
Scalable Process Discovery with Guarantees

Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Eindhoven University of Technology, the Netherlands
{s.j.j.leemans, d.fahland, w.m.p.v.d.aalst}@tue.nl

Abstract Considerable amounts of data, including process event data, are col-
lected and stored by organisations nowadays. Discovering a process model from
recorded process event data is the aim of process discovery algorithms. Many
techniques have been proposed, but none combines scalability with quality guar-
antees, e.g. can handle billions of events or thousands of activities, and produces
sound models (without deadlocks and other anomalies), and guarantees to redis-
cover the underlying process in some cases. In this paper, we introduce a frame-
work for process discovery that computes a directly-follows graph by passing
over the log once, and applying a divide-and-conquer strategy. Moreover, we in-
troduce three algorithms using the framework. We experimentally show that it
sacrifices little compared to algorithms that use the full event log, while it gains
the ability to cope with event logs of 100,000,000 traces and processes of 10,000
activities.

Keywords: big data, scalable process mining, block-structured process discovery,
directly-follows graphs, rediscoverability

1 Introduction

Considerable amounts of data are collected and stored by organisations nowadays. For
instance, ERP systems log business transaction events; high tech systems such as X-ray
machines record software and hardware events; and web servers log page visits. These
event logs are often very large [5], i.e. contain billions of events. From these event logs,
process mining aims to extract information, such as compliance to rules and regulations;
and performance information, e.g. bottlenecks in the process [3].

Figure 1 shows a typical process mining workflow. The system executes and pro-
duces an event log. From this log, a process discovery technique obtains a model of the
process. As a next step, the log is filtered: the behaviour in the log that does not match
with the model (typically 20%) is analysed manually, while the behaviour that matches
with the log is analysed with respect to the model, for instance by selecting interesting
parts and drilling down on it using filtering, after which a new model is discovered.

logprocess model �lter

select interesting parts

analyse manually

�lter

execution process discovery

�tting

non-�tting

Figure 1: A typical process mining workflow.

2 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Process mining is usually studied in small settings, for instance on processes con-
taining a few activities (i.e. process steps) and a few thousand traces (i.e. cases; cus-
tomers), e.g., the BPI challenge log of 2012 [14] contains 36 activities and around
13,000 traces. In this paper, we explore a first step towards process mining on big-
ger scales: we experimented using logs containing 100,000,000 traces and processes
containing 10,000 activities. While such numbers seem large for a complaint-handling
process in an airline, even much larger processes exist, for instance in control systems of
the Large Hadron Collider [18]. Current process discovery techniques do not scale well
when facing big event logs (i.e. containing billions of events), when facing event logs
of complex systems (i.e. containing thousands of activities), or do not provide basic,
essential guarantees, such as deadlock-freedom or the ability to rediscover the original
process.

Given a big or complex log, several strategies could be of help: 1) sampling or
drilling down beforehand using process cubes might reduce logs to sizes manageable for
existing discovery techniques; 2) restrictions or guarantees might be dropped; 3) taylor-
made algorithms could be used. In this paper, we focus on situations in which the first
two options are not possible, such as if the process consists of 10,000 activities, (because
of which sampling to manageable sizes would throw away too much information); or
if the use case prefers taking the full log into account, such as in auditing [2]. In this
paper, we push the boundary of how far we can get while taking all recorded behaviour
into account.

Event logs with billions of events challenge current discovery algorithms, as most
techniques require that the event log is present in main memory. If an event log is too big
to fit into main memory of a single machine, few algorithms can be used. Ideally, such
a discovery algorithm should require only a single pass through the event log, and its
run time after this pass should be constant and not depend on the number of events and
traces in the event log. The single-pass property would cancel the need for the event log
to be in main memory; the independence of run time to the number of events and traces
would ensure that logs containing billions of events can still be handled. Independence
of the number of activities cannot be achieved, as activities are part of the output of any
technique.

Single-pass algorithms should produce models that are as close as possible to other
techniques in terms of quality criteria. In the context of process mining, several criteria
exist that describe the quality of a process model, such as fitness, precision, general-
isation and simplicity, of which the first three are measured with respect to an event
log. Fitness describes what part of the event log is represented by the model, precision
describes what part of the model is present in the log, generalisation expresses a con-
fidence that future behaviour of the process will be representable by the model, and
simplicity expresses whether a process model requires few constructs to express its be-
haviour. Any discovery algorithm needs to balance these sometimes conflicting four cri-
teria [10]. However, a more basic quality criteria is whether the model is sound, which
means it contains neither deadlocks nor other anomalies. While an unsound model can
be useful for human interpretation, it is often unsuitable for further (automated) analy-
sis, including the computation of fitness, precision and generalisation [20].

Scalable Process Discovery with Guarantees 3

A desirable property of discovery techniques is rediscoverability: Rediscoverability
measures the ability of a technique to find the actual process that produced the partial
observations in the event log. Typically, rediscoverability is proven assuming that the
log contains enough information (is complete), and assuming that the process adheres
to some restrictions [19,8].

