer their own processes, but at least they do not have to administer
the hardware these processes are running on. Second, by using the cloud, they can dy-
namically scale the required hardware up or down, depending on the current need. For
example, if due to a change of legislation getting a building permit will become more
difficult, then one can expect a rise in the number of applications for a building per-
mit before the new building permit legislation comes into place. One can scale up the
amount of hardware required before the bulk of applications arrives. When the volume
? This research has been carried out as part of the Configurable Services for Local Governments

(CoSeLoG) project (http://www.win.tue.nl/coselog/).
2 The installation manual and files can be downloaded from http://www.win.tue.nl/
coselog/wiki/yawlinthecloud



of applications drops, one can scale down again. Furthermore, during peaks, a munici-
pality can be aided by staff of another municipality. As a result, using the cloud will be
cheaper and more flexible for a municipality, in a way that is similar to the advantages
that the cloud brings to other organisations.

What sets the municipalities apart from many organisations, though, is that they
are not competing with each other. For example, a citizen of Eindhoven cannot go to
the Amsterdam municipality to apply for a building permit. Clearly, this citizen has no
other choice than to come the Eindhoven municipality to apply for this building permit.
As such, every municipality has its own, exclusive, collection of customers.

This presents us with a setting which is quite different from a regular cloud set-
ting. As the municipalities are not competing with each other, they are quite willing to
exchange ideas, to learn from each other, and to share insights with each other. As a
result, when bringing municipalities into the cloud, there is no need to assume that they,
as cloud tenants, are to be kept strictly separated. As a result of this, in the CoSeLoG
project, we can model the similar processes of different municipalities using a single
configurable process model. All municipalities share this single configurable process
model, but they all have configured the model at deploy-time to cater for their own
“couleur locale”. Using such a configurable process model, one can capture common
behaviour while still leaving room for some differences. As a result, all municipalities
use a process model that is based on the same model (the configurable process model),
but they all may run different process models.

In this paper, we assume that the cloud tenants are using variants of some super pro-
cess model, are willing to cooperate, and are willing to disclose information about their
processes. How can cloud technology then be best used to their advantage? This paper
will show that advantages include deploy-time advantages, run-time advantages, and
post-run-time advantages. To showcase the feasibility of a cloud implementation, we
provide a proof-of-concept implementation that supports configurable process models
and demonstrates these advantages.

The remainder of this paper is organised as follows: Sect. 2 explains configurable
process models and lists the deploy-time, run-time, and post-run-time advantages. In
Sect. 3, we present our proof-of-concept implementation. The proof-of-concept imple-
mentation is showcased by means of a scenario in Sect. 4. Relevant related work is
discussed in Sect. 5. Finally, the conclusions are presented in Sect. 6.

2 Advantages of Cloud Technology

By combining configurable processes and cloud technology, we can achieve advantages
in three areas: deploy-time, run-time, and post-run-time. Prior to going into these ad-
vantages, we first explain configurable process models as these are on the basis of some
of the advantages.

Configurable Process Models Configurable process models describe a family of pro-
cess models using variation points. Variation points are locations in the process model
which can be modified by the user. In other words, the municipality can select to remove
that part from the model or substitute that part of the model with a model fragment from

2



Fig. 1: Part of the configurable process model from the scenario.

a predefined set of model fragments. When the user has set all the variation points, we
have a process model that can be executed by a BPM system.

In the configurable process model (Fig. 1), we have the option to hide certain parts
(orange curved arrow) and we have the option to block certain parts (no-entry sign).
When a certain part is hidden, that part is substituted by an automatic task. Blocking a
certain part results in the removal of that part from the model. Taking Fig. 1 as an exam-
ple, hiding “Toetsenontvangekijkheid (adviseur RO)” entails replacing that activity with
an automatic task. Blocking “Verzoeken om aanpassing van aanvraag” means that the
exclusive choice “Weigeren vergunning” will always evaluate to “Versturen weigering”.
Note that activities do not vary from model to model, i.e., the presence of an activity
can be changed but not the contents of the activity. In case of the configurable process
model in Fig. 1, the activity “Toetsenontvangekijkheid (adviseur RO)” can be hidden in
a model but if it is not hidden then it is the same as “Toetsenontvangekijkheid (adviseur
RO)” in any other obtainable model.

