
Liveness, Fairness, and Recurrence in Petri Nets

Ekkart Kindler�

Humboldt-Universit�at zu Berlin

Institut f�ur Informatik

D-10099 Berlin

Germany

Wil van der Aalsty

Eindhoven University of Technology

Department of Mathematics and Computing Science

P.O. Box 513

5600 MB Eindhoven

The Netherlands

Keywords: Concurrency, Distributed Systems,
Petri Nets, Theory of Computation.

Introduction

In Petri net theory, a transition is called live if
from every reachable marking there starts a com-
putation in which the transition occurs. Another
important property of a transition is the recur-
rent occurrence of the transition in every compu-
tation. In that case, we call the transition recur-

rent. Though liveness1 and recurrence of a transi-
tion are similar in spirit, there is a big di�erence:
Liveness only requires the possibility of transition
occurrences whereas recurrence requires transition
occurrences in every computation.
Obviously, recurrence implies liveness. In this

paper, we will investigate the reverse direction of
this implication. In particular, we will charac-
terize a class of Petri nets for which liveness im-
plies recurrence. Basically, this class is asymmet-

ric choice nets [7, 9] which is often also called ex-

tended simple nets [8, 6]. Since we extend the class

�email: kindler@informatik.hu-berlin.de
yemail: wsinwa@win.tue.nl
1We use liveness in the Petri net sense throughout this

paper. This concept is not equivalent to the concept of live-

ness introduced by Lamport [11, 5]. Actually, recurrence

is a liveness property in Lamport's terminology.

with respect to loops we call the class extended

asymmetric choice nets rather than `extended ex-
tended simple nets'.
This result is important for the following rea-

son: Recurrence is an important property in many
application areas. Usually, recurrence is proven
by temporal logic or by model checking. For ex-
tended asymmetric choice nets, it is su�cient to
prove liveness by standard techniques of Petri net
theory. More concretely, the result is important
for the veri�cation of business processes. In fact,
our quest for the relation between liveness and
recurrence started with the question whether the
soundness of a work
ow process [1] guarantees its
proper termination. The results reported in this
paper say that, for extended asymmetric choice
nets, soundness does guarantee termination. More-
over, detailed analysis of work
ow processes has
shown that all work
ows encountered can be mod-
elled by extended asymmetric choice nets.

1 Some examples

Before a formal presentation of our results, let us
give some examples which illustrate the basic con-
cepts and the basic result. Figure 1 shows a simple
system net �1 which is live; i.e. from each reach-
able marking, each transition can somehow be en-
abled. However, there is an in�nite computation

1

in which transition d does never occur:

[A]
a
! [B]

b
! [C]

c
! [A]

a
! : : :

In this representation of a computation, a mark-
ing is represented within square brackets; the oc-
currence of a transition which results in another
marking is indicated by arrows inscribed by the
corresponding transition. The above computation
shows that there are computations of a live system
net in which not all transitions do occur in�nitely
often. In fact, d does not occur at all. So, �1 is
not recurrent in the above computation.

a bA

B
C

c

d

Figure 1: A live system net �1

The above computation, however, might be con-
sidered to be illegal because transition d was en-
abled over and over again (i.e. in�nitely often) but
was never chosen|clearly an unfair behaviour. If
we only consider fair computations of �1, each
transition occurs over and over again. So, we de-
�ne recurrence with respect to fair computations
in the formal part of this paper. There are even
simpler computations of �1 in which no transition
is recurrent: �nite computations and in particular
the computation which consist of the initial mark-
ing only. We also exclude these computations from
our considerations. Technically, this progress as-

sumption is subsumed by the de�nition of fairness.
Now, we might expect that a live system net

is always recurrent with respect to fair computa-

tions. This, however, is not true. Figure 2 shows a
counter-example. The system net �2 is live. Fur-
thermore, there is a computation in which transi-
tion e does not occur:

[A;C]
d
! [A;D]

a
! [B;D]

b
! [A;D]

c
! [A;C]

d
! : : :

Nevertheless, this computation is reasonably2 fair
because transition e is never enabled in this com-

2A reasonable fairness concept does not enforce the oc-

currence of a transition which is never enabled.

a

B

eb d

C D

c

A

Figure 2: Another live system net �2

putation. Altogether, �2 shows that liveness does
not imply recurrence|even when restricted to fair
computations.
The reason why �2 is not recurrent is that tran-

sition e has two con
ict places B and C. With
respect to place B, transition e is in con
ict with
transition b; with respect to place C, it is in con-

ict with transition d. In the above computation,
the transitions b and d conspire [6] against transi-
tion e. In this paper, we show that a live system
net is recurrent if every transition has at most one
con
ict place. This class is often called simple

nets. This result is proven in Sect. 3 after intro-
ducing the mathematical prerequisites in Sect. 2.
In Sect. 4, we generalize this result to extended
asymmetric choice nets and discuss some limita-
tions.