In this paper, we investigate how current techniques perform in big-data settings and
show what happens to several discovery algorithms if they are adapted to the single-pass
property. We adapt the Inductive Miner framework (IM) [19] to recurse on directly-
follows graphs rather than on logs. Directly-follows graphs can be computed in a single
pass over the event log, and their computation can even be parallelised, for instance
using highly-scalable map-reduce techniques [15]. Moreover, the size of a directly-
follows graph only depends quadratically on the number of activities (i.e, types of pro-
cess steps) in a log, and is independent of the number of traces or events. We show
that this adaptation combines the scalability of directly-follows graphs, as used by the
Heuristics Miner (HM) [25] and the α-algorithm (α) [6], with guarantees such as sound-
ness and rediscoverability as provided by the IM framework. The adapted framework
is called the Inductive Miner - directly-follows based (IMD framework).

We use the new framework in three algorithms: we introduce a basic algorithm,
an algorithm focused on infrequent behaviour handling and an algorithm focused on
handling incomplete behaviour, similar to the algorithms developed for the IM frame-
work. These algorithms are implemented as plug-ins of the ProM framework, and are
available for download at http://www.promtools.org.

To show how the use of directly-follows graphs influences the adapted framework
and its algorithms, we test their suitability in a big data context where we deliberately
create larger and larger logs, until reaching a log size that cannot be handled anymore,
or it becomes clear it poses no restrictions on the log size (at 100 million traces). As the
new algorithms have less information available than in the IM framework, we expect
that they will need more information for rediscoverability and infrequent behaviour
handling. Therefore, we evaluate this trade-off as well. It turns out we can get significant
performance and scalability improvements, i.e. the feasibility of handling event logs
with over 3.000.000.000 events (¡200GB), while producing similar process models as
existing non-scalable techniques.

Outline. First, related work is discussed in Section 2. Second, process trees, directly-
follows graphs and cuts are introduced in Section 3. In Section 4, the framework and
three algorithms using it are introduced. The algorithms using the framework are eval-
uated in Section 5. Section 6 concludes the paper.

2 Related Work

Process discovery and process discovery in highly scalable environments have been
studied before. In this section, we discuss related process discovery techniques and
their application in scalable environments.

Process Discovery. Process discovery techniques such as the Evolutionary Tree
Miner (ETM) [9], the Constructs Competition Miner (CCM) [23] and Inductive Miner
(IM) [19] provide several quality guarantees, in particular soundness and some offer re-

4 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

discoverability, but do not manage to discover a model in a single pass. ETM applies a
genetic strategy, i.e. generates an initial population, and then applies random crossover
steps, selects the ‘best’ individuals from the population and repeats. While ETM is very
flexible towards the desired quality criteria to which respect the model should be ‘best’
and guarantees soundness, it requires multiple passes over the event log and does not
provide rediscoverability.

CCM and IM use a divide-and-conquer strategy on event logs. In the Inductive
Miner IM framework, first an appropriate cut of the process activities is selected; sec-
ond, that cut is used to split the event log into sub logs; third, these sub logs are recursed
on, until a base case is encountered. If no appropriate cut can be found, a fall-through
(‘anything can happen’) is returned. CCM works similarly by having several process
constructs compete with one another. While both CCM and the IM framework guaran-
tee soundness and IM guarantees rediscoverability, both require multiple passes through
the event log (the event log is being split and recursed on).

Scalability. Several techniques exist that satisfy the single-pass requirement, for in-
stance the α-algorithm (α) and its derivatives [6,26,27], and the Heuristic Miner (HM)
[25]. These algorithms first obtain an abstraction from the log, which denotes what ac-
tivities directly follow one another; in HM, this abstraction is filtered. Second, from this
abstraction a process model is constructed. Both α and HM have been demonstrated to
be applicable in highly-scalable environments: event logs of 5 million traces have been
processed using map-reduce techniques [15]. Moreover, α guarantees rediscoverability,
but neither α nor HM guarantees soundness. We show that our approach offers the same
scalability as HM and α, but provides both soundness and rediscoverability.

Some commercial tools such as Fluxicon Disco (FD) [16] and Perceptive Process
Mining (PM) offer high scalability, but have no executive semantics (FD) or do not
support parallelism (PM) [22].

Other well-known discovery techniques such as the ILP miner [28] satisfy neither
of the two requirements.

Streams. Another set of approaches that aims to handle even bigger (i.e. unbounded)
logs assumes that the event log is an infinite stream of events. Some approaches such as
[13,17] work on click-stream data, i.e. the sequence of web pages users visit, to extract
for instance clusters of similar users or web pages. However, we aim to extract end-to-
end process models, in particular containing parallelism. HM, α and CCM have been
shown to be applicable in streaming environments [11,24]. While streaming algorithms
could handle event logs containing billions of events by feeding them as streams, these
algorithms assume the log can never be examined completely and, as of the unbounded
stream, eventually cannot store information for an event without throwing away infor-
mation about an earlier seen event. In this paper, we assume the log is bounded and we
investigate how far we can get using all information in it.

3 Process Trees, Directly-Follows Graphs

Our approach combines the single-pass property of directly-follows graphs with a divide-
and-conquer strategy. This section recalls these existing concepts.

Scalable Process Discovery with Guarantees 5

An event log is a multiset of traces that denote process executions. For instance,
the event log rxa, b, cy, xb, dy2s denotes the event log in which the trace consisting of a
followed by b followed by c was executed once, and the trace consisting of b followed
by d was executed twice.