Deploy-time Advantages A municipality that wants to deploy a process model in this
cloud setting does not have to create a model from scratch. Instead, it only needs to
configure an existing model from a configurable process model.

In the classical setting, each municipality maintains its own process models and
IT infrastructure. This means that every change in legislation has to be incorporated
by every municipality. When moving to the cloud using configurable process models,
changes mainly have to be incorporated in the configurable process model. Municipal-
ities might have to change their configuration. In Fig. 2, the old situation is compared
to a hypothetical cloud situation. Although the maintenance efforts for the configurable
process model are larger than for the individual models (it is more complex), the to-
tal maintenance effort is smaller than the sum of maintenance efforts of each of the
municipalities.

Run-time Advantages Next to the deploy-time advantages, the municipalities can also
expect run-time advantages. Some of the run-time advantages are directly related to the
use of the cloud, i.e., scalability, availability, reliability, cost reduction, etc. Other advan-
tages during run-time, however, amount to an increase in the flexibility and robustness
of the organisation.

3



Fig. 2: The expected benefit in maintenance when municipalities move to the cloud
using a configurable process model.

Fig. 3: In the traditional situation, the queue time increases significantly when the
amount of work increases. Using Process Sharing, we expect that employees from other
municipalities can aid to postpone the significant increase in queue time.

The expected increase in flexibility is achieved by the fact that municipalities are
capable of allocating work to resources from another municipality. In the traditional sit-
uation (Fig. 3), we have the well-known curve related to the PASTA property, i.e., when
the amount of work increases this results in the utilisation rate approaching 1 yielding
a queue time which goes to infinity. By sharing the execution of the process between
municipalities, other municipalities can offer staff when the queue time becomes too
long (until there are no resources left). Next to this, municipalities can also share an
expert to aid them in their executions. The addition of an expert means that part of the
execution of a case is partly outsourced. This flexibility has as added advantage that the
robustness increases. For instance, in case of disasters (flooding, power failure, etc.),
staff of other municipalities can aid. One can argue that the process models are differ-
ent between municipalities and thus aiding another municipality requires learning the
other’s process model. However, as mentioned with the configurable process model, the
process models might be different but the individual activities do not differ with respect
to content. This means that if a municipality also executes a particular activity, then that
municipality can aid in executing that activity.

4



Fig. 4: In the traditional situation, a municipality can only compare itself to itself. With
the use of a single cloud service and a configurable process model, we expect a graph
similar to the right one where municipalities can benchmark.

Post-run-time Advantages Traditionally, municipalities are only able to look at them-
selves. By having comparable executions, municipalities can benchmark themselves
with respect to others (see Fig. 4 for a hypothetical graph). The comparability of the
executions comes forth from the fact that all models are deduced from a configurable
process model and the use of a single cloud service which guarantees uniform naming
conventions, same level or granularity, and comparable data structures.

3 Proof-of-concept Implementation

To be able to show the advantages sketched earlier, we made a proof-of-concept im-
plementation. For our proof-of-concept implementation we have chosen YAWL as our
BPM system since YAWL has the following advantages: components are decoupled
making them ideal to be run in distributed mode, and native support for configurable
process models [1]. For the cloud provider, we have chosen Microsoft Azure. Finally,
YAWL in the cloud runs on the PaaS (Platform as a Service) layer.

We managed to make YAWL available in the Azure cloud without making changes
to YAWL itself. This has the advantage that updates of YAWL can be used and there
is no need to maintain a special YAWL version. Furthermore, by not changing YAWL
itself, we maintained the look and feel people are familiar with; removing the need
to learn a new system. Finally, we created a component to control the cloud allowing
administrators to, amongst others, upload configurable process models.

