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Abstract

This paper proposes a recommendation system that supports process participants in taking risk-informed

decisions, with the goal of reducing risks that may arise during process execution. Risk reduction involves

decreasing the likelihood and severity of a process fault from occurring. Given a business process exposed

to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a

process participant needs to provide input to the process, e.g. by selecting the next task to execute or by

filling out a form, we suggest the participant the action to perform which minimizes the predicted process

risk. Risks are predicted by traversing decision trees generated from the logs of past process executions,

which consider process data, involved resources, task durations and other information elements like task

frequencies. When applied in the context of multiple process instances running concurrently, a second

technique is employed that uses integer linear programming to compute the optimal assignment of resources

to tasks to be performed, in order to deal with the interplay between risks relative to different instances. The

recommendation system has been implemented as a set of components on top of the YAWL BPM system

and its effectiveness has been evaluated using a real-life scenario, in collaboration with risk analysts of a

large insurance company. The results, based on a simulation of the real-life scenario and its comparison with

the event data provided by the company, show that the process instances executed concurrently complete

with significantly fewer faults and with lower fault severities, when the recommendations provided by our

recommendation system are taken into account.

Keywords: business process management, risk management, risk prediction, job scheduling, work

distribution, YAWL.

1. Introduction

A process-related risk measures the likelihood and the severity that a negative outcome, also called fault,

will impact on the process objectives [1]. Failing to address process-related risks can result in substan-
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tial financial and reputational consequences, potentially threatening an organization’s existence. Take for

example the case of Société Générale, which went bankrupt after a e 4.9B loss due to fraud.

Legislative initiatives like Basel II [2] and the Sarbanes-Oxley Act1 reflect the need to better manage

business process risks. In line with these initiatives, organizations have started to incorporate process risks

as a distinct view in their operational management, with the aim to effectively control such risks. However,

to date there is little guidance as to how this can be concretely achieved.

As part of an end-to-end approach for risk-aware Business Process Management (BPM), in [3, 4, 5] we

proposed several techniques to model risks in executable business process models, detect them as early as

possible during process execution, and support process administrators in mitigating these risks by applying

changes to the running process instances. However, the limitation of these efforts is that risks are not

prevented, but rather acted upon when their likelihood exceeds a tolerance threshold. For example, a

mitigation action may entail skipping some tasks when the process instance is very likely to exceed the defined

maximum cycle time. While effective, mitigation comes at the cost of modifying the process instance, often

by skipping tasks or rolling back previously-executed tasks, which may not always be acceptable. Moreover,

we have shown that it is not always possible to mitigate all process risks [4]. For example, rolling back a

task for the sake of mitigating a risk of cost overrun, may not allow the full recovery of the costs incurred

in the execution of that task.

To address these limitations we propose a recommendation system that supports process participants

in taking risk-informed decisions, with the aim to reduce process risks preemptively. A process participant

takes a decision whenever they have to choose the next task to execute out of those assigned to them at

a given process state, or via the data they enter in a user form. This input from the participant may

influence the risk of a process fault to occur. For each such input, the technique returns a risk prediction in

terms of the likelihood and severity that a fault will occur if the process instance is carried out using that

input. This prediction is obtained via decision trees which are trained using historical process data such

as process variables, resources, task durations and frequencies. The historical data of a process is observed

using decision trees which are built from the execution logs of the process, as recorded by the IT systems of

an organization.

This way, the participant can take a risk-informed decision as to which task to execute next, or can

learn the predicted risk of submitting a form with particular data. If the instance is subjected to multiple

potential faults, the predictor can return the weighted sum of all fault likelihoods and severities, as well as

the individual figures for each fault. The weight of each fault can be determined based on the severity of

the fault’s impact on the process objectives.

The above technique only provides “local” risk predictions, i.e. predictions relative to a specific process

1www.gpo.gov/fdsys/pkg/PLAW-107publ204
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instance. In reality, however, multiple instances of (different) business processes may be executed at any

time. Thus, we need to find a risk prediction for a specific process instance that does not affect the prediction

for other instances. The interplay between risks relative to different instances can be caused by the sharing

of the same pool of process participants: two instances may require the same scarce resource. In this setting,

a sub-optimal distribution of process participants to the set of tasks to be executed, may result in a risk

increase (e.g. overtime or cost overrun risk). To solve this problem, we equipped our recommendation system

with a second technique, based on integer linear programming, which takes input from the risk prediction

technique, to find an optimal distribution of process participants to tasks. By optimal distribution we mean

one that minimizes the overall execution time (i.e. the time taken to complete all running instances) while

minimizing the overall level of risk. This distribution is used by the recommendation system to suggest

process participants the next task to perform.