2 Basic concepts

Now, we introduce and formalize the basic con-
cepts. In Sect. 2.1, we present concepts from Petri
net theory which are all well-established [13, 14,
7, 9]. In Sect. 2.2, we present computations, fair
computations, and the concept of recurrence, which
are not standard in Petri net theory.

2.1 Petri nets

A Petri net consists of a �nite set of places P , a
�nite set of transitions T , and a
ow relation F

which relates transitions and places. A place is
graphically represented by a circle, a transition is
represented by a square, and the
ow relation is
represented by arrows between the corresponding
elements (cf. Fig. 1 and Fig. 2).
A marking of a net associates a natural number

2

with each place. This number represents the num-
ber of tokens residing at that place. Graphically,
a token is represented by a black dot. In a tex-
tual representation, we use multiset notation for
markings, e.g. [A;C;A] represents a marking with
two tokens at place A, a single token at place C,
and no tokens on all other places.

De�nition 1 (Net, marking, system net)

Let P and T be two �nite and disjoint sets and let

F be a relation F � (P � T) [(T � P). Then,

we call N = (P; T; F) a net. A mapping M :
P �! IN is called a marking of N . A net N

equipped with a marking M is called a system net
� = (N;M) and M is called the initial marking
of �.

The places and transitions of a net are also called
the elements of the net. For a given element x, the
preset �x denotes all elements which have an arc
towards x; the postset x� denotes all those ele-
ments which have an arc coming from x.

De�nition 2 Let N = (P; T; F) be a net.

1. For an element x 2 P [T , we de�ne the

preset of x by �x = fy 2 P [T j (y; x) 2 Fg.

We de�ne the postset of x by x� = fy 2

P [T j (x; y) 2 Fg.

2. A place p 2 P is called a con
ict place of
N if it has more than one transition in its

postset; i.e. if jp�j > 1. A con
ict place p

is called a con
ict place of a transition t if

p 2 �t.

The netN is called simple if every transition
of N has at most one con
ict place.

3. A set S � P is called a siphon of N if for

every transition t 2 T with t�\S 6= ; we also

have �t \ S 6= ;. A siphon S is unmarked
at a marking M if for every s 2 S we have

M(s) = 0.

The de�nition of a siphon is structural. Still,

there are behavioural consequences. Once un-
marked, a siphon remains unmarked forever, be-
cause every transition which could produce a to-
ken on S also needs a token on S. We formalize
this property in Prop. 5 after the formal de�nition
of the behavioural concepts.

A transition is enabled at a marking if every
place in its preset is marked. An enabled transi-
tion may occur in which case one token is removed
from every place in the transition's preset and one
token is added to every place in the transition's
postset.

De�nition 3 (Behaviour of nets)

Let N = (P; T; F) be a net and let M be a marking

of N .

1. A transition t 2 T is enabled at M if for

every p 2 �t we have M(p) � 1.

2. If transition t 2 T is enabled at M, it may

occur and its occurrence changes the mark-

ing into the successor marking M 0 de�ned

by

M 0(p) =

8
>><
>>:

M(p) if p 62 �t and p 62 t�

M(p) if p 2 �t and p 2 t�.

M(p)� 1 if p 2 �t and p 62 t�

M(p) + 1 if p 62 �t and p 2 t�

Then, we write M
t
!M 0.

3. A marking M 0 is reachable from M if there

exists a (possibly empty) sequence of mark-

ings M1;M2; : : : ;Mn�1 and a sequence of

transitions t1; t2; : : : ; tn such that we have

M
t1
!M1

t2
!M2 ! : : :

tn
!M 0.

With these basic concepts, we are able to de�ne
liveness of a Petri net.

De�nition 4 (Liveness)

Let � = (N;M) be a system net.