YAWL [1] is a workflow system based on Petri net semantics. YAWL has an archi-
tecture which is service-oriented. Part of the architecture of YAWL is depicted in Fig. 5.
The individual components, e.g., the engine, resource service, etc., are independent
components which are coupled using different interfaces. In this paper, we “cloudify”
the engine, therefore, we briefly touch upon the interface A, B, E, and X (highlighted in
the red rectangle in Fig. 5). Interface A is used for, amongst others, loading and unload-
ing process specifications. Interface B is used for most of the handling of work items
and creating new process instances. Interface E is used for the retrieval of process logs.
Finally, interface X is used for exception handling.

5



Fig. 5: Part of the architecture of YAWL. Figure taken from [1].

As mentioned, YAWL consists of components which communicate with each other
using different interfaces. In a non-cloud based YAWL installation, there is a single en-
gine. This engine receives requests on its interfaces and acts accordingly. With bringing
YAWL into the cloud, we want to allow for multiple engines running concurrently. In
order to be able to scale up and down, we want to use a dynamic amount of engines.
Furthermore, the other components within YAWL expect to communicate with a single
engine. Therefore, within YAWL in the cloud, we have created an abstraction from the
engines allowing for multiple engines to be used and at the same time offer a single set
of interfaces (A, B, E, and X) to the outside world to communicate with. This results in
the high-level architecture shown in Fig. 6.

Fig. 6: The high-level architecture for YAWL in the Cloud.

By using this architecture, we do not need to make any changes to YAWL. Further-
more, by offering the same set of interfaces to the outside world, there is no change
noticeable, i.e., one cannot see the difference between a single engine or the entire
cloud. However, since we do not make any changes to YAWL, the YAWL engines are
oblivious of each other. This means that, for instance, the case identifiers are unique per
engine, but not amongst engines. Furthermore, engines might now be used for multiple

6



organisations resulting in cases running in different contexts for a single engine (en-
gines normally run within a single context). To accommodate for this, we propose the
more detailed architecture shown in Fig. 7.

Fig. 7: The detailed architecture for YAWL in the Cloud.

As shown in Fig. 7, there is a central cloud based database which is used to trans-
form case identifiers etc. from the local context of an engine, to the global context of
the cloud and vice versa. By using a cloud based database, all scalability challenges
are handled by the cloud. Furthermore, we have introduced routers to route the vari-
ous requests to the correct engine(s), e.g., when an organisation wants to know all the
cases currently running for that organisation, the router performs a lookup to see which
engines to contact. After contacting the various engines, the router combines each of
their responses into a single response as this is expected by the environment. Finally,
since we have distributed the engines, we also want to distribute the routers for the same
reasons, therefore, we can use a cloud based load balancer to automatically forward re-
quests to the least busy router. This cloud based load balancer scales automatically up
and down without any involvement.

In the centre of the detailed architecture, we have a management component. This
management component can query the database for information on the various engines.
Furthermore, it can be used to add/remove available engines; the enablement and dis-
ablement of engines is handled by the cloud.

Most notably for the implementation is the fact that YAWL in the cloud, sim-
ilar to YAWL, is implemented in java. Furthermore, we use Hibernate3 as abstrac-
tion layer from the database. Both java and Hibernate make YAWL in the cloud
largely platform independent. Unfortunately, YAWL did not work properly with the
cloud based version of MSSQL, therefore, we have used a virtual machine with
MySQL. The implementation and an installation manual can be downloaded from
http://www.win.tue.nl/coselog/wiki/yawlinthecloud.
3 http://hibernate.org

7



Fig. 8: A configurable process model in the cloud with the configurations for the various
municipalities.