A process tree is an abstract representation of a block-structured hierarchical pro-
cess model, in which the leaves represent the activities, i.e. the basic process steps, and
the operators describe how their children are to be combined [9]. τ denotes the activity
which execution is not visible in the event log. We consider four operators: �, Ñ, ^
and ö. � describes the exclusive choice between its children, Ñ the sequential compo-
sition and ^ the parallel composition. The first child of a loopö is the body of the loop,
all other children are redo children. First, the body must be executed, followed by zero-
or-more times a redo child and the body again. For instance, the language of the process
tree�pöpa, bq,Ñp^pc, dq, eqq is txay, xa, b, ay, xa, b, a, b, ay . . . xc, d, ey, xd, c, eyu. Pro-
cess trees are inherently sound.

a b

c

d
1 2

2

1

1

1

2

Figure 2: Example of a
directly-follows graph.

A directly-follows graph can be derived from a log and
describes what activities follow one another directly, and
with which activities a trace starts or ends. In a directly-
follows graph, there is an edge from an activity a to an
activity b if a is followed directly by b. The weight of an
edge denotes how often that happened. For instance, the
directly-follows graph of our example log rxa, b, cy, xb, dy2s
is shown in figure 2. Notice that the multiset of start activ-
ities is ra, b2s and the multiset of end activities is rc, d2s. A
directly-follows graph can be obtained in a single pass over
the event log with minimal memory requirements [15].

A partition is a non-overlapping division of the activities of a directly-follows
graph. For instance, pta, bu, tc, duq is a binary partition of the directly-follows graph
in Figure 2. A cut is a partition combined with a process tree operator, for instance
pÑ, ta, bu, tc, duq. In the IM framework, finding a cut is an essential step: its operator
becomes the root of the process tree, and its partition determines how the log is split.

Suppose that the log is produced by a process which can be represented by a process
tree T . Then, the root of T leaves certain characteristics in the log and in the directly-
follows graph. The most basic algorithm that uses the IM framework, i.e. IM [19],
searches for a cut that matches these characteristics perfectly.

Each of the four process tree operators �, Ñ, ^ and ö leaves a different charac-
teristic footprint in the directly-follows graph. Figure 3 visualises these characteristics:
for exclusive choice, each trace will be generated by one child; so we expect several
unconnected clusters in the directly-follows graph. For sequential behaviour, each child
generates a trace; in the directly-follows graph we expect to see a chain of clusters
without edges going back. For parallelism, each child generates a trace and these traces
can occur in any intertwined order; we expect all possible connections to be present
between the child-clusters in the directly-follows graph. In a loop, the directly-follows
graph must contain a clear set of start and end activities; all connections between clus-
ters must go through these activities. For more details, please refer to [19].

6 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

...

sequence:

...

exclusive choice:

...

parallel:

...

loop:

Figure 3: Cut characteristics.

a

b

c

e

i

d

h

g

f

9 9

3

3

3

3

3
3

1 1

1

1

1

1

1 1

6

1

6

3

3

6

3

3

Figure 4: Directly-follows graph D1 of L. In a next step, the partition
ptau, tb, c, d, eu, tf, g, hu, tiuq, denoted by the dashed lines, will be used.

4 Process Discovery Using a Directly-Follows Graph

Algorithms using the IM framework guarantee soundness, and some even rediscover-
ability, but do not satisfy the single-pass property, as the log is traversed and even copied
during each recursive step. Therefore, we introduce an adapted framework: Inductive
Miner - directly-follows based (IM framework) that applies the recusion on the directly-
follows graph directly. In this section, we first introduce the IMD framework and a basic
algorithm using it. Second, we introduce two more algorithms: one to handle infrequent
behaviour; another one that handles incompleteness.

The input of the IMD framework is a directly-follows graph, and it applies a divide-
and-conquer strategy: first, a cut of the directly-follows graph is selected. Second, using
this cut the directly-follows graph is split, which yields several smaller directly-follows
graphs. Third, the framework recurses on these smaller directly-follows graphs until a
base case is encountered. If no cut can be found, a fall-through, i.e. a model that allows
for all behaviour, is applied. The returned process model is the hierarchical composition
of operators, base cases and fall-throughs.

Scalable Process Discovery with Guarantees 7

4.1 Inductive Miner - directly-follows based

As a first algorithm that uses the framework, we introduce Inductive Miner - directly-
follows based (IMD). We explain the stages of IMD in more detail by means of an
example: Let L be rxa, b, c, f, g, h, iy, xa, b, c, g, h, f, iy, xa, b, c, h, f, g, iy,
xa, c, b, f, g, h, iy, xa, c, b, g, h, f, iy, xa, c, b, h, f, g, iy, xa, d, f, g, h, iy,
xa, d, e, d, g, h, f, iy, xa, d, e, d, e, d, h, f, g, iys. The directly-follows graph D1 of L is
shown in Figure 4.

Cut Detection. IMD searches for a cut that perfectly matches the characteristics
mentioned in Section 3. Cut detection has been implemented using standard graph al-
gorithms (connected components, strongly connected components) [19], which run in
linear time, given the number of activities and directly-follows edges in the graph.