1. A transition t of � is live if for every mark-

ing M1 which is reachable from M there ex-

ists a marking M2 which enables t and is

reachable from M1.

2. � is live if every transition of � is live.

Now, we come back to the already mentioned
behavioural property of siphons, which are well-
known in Petri net theory (e.g. [9]).

Proposition 5 Let � = (N;M) be a system net

and let S be a siphon of N .

1. LetM1 be a marking in which S is unmarked.

Then, S is unmarked at every marking M2

reachable from M1.

3

2. Let M1 be a marking which is reachable from

M and at which S is unmarked. If there

exists a transition t with �t \ S 6= ;, then �
is not live.

2.2 Computations and recurrence

A computation of a system is a �nite or in�nite se-
quence of transition occurrences. As already men-
tioned in the examples, we additionally impose a
fairness assumption on computations. A compu-
tation in which a transition is enabled over and
over again but does not occur any more from some
point on, is unfair. This fairness requirement is
usually called strong fairness [10, 4].

De�nition 6 (Fair computation)

Let � = (N;M) be a system net. A �nite or in�-

nite sequence M
t1
! M1

t2
! M2

t3
! M3

t4
! : : : is a

computation of �. The computation is fair with
respect to a transition t if either t occurs in�nitely
often or there exists a position i from which on t

is never enabled again (i.e. no marking Mj of

the computation with j � i enables transition t).

A computation is a fair computation of � if the

computation is fair with respect to every transition

of �.

Note that we consider in�nite as well as �nite
computations. By the above de�nition, a �nite
computation is only fair if no transition is enabled
at its �nal marking. This way, fairness subsumes
the progress assumption, which guarantees that a
computation does not stop as long as transition
occurrences are possible. Moreover, every �nite
computation of a system net can be extended to a
(possibly in�nite) fair computation of the system
net. This property is called feasibility [4]. In par-
ticular, feasibility guarantees that every system
net has fair computations.

De�nition 7 (Recurrence) Let � be a system

net. A transition t of � is recurrent if it occurs in-
�nitely often in every fair computation of �. The

system net � is recurrent if every transition of �
is recurrent.

Obviously, recurrence implies liveness.

Proposition 8 A recurrent system net is live.

Proof: Let us assume that � is a recurrent sys-
tem net. It is su�cient to show that every tran-
sition t of � can be enabled from every reachable
marking of �. For every reachable marking M 0,
there exists a �nite (possibly unfair) computation

M0

t1
!M1

t2
! : : :

tn
!Mn =M 0

of � with M 0 = Mn. Due to feasibility of the
fairness requirement, there exists an extension of
this computation which is fair. Since � is recur-
rent, transition t occurs in�nitely often in this fair
extension. Thus, we know that t can be enabled
from M 0. 2

In the rest of this paper, we consider the reverse
direction of Prop. 8.

3 Liveness and recurrence

In this section, we prove for simple nets (i.e. for
nets in which every transition has at most one con-

ict place) that liveness implies recurrence. This
requirement is illustrated in Fig. 3.

conflict place

Figure 3: Illustration of the requirement

The following observation is pivotal in the proof:
Let us consider a transition t with at most one
con
ict place and consider a fair computation in

which t occurs only �nitely many times. Then,
there is a place p in its preset which is unmarked
forever in this computation from some point on.
We call this place the scapegoat which is respon-
sible for t not occurring any more.
In the rest of this section, we formalize scape-

goats (Def. 9), we show that simple nets have
scapegoats (Lemma 10), and we prove for nets
with scapegoats that liveness implies recurrence
(Theorem 11).

De�nition 9 (Scapegoat) Let � = (N;M) be

a system net, let t be a transition of �, and let

� = M
t1
! M1

t2
! M2

t3
! : : : be a computation. A

4

place p 2 �t is called scapegoat for t in � if there

exists a position i in � such that p is unmarked at

every marking Mj of � with j � i.

We say that t has scapegoats if in each fair com-

putation � in which t is not recurrent there exists

a scapegoat for t in �.

Let us consider our introductory example �1

from Fig. 1, again. In the computation

[A]
a
! [B]

b
! [C]

d
! [B]

b
! [C]

d
! : : :

place A is a scapegoat for transition a. Note, that
there is no scapegoat for transition c; but this does
not contradict our above observation because the
computation is not fair with respect to c. In gen-
eral, a transition with at most one con
ict place
has scapegoats which is proven in the following
lemma.