4 Proof-of-concept Scenario

We evaluate our implementation by means of a hypothetical scenario. In this hypothet-
ical scenario, all the CoSeLoG municipalities want to cooperate with each other in the
cloud. To reap the deploy-time benefits, they obtain a configurable process model ca-
pable of supporting their processes (part of this model is depicted in Fig. 1). Next to
the configurable process model, the municipalities use the Synergia toolset [2] to define
their configurations. The configurable process model and configurations are uploaded
to the cloud (Fig. 8).

Using the Synergia toolset, the configuration can be projected on the configurable
process model to obtain an executable process model. These are added to the set of
loadable specifications (Fig. 9).

To give the municipalities the possibility to work on their cases, virtual machines
are created in Microsoft’s Azure cloud (Fig. 10 contain the virtual machines for Emmen
and Gemert-Bakel). Each municipality is offered a slightly customised portal to YAWL
in the cloud where already some of their cases are present (Fig. 11).

Assume all employees able to handle the process in Gemert-Bakel get ill. Luckily,
we have the run-time benefits of the cloud and promptly employees from Emmen are
logging in to aid Gemert-Bakel in the execution of their processes (Fig. 12).

A similar scenario like this has been presented to the participating municipalities of
the CoSeLoG project in our yearly meeting. The contact persons were subdivided into
municipalities and got some hands-on experience with YAWL in the cloud. The various
contact persons were enthusiastic about the presented implementation. However, this

8



Fig. 9: Specifications for some municipalities have been uploaded to a (shared) engine.

Fig. 10: The various virtual machines for the municipalities, a router, an engine, and a
database server.

was not a real evaluation but more a small showcase to show the work conducted in the
project.

5 Related Work

Both in academia and industry, there has been a lot of interest in BPM/WFM in the
cloud.

Academic publications In [3], the authors bring BPEL to the cloud. The authors exten-
sively discuss different considerations for bringing BPEL to the cloud using different

9



Fig. 11: The portal for Emmen and Gemert-Bakel with some running cases.

levels, i.e., infrastructure, platform, and software, and security considerations. The au-
thors state that they are busy with modifying an open-source BPEL engine to be used
in the cloud. In [4], the authors add configurability to BPEL in an extension called
VxBPEL. In [5], configurable BPEL is presented. However, for both approaches there
is no graphical editor making it cumbersome to maintain the models.

In [6], ARIS in the cloud is presented where resources can be shared amongst dif-
ferent locations around the world. It is unclear whether this is based on a single process
model being used for all the branches. Although this approach is not directly applicable
to the municipality setting, the approach can be beneficial for companies with multiple
branches, e.g, Hertz.

The workflow engine CPEE4 [7] offers a cloud based workflow engine. This work-
flow engine has been built from scratch and allows for run-time modifications of the
process model. It is designed with a single organisation in mind.

Industrial solutions As mentioned, there exist a multitude of cloud solutions from the
industry. However, most of these solutions seem nothing more than a web-based inter-
face to a classical BPM system running on the servers of the vendor or outsourced to
a third party. We list the cloud based BPM systems based on Gartners Magic Quadrant
for Intelligent Business Process Management Suites [8]. We do not list all of the com-
4 www.cpee.org

10



Fig. 12: An employee from Emmen (Dennis Schunselaar) is executing cases for
Gemert-Bakel.

panies but mention only the ones where there is a strong cloud platform according to
Gartner.

Kofax [9] offers a cloud platform called TotalAgility. One of the features of Kofax is
the use of “process skins”. Process skins allow the user to manage multiple versions of
the same process type. Whenever there is an update to the process all skins are updated
accordingly. This seems to be similar to configurable process models, but the expres-
sive power and capabilities are not specified. Finally, TotalAgility reasons with a single
organisation in mind.

Other solutions mentioned do not support configurable process models, these in-
clude: Appian [10], OpenText [11], PNMSoft [12], and Software AG [13].