In our example, the cut pÑ, tau, tb, c, d, eu, tf, g, hu, tiuq is selected: as shown in
Figure 3, every edge crosses the cut lines from left to right. Therefore, it perfectly
matches the sequence cut characteristic. Using this cut, the sequence is recorded and
the directly-follows graph can be split.

Directly-Follows Graph Splitting. Given a cut, the IMD framework splits the directly-
follows-graph in disjoint subgraphs. The idea is to keep the internal structure of each
of the clusters of the cut by simply projecting a graph on the cluster. Figure 5 gives an
example of how D1 (Figure 4) is split using the sequence cut that was discovered in our
example. If the operator of the cut is Ñ or ö, the start and end activities of child might
be different from the start and end activities of its parent. Therefore, every edge that
enters a cluster is counted as a start activity, and edges leaving a cluster are counted as
end activities. In our example, the cluster tf, g, hu gets as start activities all edges that
are entering the cluster tf, g, hu inD1; similar for all end activities. The result is shown
in Figure 5a. In case the operator of the cut is � or ^, traces that are crossing cluster
boundaries do not cause a child to start or end.

The choice for a sequence cut and the split directly-follows graphs are recorded in
an intermediate tree: ÑppD2q, pD3q, pD4q, pD5qq, denoting a sequence operator with 4
unknown sub-trees that are to be derived from 4 directly-follows graphs.

a 99

(a) D2 of tau

b

c

e

d

3

33

33

3

3

33

3

(b) D3 of tb, c, d, eu

h

g

f

6

33

3 3

33

6

6

(c) D4 of tf, g, hu

i9 9

(d) D5 of tiu

Figure 5: Split directly-follows graphs of D1. The dashed line is used in a next step and
denotes another partition.

Recursion. Next, IMD recurses on each of the new directly-follows graphs (find cut,
split, . . .) until a base case (see below) is reached or no perfectly matching cut can be
found. Each of these recursions returns a process tree that is inserted as a child.

8 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Base Case. Directly-follows graphs D2 (Figure 5a) and D5 (Figure 5d) contain
base cases: in both graphs, only a single activity is left. The algorithm turns these into
leaves of the process tree and inserts them at the respective spot of the parent operator.
In our example, detecting the base cases of D2 and D5 yields the intermediate tree
Ñpa, pD3q, pD4q, iq, in which D3 and D4 indicate directly-follows graphs that are not
base cases and will be recursed on later.

Fall-Through. Consider D4 as, shown in Figure 5c. D4 does not contain uncon-
nected parts, so does not contain an exclusive choice cut. There is no sequence cut
possible, as f , g and h form a strongly connected component. There is no parallel cut
as there are no dually connected parts, and no loop cut as all activities are start and
end activities. Hence, IMD selects a fall-through, being a process tree that allows for
any behaviour consisting of f , g and h. The intermediate tree of our example up till
now becomes Ñpa, pD3q,öpτ, f, g, hq, iq (remember that τ denotes the activity which
execution is invisible).

Example Continued. In D3, shown in Figure 5b, a cut is present: ptb, cu, td, euq. No
edge in D3 crosses this cut, hence this is an exclusive choice cut. The directly-follows
graphs D6 and D7, shown in Figures 6a and 6b, result after splitting D3. The tree of
our example up till now becomes Ñpa,�ppD6q, pD7qq,öpτ, f, g, hq, iq.

In D6, shown in Figure 6a, a parallel cut is present, as all possible edges cross the
cut, i.e. the dashed line, in both ways. The dashed line in D7 (Figure 6b) denotes a loop
cut, as all connections between tdu and teu go via the set of start and end activities tdu.
Four more base cases give us the complete process tree Ñpa,�p^pb, cq,öpd, eqq,
öpτ, f, g, hq, iq.

b

c

3

33

3

33

(a) D6 of tb, cu in D3

e

d
33

3 3

(b) D7 of td, eu in D3

Figure 6: Split directly-follows graphs. Dashed lines denote cuts, which are used in the
next steps.

To summarise: IMD selects a cut, splits the directly-follows graph and recurses until
a base case is encountered or a fall-through is necessary. As each recursion removes at
least one activity from the graph and cut detection is Opn2q, IMD runs in Opn3q, in
which n is the number of activities in the directly-follows graph.

By the nature of process trees, the returned model is sound. By reasoning similar to
IM [19], IMD guarantees rediscoverability on the same class of models, i.e. assuming
that the model is representable by a process tree without using duplicate activities, and
it is not possible to start loops with an activity they can also end with [19]. This makes
IMD the first single-pass algorithm to offer these guarantees.

4.2 Handling Infrequency and Incompleteness

The basic algorithm IMD guarantees rediscoverability, but, as will be shown in this
section, is sensitive to both infrequent and incomplete behaviour. To solve this, we
introduce two more algorithms using the IMD framework.

Scalable Process Discovery with Guarantees 9

Infrequent Behaviour. Infrequent behaviour in an event log is behaviour that occurs
less frequent than ‘normal’ behaviour, i.e. the exceptional cases. For instance, most
complaints sent to an airline are handled according to a model, but a few complaints are
so complicated that they require ad-hoc solutions. This behaviour could be of interest
or not, which depends on the use case.