Lemma 10 Let � be a system net and let t be a

transition with at most one con
ict place. Then,

t has scapegoats.

Proof: Let � =M
t1
!M1

t2
!M2

t3
! : : : be a fair

computation in which t is not recurrent. We will
show that t has a scapegoat.
Since t is not recurrent and the computation is

fair, there is a position i in � from which on t is
never enabled again. If one of the places in the
preset of t except for the con
ict place remains
unmarked forever, then t has a scapegoat.
If each place in the preset of t except for the

con
ict place is marked at some position j � i,
then there is a position k such that all these places
are (and remain) simultaneously marked (t is the
only transition that can remove tokens from these
places). Since t is never enabled beyond position i,
the con
ict place is never marked beyond position
k and is therefore a scapegoat. 2

Now, it remains to show that a live system net in
which every transition has scapegoats is recurrent.

Theorem 11 Let � be a system net in which every

transition has a scapegoat. � is live if and only if

� is recurrent.

Proof:

"(" Prop. 8

")" Let us assume to the contrary, that � has
scapegoats for each transition and is not re-
current. Then, we show that � is not live.
To this end, we consider a fair computation
� in which some transition t is not recurrent.
Now, we construct a siphon S with �t\S 6= ;

which is unmarked in some marking of the
computation. By Prop. 5 (2), � is not live.

Let us consider a su�x of � which satis�es
the following requirements:

1. No non-recurrent transition of � occurs
in the su�x.

2. For each non-recurrent transition of �,
there exists a scapegoat for t which is
not marked in any marking of the suf-
�x.

Since the net is �nite, such a su�x exists.

Let S be the set of places which are un-
marked in all markings of this su�x. Then,

S is a siphon of � for the following reason:
Let t0 be a transition of � with t0

�

\ S 6= ;.
Clearly, t0 is not recurrent in �. Therefore,
t0 has scapegoats in �. According to the de-
�nition of the su�x, one of these scapegoats
p 2 �t0 is unmarked in all markings of the
su�x; therefore, we have p 2 S. Thus, we
have �t0 \ S 6= ;. By de�nition, S is un-
marked in a reachable marking (e.g. in the
�rst marking of the su�x).

2

Altogether, we have shown that for simple nets
liveness implies recurrence.

4 Extensions and Limitations

Though simple nets occur in some practical ap-
plications, this class is rather restrictive. In this
section, we generalize the result to extended asym-
metric choice nets.
Asymmetric choice nets have been introduced as

a generalization of free choice nets for which some
properties of free choice nets are still valid [9]. In
an asymmetric choice net, for a given transition t,
the con
ict sets with two other transitions t1 and
t2 are included in either way: �t\ �t1 �

�t\ �t2 or
�t \ �t2 �

�t \ �t1. Therefore, the con
ict sets of

5

t with other transitions form an ascending chain
as illustrated in Fig. 4. An equivalent de�nition
which relates postsets of places will be given in
Def. 15.

Figure 4: Asymmetric choice nets

In extended asymmetric choice nets, there may
be loops which violate the ascending chain of con-

ict sets.

De�nition 12 (Extended asymmetric choice)

Let N = (P; T; F) be a net. For each transition

t 2 T we de�ne a relation ;t on the places �t as

follows: For p1; p2 2
�t, we have p1 ;t p2 if and

only if there exists a transition t0 2 T such that

p1 2
�t0 n t0

�

and p2 62
�t0.

A net is called an extended asymmetric choice
(EAC) net if for every transition t 2 T the relation

;t is acyclic.

In order to prove that live extended asymmetric
choice nets are also recurrent, we prove that every
transition of an extended asymmetric choice net
has scapegoats. The rest follows by Theorem 11.

Theorem 13 (EAC nets have scapegoats)

Let � be a an extended asymmetric choice system

net. Then, every transition of � has scapegoats.

Proof: Let � be a fair computation in which
transition t has no scapegoats; we show that t is
recurrent in �. Since � is fair, it is su�cient to
prove that in � transition t is enabled over and
over again.