6 Conclusion

We have sketched the added benefits of bringing non-competing organisations like mu-
nicipalities, court houses, ministries, etc. into the cloud. These benefits include well-
known cloud benefits like: scalability, availability, cost reduction etc. But these ben-
efits can be extended towards deploy-time advantages (by using configurable process
models), run-time advantages (increase in flexibility and robustness), and post-run-time
advantages (benchmarking with other municipalities).

Next to sketching the benefits, we have provided an implementation where we
brought YAWL into the cloud. Within YAWL in the cloud, we support multiple organ-
isations, and we offer the possibility to support multiple variants of the same process
using configurable process models.

11



To show process variability is possible in the cloud, we presented a proof-of-concept
implementation of YAWL in the cloud. In this proof of concept implementation, we
show we did not need to change YAWL. Furthermore, in the evaluation, we showed the
cloud infrastructure is invisible. Finally, we showed parts of the component capable of
controlling the cloud.

In this paper, we focussed on the setting of non-competitive organisations work-
ing together, specifically municipalities. Also, note that this approach can be benefi-
cial within a single organisation as well. Take for instance Hertz, which has numerous
branches in numerous countries. Instead of having an installation per branch, there can
now be a centralised BPM system in the cloud in which the various branches can coop-
erate.

Acknowledgements

The authors would like to thank T.F. van der Avoort for his work on the implementation
of YAWL in the cloud as part of his master thesis [14].

References
1. Hofstede, A.H.M. ter, Aalst, W.M.P. van der, Adams, M., Russell, N., eds.: Modern Business

Process Automation: YAWL and its Support Environment. Springer (2010)
2. La Rosa, M., Gottschalk, F.: Synergia - Comprehensive Tool Support for Configurable Pro-

cess Models. In de Medeiros, A.K.A., Weber, B., eds.: BPM (Demos). Volume 489 of CEUR
Workshop Proceedings., CEUR-WS.org (2009)

3. Anstett, T., Leymann, F., Mietzner, R., Strauch, S.: Towards BPEL in the Cloud: Exploiting
Different Delivery Models for the Execution of Business Processes. In: SERVICES I, IEEE
Computer Society (2009) 670–677

4. Koning, M., ai Sun, C., Sinnema, M., Avgeriou, P.: VxBPEL: Supporting variability for Web
services in BPEL. Information & Software Technology 51(2) (2009) 258–269

5. Gottschalk, F.: Configurable Process Models. PhD thesis, Eindhoven University of Technol-
ogy, The Netherlands (2009)

6. Scheer, A.W., Klueckmann, J.: BPM 3.0. In Dayal, U., Eder, J., Koehler, J., Reijers, H.A.,
eds.: BPM. Volume 5701 of Lecture Notes in Computer Science., Springer (2009) 15–27

7. Stuermer, G., Mangler, J., Schikuta, E.: Building a modular service oriented workflow en-
gine. In: SOCA, IEEE (2009) 1–4

8. Jones, T., Schulte, W.R., Contara, M.: Magic Quadrant for Intelligent Business Process
Management Suites. Gartner G00255421 (2014)

9. Kofax: TotalAgility. http://www.kofax.com/smart-process-application-platform/ Last ac-
cessed 04-04-14.

10. Appian: Appian. http://www.appian.com/bpm-software/cloud-bpm.jsp Last accessed 04-04-
14.

11. OpenText: OpenText Cordys. http://www.opentext.com/What-We-Do/Products/Business-
Process-Management/Process-Suite-Platform/BPM-in-the-Cloud Last accessed 04-04-14.

12. PNMSoft: Cloudworks. http://www.pnmsoft.com/technology/cloud-bpm/ Last accessed 04-
04-14.

13. SoftwareAG: webMethods BPMS. http://www.softwareag.com/corporate/prod-
ucts/wm/bpm/products/bpms/overview/default.asp Last accessed 04-04-14.

14. Avoort, T. F. van der: BPM in the Cloud. Master’s thesis, Eindhoven University of Technol-
ogy, The Netherlands (2013)

12