Consider again directly-follows graph D3, shown in Figure 5b, and suppose that
there is a single directly-follows edge added, from c to d. Then, p�, tb, cu, td, euq is
not a perfectly matching cut, as with the addition of this edge the two parts tb, cu and
td, eu became connected. Nevertheless, as 9 traces showed exclusive-choice behaviour
and only one did not, this single trace is probably an outlier and in most cases, a model
ignoring this trace would be preferable.

To handle these infrequent cases, we apply a strategy similar to IMI [20] and intro-
duce an algorithm using the IMD framework: Inductive Miner - infrequent - directly-
follows based (IMID). Infrequent behaviour introduces edges in the directly-follows
graph that violate cut requirements. As a result, a single edge makes it impossible to
detect an otherwise very strong cut. To handle this, IMID first searches for existing cuts
as described in Section 4.1. If none is found (when IMD would select a fall through),
the graph is filtered by removing edges which are infrequent with respect to their neigh-
bours. Technically, for a parameter 0 ¤ h ¤ 1, we keep the edges pa, bq that occur more
than h � maxcp|pa, cq|q, i.e. occur frequently enough compared to the most occurring
outgoing edge of a. Start and end activities are filtered similarly.

a b

c d

3

21
1

3

2 3

23

2

1
1

1

Figure 7: An incomplete
directly-follows graph.

Incompleteness. A log in a “big-data setting” can be as-
sumed to contain lots of behaviour. However, we only see
example behaviour and we cannot assume to have seen all
possible traces, even if we use the rather weak notion of
directly-follows completeness [21] as we do here. More-
over, sometimes smaller subsets of the log are considered,
for instance when performing slicing and dicing in the con-
text of process cubes [4]. For instance, an airline might be
interested in comparing the complaint handling process for
several groups of customers, to gain insight in how the pro-
cess relates to age, city and frequent-flyer level of the customer. Then, there might be
combinations of age, city and frequent-flyer level that rarely occur and the log for these
customers might contain too little information.

If the log contains little information, edges might be missing from the directly-
follows graph and the underlying real process might not be rediscovered. Figure 7 shows
an example: the cut pta, bu, tc, duq is not a parallel cut as the edge pc, bq is missing. As
the event log only provides example behaviour, it could be that this edge is possible in
the process, but has not been seen yet. Given this directly-follows graph, IMD can only
give up and return a fall-through flower model, which yields a very imprecise model.
However, choosing the parallel cut pta, bu, tc, duq would obviously be a better choice
here, providing a better precision.

To handle incompleteness, we introduce Inductive Miner - incompleteness - directly-
follows based (IMIND), which adopts ideas of IMIN [21] into the IMD framework.
IMIND first applies the cut detection of IMD and searches for a cut that perfectly

10 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

matches a characteristic. If that fails, instead of a perfectly matching cut, IMIND searches
for the most probable cut of the directly-follows graph at hand.

IMIND does so by first estimating the most probable behavioural relation between
any two activities in the directly-follows graph. In Figure 7, a and b are most likely in a
sequential relation as there is an edge from a to b. a and c are most likely in parallel as
there is a forth and a back edge. Loops and choices have similar local characteristics.
For each pair of activities x and y the probability Prpx, yq that x and y are in relation R
is determined. The best cut is then a partition into sets of activities X and Y such that
the average probabilities that x P X and y P Y are in relation R is maximal. For more
details, please refer to [21].

In our example, the probability of cut p^, ta, bu, tc, duq is the average probability
that pa, cq, pa, dq, pb, cq and pb, dq are parallel. IMIND chooses the cut with highest
probability, using optimisation techniques. This approach gives IMIND a run time ex-
ponential in the number of activities, but still requires a single pass over the event log.

5 Evaluation

In this section, we illustrate handling of big event logs and complex systems, and we
study the possible losses of quality of the resulting model. The new algorithms were
compared to various existing discovery algorithms in two experiments: First, we test
their scalability in handling big event logs and complex systems, and second we test
their ability to handle infrequent behaviour. The new algorithms were implemented as
plug-ins of the ProM framework, taking as input a directly-follows graph. In order to
obtain these, we used an ad-hoc script that builds a directly-follows graph from an event
log incrementally.

5.1 Scalability

First, we compare the IMD algorithms with several process discovery tools and algo-
rithms in their ability to handle big event logs and complex systems using limited main
memory.

Setup. This experiment searches for the largest event log that a process discovery
algorithm currently can handle. All algorithms are tested on the same set of XES event
logs, which are created randomly from a process tree of 40 activities. First, each al-
gorithm gets as input a log of t traces generated from the model. The algorithm can
handle this log if it returns a model using only the allocated memory of 2GB, i.e. it
terminates and does not crash. The ad-hoc pre-processing step was not exempted from
this restriction. If the algorithm is successful, t is multiplied by 10 and the procedure
is repeated. The maximum number of traces that an algorithm can handle is recorded.
This procedure (A) is repeated for a process tree of 10,000 activities (B). For the al-
gorithms implemented as ProM plug-ins, the logs are imported using a disk-buffered
import plug-in; enough SSD disk space is available for this plug-in. Algorithms are
restarted between all runs to release all memory.