Since N is extended asymmetric choice, ;t is
acyclic. Therefore, we can arrange the places in
the preset of t in a sequence p1 p2 : : : pn such that
for each j; k 2 f1; 2; : : : ; ng with j < k we have
pj 6;t pk. By de�nition of ;t, we know that for
j < k and each transition t0 with pj 2

�t0 n t0
�

we also have pk 2
�t0; i.e. every transition which

removes a token from a place pj also needs a token
from all places pk with k > j.
Next, we show by induction on i = 1; 2; : : : n

that the set of places fp1; : : : ; pig are simultane-
ously marked over and over again.

i = 1: Since t has no scapegoats in �, we know
that p1 2

�t is marked in � over and over
again (otherwise p1 is a scapegoat for t).

i! i+ 1: Let us assume by induction hypothesis
that fp1; : : : ; pig is simultaneously marked
over and over again. Since t has no scape-
goats in �, place pi+1 2

�t is also marked
over and over again.

The only reason for fp1; : : : ; pi+1g not being
marked simultaneously over an over again,
is that some transition t0 removes a token
from some place pj with j � i before pi+1 is
marked. In that case, we have pj 2

�t0 n t0
�

.
Due to the arrangement of the places and by
i+1 > j we also have pi+1 2

�t0. Thus, no t0

can remove a token from fp1; : : : ; pig before
pi+1 is marked. Therefore, fp1; : : : ; pi+1g is
simultaneously marked over and over again.

Thus, t is enabled over and over again in �.
2

In combination, Theorem 11 and Theorem 13 give
us the following corollary.

Corollary 14 Let � be an extended asymmetric

choice system net. � is live if and only if � is

recurrent.

Up to now, we have only considered �nite nets.
The proofs of all theorems make use of the �nite-
ness of the considered net. Indeed, Theorem 11
and Corollary 14 do not apply to in�nite nets|not
even to in�nite free choice nets. Figure 5 shows a
counter example. The system net �3 is asymmet-
ric choice and live, but it is not recurrent.

Readers familiar to the de�nition of asymmet-
ric choice might observe that the de�nition of ex-
tended asymmetric choice nets has a quite dif-
ferent structure than the de�nition of asymmet-
ric choice. For a naive extension of asymmetric
choice, however, the property of Corollary 14 does

6

Figure 5: A live but not recurrent net �3

not hold. In order to clarify this point, we com-
pare the concepts of asymmetric choice (AC), ex-
tended asymmetric choice (EAC), and a naive ex-

tension of asymmetric choice (NEAC). Note that
we naively extend the place-wise de�nition of asym-
metric choice in the following. Similarly, we could
also naively extend the transition-wise de�nition
of asymmetric choice (see beginning of Sect. 4 and
[2])|with the same e�ect.

De�nition 15 Let N = (P; T; F) be a net.

1. Net N is an asymmetric choice (AC) net if
for each two places p1; p2 2 P with p1

� \

p2
� 6= ; we have p1

� � p2
� or p2

� � p1
�.

2. Net N is a naively extended asymmetric
choice (NEAC) net if for each two places

p1; p2 2 P with p1
� \ p2

� 6= ; we have

p1
� n �p1 � p2

� or p2
� n �p2 � p1

�.

It can be proven [2] that AC implies EAC and
that EAC implies NEAC. The reverse directions of
these implications, however, do not hold. Fig. 6
shows a system net �4 which is NEAC but not
EAC because ;t has a cycle. Furthermore, this
example shows that Corollary 14 does not apply
to NEAC nets: �4 is live but not recurrent

3.

5 Conclusion

We have shown that for extended asymmetric choice

nets liveness implies recurrence. The proof uses
techniques which are similar to proof techniques
used in classical free choice theory [9]. In partic-
ular, the concept of scapegoats and the relation
to recurrence is analog to the concept of place-

liveness and liveness in free choice theory. Scape-
goats and recurrence are just a re-formulation of

3Think of the following in�nite sequence of transition

occurrences: t1 (t2 t
0

1
t3 t

0

2
t1 t

0

3
)! . The corresponding com-

putation is fair but t does not occur.

t2

t3

t1

p2

p3
p1

p2’

p1’

t1’

p3’

t3’

t2’

t

Figure 6: A live but not recurrent NEAC net �4

place-liveness and liveness based on computations
rather than on the reachability graph. On a more
abstract level, we have converted a branching-time
result from free choice theory to a linear-time re-
sult. We believe, that many other concepts and
results from free choice theory can be converted
from branching-time to linear-time when fairness
is assumed.

Though classical free choice theory mainly deals
with branching-time properties, there has been
some work which is similar to our work. Thiagara-
jan and Voss [15] show that for free choice nets
global fairness can be implemented by local fair-

ness. Global fairness is equivalent to recurrence.
Local fairness, however, is di�erent form our con-
cept of fairness. In particular, the result from [15]
does not apply to asymmetric choice nets.
Best [6] introduces a hierarchy of fairness con-

cepts, which are called k-fairness for each k 2 IN
and 1-fairness. Basically, a computation � is not
k-fair with respect to a transition t if there are
in�nitely many positions in � from which t could
be enabled within k steps, but t does not occur
in�nitely often in �. So, 0-fairness is equivalent
to our concept of fairness. Best shows that 1-
fairness is equivalent to k-fairness for all k. More-
over, he shows that the fairness hierarchy collapses
for asymmetric choice nets. The bridge between
Best's and our results is the following: We con-
jecture that liveness of a net is equivalent to the

7

requirement that all1-fair computations of a net
are recurrent. With this conjecture, Corollary 14
follows from Best's theorems. But, this conjecture
is neither mentioned in [6] nor proven in our pa-
per. We preferred to give a direct proof of our
theorems.
Best's concept of 1-fairness has also been in-

troduced as hyperfairness in [3] and [12]. We be-
lieve that hyperfairness is an important concept
in the context of fault-tolerant distributed com-

puting. Still, hyperfairness should be clearly dis-
tinguished from fairness since there are no general
schedulers for hyperfairness (cf. [3]). A detailed
discussion of this issue, however, is left to a forth-
coming paper.

Acknowledgments Wewould like to thank J�org
Desel, Wolfgang Reisig, Hagen V�olzer, and one
anonymous referee for their helpful comments on
preliminary versions of this paper. Furthermore,
we gratefully acknowledge the discussions of the
`Ka�eerunde' at Humboldt University.

References

1. Wil van der Aalst. The application of Petri nets to

work
ow management. The Journal of Circuits,

Systems and Computers, 8(1):21{66, 1998.

2. Wil van der Aalst, Ekkart Kindler, and J�org De-

sel. Beyond asymmetric choice: A note on some

extensions. Petri Net Newsletter, 55:3{13, Octo-

ber 1998.

3. Paul C. Attie, Nissim Francez, and Orna Grum-

berg. Fairness and hyperfairness in multi-party

interactions. Distributed Computing, 6:245{254,

1993.

4. Krysztof R. Apt, Nissim Francez, and Shmuel

Katz. Appraising fairness in languages for dis-

tributed programming. Distributed Computing,

2:226{241, 1988.

5. Bowen Alpern and Fred B. Schneider. De�ning

liveness. Information Processing Letters, 21:181{

185, October 1985.

6. Eike Best. Fairness and conspiracies. Information

Processing Letters, 18:215{220, 1984.

7. Eike Best. Structure theory of Petri nets: the

free choice hiatus. In W. Brauer, W. Reisig, and

G. Rozenberg, editors, Petri Nets: Central Models

and Their Properties, LNCS 254, pages 168{205.

Springer-Verlag, 1987.

8. E. Best and M.W. Shields. Some equivalence re-

sults for free choice nets and simple nets, and

on the periodicity of live free choice nets. In

G. Ausiello and M. Protasi, editors, Proceedings of

CAAP '83, LNCS 159, pages 141{154. Springer-

Verlag, 1983.

9. J�org Desel and Javier Esparza. Free Choice Petri

Nets. Cambridge University Press, 1995.

10. Nissim Francez. Fairness. Texts and Monographs

in Computer Science. Springer-Verlag, 1986.

11. Leslie Lamport. Proving the correctness of mul-

tiprocess programs. IEEE Transactions on Soft-

ware Engineering, SE-3(2):125{143, March 1977.

12. Leslie Lamport. Fairness and hyperfairness. SRC

Research Report 152, Digital, Systems Research

Center, March 1998.

13. James L. Peterson. Petri Net Theory And The

Modeling of Systems. Prentice-Hall, 1981.

14. Wolfgang Reisig. Petri Nets, EATCS Monographs

on Theoretical Computer Science. Springer-

Verlag, 1985.

15. P.S. Thiagarajan and K. Voss. A fresh look at free

choice nets. Information and Control, 61(2):85{

113, May 1984.

8