Besides the new algorithms introduced in this paper, from the ProM 6.4.1 frame-
work we included IM, IMI, IMIN, α, HM and ILP in the comparison. From the PM-
LAB suite [12], we included the IMMEDIATELY FOLLOWS CNET FROM LOG (P-IF)

Scalable Process Discovery with Guarantees 11

Table 1: Scalability results. #: max traces/events/activities an algorithm could handle.
A: tree of 40 activities B: tree of 10,000 activities

#traces #events #traces #events #activities
α 10,000 522,626 1 420 141
HM 100,000 5,218,594 1 420 141
ILP 1,000 51,983 1 420 141
P-IF 10,000 522,626 *1 420 141
P-PT 10,000 522,626 *1 420 141
IM 100,000 5,218,594 100 82689 6941
IMD 100,000,000 3,499,987,460 100,000 76,793,937 10,000
IMI 100,000 5,218,594 10 5886 2053
IMID 100,000,000 3,499,987,460 100,000 76,793,937 10,000
IMIN 100,000 5,218,594 *10 5886 2053
IMIND 100,000,000 3,499,987,460 *10 5886 2053

and the PN FROM TS (P-PT) functions. To obtain the directly-follows graphs, a one-
pass pre-processing step is executed before applying the actual discovery.

Results. Table 1 shows the results. Some results could not be obtained; they are
denoted with *; (for instance, IMIN and IMIND ran for over a week). The largest log
we could generate was 217GB (100,000,000 traces) for A, limited by disk space; and
100,000 traces for B, limited by RAM needed for log-generation.

For A, many implementations (HM, IM, IMI, IMIN, P-IF and P-PT) are limited
by their requirement to have the complete log in main memory: the ProM disk-caching
importer (HM, IM, IMI, IMIN) could handle 100,000 traces, the PMLAB importer (P-
IF, P-PT) 10,000. This shows the value of the single-pass property: for a single-pass
algorithm, there is no need to import the log. In [15], a single-pass version of HM and
α are described. We believe such a version of HM could be memory-restricted, but still
this would not offer any of the guarantees described. Of the IM framework, single-pass
versions cannot exist due to the necessary log splitting. The IMD framework algorithms
are clearly not limited by log size.

For B, log importers were not a problem. Algorithms that are exponential in the
number of activities (IMIN, IMIND, α, HM) clearly show their limitations here: none
of them could handle our log of 100 traces / 6941 activities. This experiment clearly
shows the limitiations of sampling: by sampling a log to a size manageable for other
algorithms, many activities are removed, making the log incomplete. In fact, IMD and
IMID were the only algorithms that could handle the 10,000 activities.

Timewise, our ad-hoc pre-processing step on the log of 100,000,000 traces (A) took
a few days, after that mining was a matter of seconds; P-IF, α, HM, IM, IMI and IMIN
took a few minutes; P-PT took days, ILP a few hours.

This experiment clearly shows the scalability of the IMD framework. A manual
inspection revealed that IMD and IM algorithms always returned the same model for A
once the log was complete.

5.2 Infrequent Behaviour

The goal of the second experiment is investigate the loss of quality faced by the algo-
rithms of the IMD framework compared to the IM framework. We do this with two use

12 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

cases in mind. First use case is to obtain a model describing almost all behaviour, i.e.
having a fitness close to 1.0, preferably with good precision and generalisation. Sec-
ond use case is, if precision and generalisation make the user consider all found 100%
models to be unacceptable, to obtain a model that is accurate for 80% of the log, i.e.
having a fitness of around 0.8, that represents the main flow of the process and allows
for classification and separate analysis of outliers. Current evaluation techniques force
us to perform this experiment on rather small event logs.

Setup. First, a random tree of 40 activities is generated. Second, from this tree a
log of 1000 random traces is generated. Third, we vary the number t of infrequent be-
haviour traces that are added to the log and do not fit the model. Each infrequent trace
is generated by inserting errors at certain decisions points with a probability of 0.2; as a
result the infrequent trace does not fit the model. The total number of deviations in the
log is recorded. Fourth, a discovery algorithm is applied, and conformance checking is
measured using fitness [1], precision and generalisation [7]. This process is repeated
for the same algorithms as the infrequency experiments, and increasing t. In this exper-
iment, we compared only algorithms that return process trees, as only on sound models
fitness, precision and generalisation can be measured reliably [20]. Simplicity is not
measured as by nature of these algorithms all trees contain each activity once.

We performed a similar experiment on a real-life log of a financial institution of the
Netherlands [14]. This log, consisting of 36 activities, was split in three parts, containing
the activities prefixed by respectively A, O or W . On these logs, fitness, precision and
generalisation were measured.

Table 2: Results of infrequent behaviour on a tree of 40 activities. f : fitness, p: precision, g:
generalisation. t: # deviating traces. Model most suitable for use case 1 and

:
2.

t \log size 0 \1000 10 \1010 100 \1100 1000 \2000
deviations 0 30 450 4472
IM f 1.00 p 0.90 g 0.92 f 1.00 p 0.62 g 0.94 f 1.00 p 0.39 g 0.95 f 1.00 p 0.16 g 0.95
IMD f 1.00 p 0.81 g 0.93 f 0.94 p 0.53 g 0.93 f 1.00 p 0.15 g 0.93 f 1.00 p 0.15 g 0.95
IMI 0.01 f 1.00 p 0.90 g 0.92 f 1.00 p 0.79 g 0.93 f 0.99 p 0.44 g 0.93
IMID 0.01 f 1.00 p 0.81 g 0.93 f 0.93 p 0.58 g 0.93 f 1.00 p 0.35 g 0.94 f 1.00 p 0.15 g 0.95
IMI 0.05 f 1.00 p 0.90 g 0.92 f 1.00 p 0.83 g 0.92 f 0.96 p 0.83 g 0.93
IMID 0.05 f 1.00 p 0.81 g 0.93 f

::
0.93 p

:::
0.72 g

:::
0.93 f 0.96 p 0.57 g 0.94

IMI 0.20 f 1.00 p 0.90 g 0.92 f 0.98 p 0.81 g 0.92 f 0.94 p 0.82 g 0.93
IMID 0.20 f 0.98 p 0.90 g 0.92 f 0.89 p 0.62 g 0.93 f 0.95 p 0.51 g 0.94 f 0.94 p 0.46 g 0.95
IMI 0.80 f 1.00 p 0.90 g 0.92 f

::
0.56 p

:::
0.88 g

:::
0.86 f

::
0.61 p

:::
0.91 g

:::
0.87 f

::
0.55 p

:::
0.69 g

:::
0.93

IMID 0.80 f
::

0.97 p
:::
0.91 g

:::
0.92 f 0.70 p 0.82 g 0.91 f

::
0.66 p

:::
0.68 g

:::
0.90 f

::
0.67 p

:::
0.62 g

:::
0.90

IMIN f 1.00 p 0.90 g 0.92 f 1.00 p 0.55 g 0.94 f 1.00 p 0.29 g 0.96
IMIND f 1.00 p 0.90 g 0.92 f 0.86 p 0.74 g 0.93

Results. The results of the infrequency experiments are shown in Table 2. For some
measurements, mining finished but computation of fitness, precision and generalisation
failed; these measurements are denoted by empty cells. (As shown in the scalability
experiment, discovery algorithms easily handle much larger logs.) For each deviation
level, there is an algorithm in both groups that gives a high fitness, i.e. use case 1. As to
be expected, IMI and IMID with higher parameter settings are needed when the log has
more deviations. IMD usually scores worse in precision than the IM counterparts: IM
clearly benefits from the full information in the log. However, IMD sometimes scores
slightly better in generalisation.

Scalable Process Discovery with Guarantees 13

Using parameter setting .8, IMID returns models with fairly high precision and
generalisation, even reaching levels similar to the best IMI parameter settings, although
not achieving similar fitness. Therefore, IMID at .8 seems to be a good candidate default
algorithm to get an 80% model from a log with infrequent behaviour. In a practical use
case, this 80% model can be used to separate outliers from main flow, i.e. traces that fit
the log and traces that do not. This classification can be used to investigate main flow
and outliers using separate techniques, possibly using IMIND to achieve robust results
on small logs.

We illustrate the results of the experiments on the real-life logs using two models:
Figure 8 shows the Petri net returned by IMI 0.2; Figure 9 the model by IMID 0.2.
This illustrates the different trade-offs made between IM and IMD: these models are
very similar, except that for IMI, three activities can be skipped. Without the log, IMID
could not decide to make these activities skippable, which lowers fitness a bit (0.93 vs
1) but increases precision (1 vs 0.89).

To summarise, these experiments show that the IMD family is able to adequately
handle logs with infrequent behaviour in different use cases, and can achieve results
similar to IM with only minor losses in quality (except for the 100 deviations log).

6 Conclusion

Process discovery aims to obtain process models from event logs. Currently, there is no
process discovery technique that works on logs containing billions of events or thou-
sands of activities, and that guarantees both soundness and rediscoverability. In this
paper, we pushed the boundary on what can be done with logs containing billions of
events.

We introduced the Inductive Miner - directly-follows based (IMD) framework and
three algorithms using it. The input of the framework is a directly-follows graph, which
has been shown to be obtainable in highly-scalable environments, for instance using
Map-Reduce style log analyses. The framework uses a divide-and-conquer strategy that
splits this graph and recurses on the sub-graphs, until a base case is encountered.

We showed that the memory usage of all algorithms of the IMD framework is in-
dependent of the number of traces in the event log considered. In our experiments,
the scalability was only limited by the logs we could generate. The IMD framework
managed to handle over five billion events, while using 2GB of RAM; some other tech-
niques required the event log to be in main memory and therefore could handle up to
10,000-100,000 traces. Besides performance, we also investigated how the new algo-
rithms compare qualitatively to existing techniques that use more knowledge, but also
have higher memory requirements, in a number of practical process mining use cases.
We showed that the IMID algorithms allow to handle infrequent behaviour adequately.
In particular, parameter setting .8 allows to obtain an “80% model” of a process which

Figure 8: Result without activity names of IMI 0.2 applied to BPIC12 A. f1.00, p0.89, g0.99.

14 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Figure 9: Result without activity names of IMID 0.2 applied to BPIC12 A. f0.93, p1.00, g0.99.

helps to investigate main flow and outliers in more detail, an operation often needed
for detailed analysis in process mining projects. Altogether, these results suggest that
the IMD family not only handles big event logs, but that its algorithms can be used in a
variety of use cases, eliminating the need to operate with different classes of algorithms.

Future Work. In the typical processs mining workflow as described in Section 1, pro-
cess discovery is just the first step. Further analysis steps can be mostly manual, which
makes them hard to perform on logs containing millions of traces. As we encountered
during the evaluation, automatic steps are not guaranteed to work on these logs either.
We envision further steps in the analysis of models, such as using alignments [7], in
contexts of big data.

In streaming environments, it is assumed that events arrive in small intervals and
that the log is too big to store, so the run time for each event should be short and ide-
ally constant. The α algorithm and the Heuristics Miner have been applied in streaming
environments [11] by using directly-follows graphs; the IMD framework might be ap-
plicable as well.

References

1. van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process models
for conformance checking and performance analysis. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 2(2), 182–192 (2012)

2. van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M.E.M., Verdonk, M.: Auditing 2.0:
Using process mining to support tomorrow’s auditor. IEEE Computer 43(3), 90–93 (2010)

3. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer (2011)

4. van der Aalst, W.: Process cubes: Slicing, dicing, rolling up and drilling down event data for
process mining. In: Asia Pacific Business Process Management. pp. 1–22 (2013)

5. van der Aalst, W.: In: Data Scientist: Enigneer of the Future. I-ESA, vol. 7, pp. 13–26 (2014)
6. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering process models

from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)
7. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.:

Alignment based precision checking. In: Business Process Management Workshops. pp.
137–149. Springer (2013)

8. Badouel, E.: On the α-reconstructibility of workflow nets. In: Petri Nets’12. LNCS, vol.
7347, pp. 128–147. Springer (2012)

9. Buijs, J., van Dongen, B., van der Aalst, W.: A genetic algorithm for discovering process
trees. In: IEEE Congress on Evolutionary Computation. pp. 1–8. IEEE (2012)

10. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision,
generalization and simplicity in process discovery. In: OTM. LNCS, vol. 7565, pp. 305–322
(2012)

11. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Control-flow discovery from event streams.
In: IEEE Congress on Evolutionary Computation. pp. 2420–2427 (2014)

Scalable Process Discovery with Guarantees 15

12. Carmona, J., Solé, M.: PMLAB: an scripting environment for process mining. In: BPM De-
mos. CEUR-WP, vol. 1295, p. 16 (2014)

13. Datta, S., Bhaduri, K., Giannella, C., Wolff, R., Kargupta, H.: Distributed data mining in
peer-to-peer networks. IEEE Internet Computing 10(4), 18–26 (2006)

14. van Dongen, B.: BPI Challenge 2012 Dataset (2012),
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

15. Evermann, J.: Scalable process discovery using map-reduce. In: IEEE Transactions on Ser-
vices Computing. vol. to appear (2014)

16. Günther, C., Rozinat, A.: Disco: Discover your processes. In: BPM (Demos). CEUR Work-
shop Proceedings, vol. 940, pp. 40–44. CEUR-WS.org (2012)

17. Hay, B., Wets, G., Vanhoof, K.: Mining navigation patterns using a sequence alignment
method. Knowl. Inf. Syst. 6(2), 150–163 (2004)

18. Hwong, Y., Keiren, J.J.A., Kusters, V.J.J., Leemans, S.J.J., Willemse, T.A.C.: Formalising
and analysing the control software of the compact muon solenoid experiment at the large
hadron collider. Sci. Comput. Program. 78(12), 2435–2452 (2013)

19. Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process models
from event logs - a constructive approach. In: Petri Nets 2013. LNCS, vol. 7927, pp. 311–
329. Springer (2013)

20. Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process models
from event logs containing infrequent behaviour. In: Business Process Management Work-
shops. pp. 66–78 (2013)

21. Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process models
from incomplete event logs. In: Petri nets 2014. vol. 8489, pp. 91–110 (2014)

22. Leemans, S., Fahland, D., van der Aalst, W.: Exploring processes and deviations. In: Busi-
ness Process Management Workshops. p. to appear (2014)

23. Redlich, D., Molka, T., Gilani, W., Blair, G.S., Rashid, A.: Constructs competition miner:
Process control-flow discovery of bp-domain constructs. In: BPM 2014. LNCS, vol. 8659,
pp. 134–150 (2014)

24. Redlich, D., Molka, T., Gilani, W., Blair, G.S., Rashid, A.: Scalable dynamic business pro-
cess discovery with the constructs competition miner. In: SIMPDA 2014. CEUR-WP, vol.
1293, pp. 91–107 (2014)

25. Weijters, A., van der Aalst, W., de Medeiros, A.: Process mining with the heuristics miner-
algorithm. BETA Working Paper series 166, Eindhoven University of Technology (2006)

26. Wen, L., van der Aalst, W., Wang, J., Sun, J.: Mining process models with non-free-choice
constructs. Data Mining and Knowledge Discovery 15(2), 145–180 (2007)

27. Wen, L., Wang, J., Sun, J.: Mining invisible tasks from event logs. Advances in Data and
Web Management pp. 358–365 (2007)

28. van der Werf, J., van Dongen, B., Hurkens, C., Serebrenik, A.: Process discovery using inte-
ger linear programming. Fundam. Inform. 94(3-4), 387–412 (2009)