We operationalized our recommendation system on top of the YAWL BPM system by extending an

existing YAWL plug-in and by implementing two new custom YAWL services. This implementation prompts

process participants with risk predictions upon filling out a form or for each task that can be executed. We

then evaluated the effectiveness of our recommendation system by conducting experiments using a claims

handling process in use at a large insurance company. With input from a team of risk analysts from the

company, this process has been extensively simulated on the basis of a log recording one year of completed

instances of this process. The recommendations provided by our recommendation system significantly

reduced the number and severity of faults in a simulation of a real life scenario, compared to the process

executed by the company as reflected by the event data. Further, the results show that it is feasible to

predict risks across multiple process instances without impacting on the execution performance of the BPM

system.

The remainder of this paper is organized as follows. Section 2 discusses related work. Section 3 contex-

tualizes the recommendation system within our approach for managing process-related risks, while Section 4

presents the YAWL language as part of a running example. Next, Section 5 defines the notions of event logs

and faults which are required to explain our techniques. Section 6 describes the technique for predicting

risks in a single process instance while Section 7 extends this technique to the realm of multiple process

instances running concurrently. Section 8 and Section 9 discuss the implementation and evaluation of the

recommendation system, respectively. Finally, Section 10 concludes the paper. The Appendix provides the

formal definition of a YAWL specification, the algorithms to generate a prediction function, and technical

proofs of two lemmas presented in Section 7.
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2. Related Work

The approach presented in this paper is related to work on risk prediction, job scheduling, operational

support and work-item distribution for business processes. In this section we review the state of the art in

these fields to motivate the need for our approach.

2.1. Risk Prediction

Various risk analysis methods such as OCTAVE [6], CRAMM [7] and CORAS [8] have been defined which

provide elements of risk-aware process management. Meantime, academics have recognized the importance of

managing process-related risks. However, risk analysis methods only provide guidelines for the identification

of risks and their mitigation, while academic efforts mostly focus on risk-aware BPM methodologies in

general, rather than on concrete approaches for risk prediction [9].

An exception is made by the works of Pika et al. [10] and Suriadi et al. [11]. Pika et al. propose

an approach for predicting overtime risks based on statistical analysis. They identify five process risk

indicators whereby the occurrence of these indicators in a trace indicates the possibility of a delay. Suriadi

et al. propose an approach for Root Cause Analysis based on classification algorithms. After enriching a log

with information like workload, occurrence of delay, and involvement of resources, they use decision trees

to identify the causes of overtime faults. The cause of a fault is obtained as a disjunction of conjunctions

of the enriching information. Despite looking at the same problem from different prospectives, these two

approaches result to be quite similar. These two approaches suffer from the limitation of not considering

the data prospective. Further, they limit their scope to the identification of indicators of risks or of causes

of faults to support overtime risks only.

In previous work, we presented a wider approach which aims to bridge the gap between risk and process

management. This approach consists of two techniques. The first one [3, 5] allows process modelers to

specify process-related faults and related risks on top of (executable) process models, and to detect them

at run-time when their risk likelihood exceeds a tolerance threshold. Risks are specified as conditions over

control-flow, resources and data aspects of the process model. The second technique [4] builds on top of the

first one to cover risk mitigation. As soon as one or more risks are detected which are no longer tolerable,

the technique proposes a set of alternative mitigation actions that can be applied by process administrators.

A mitigation action is a sequence of controlled changes on a process instance affected by risks, which takes

into account a snapshot of the process resources and data, and the current status of the system in which

the process is executed.

For a comprehensive review and comparative analysis of work at the intersection of risk management

and BPM, we refer to [9].
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2.2. Job Scheduling

The problem of distributing work items to resources in business process execution shares several simi-

larities with the job-shop scheduling [12, 13, 14, 15]. Job-shop scheduling concerns M jobs that needs to be

assigned to a N machines, with N < M , while trying to minimize the make-span, i.e. the total length of the

schedule. Jobs may have constraints, e.g. job i needs to finish before job j can be started, certain jobs can

only be performed by given machines.

Unfortunately, these approaches are intended for different settings and cannot be specialized for risk-

informed work-item assignment. To our knowledge, techniques of job-shop scheduling are unaware of the

concept of cases or process instances, since typically jobs are not associated with a case.

The concept of case is crucial when dealing with process-aware information systems. Work items are

executed within process instances and many process instances can be running at the same time, like so

many work items may be enabled for execution at the same time. Different instances may be worked on

by the same resources and, hence, the allocation within a instances may affect the performance of other

instances. Without considering the instances in which work items are executed, an important aspect is not

considered and, hence, the overall allocation is not really optimized. Moreover, applying job-scheduling for

work-item distribution, such work items will be distributed with a push method, i.e. a work item is pushed

to a single qualifying resource. This is also related to the fact the jobs are usually assumed to be executed

by machines, whereas, in process-aware information systems, work items are normally being executed by

human resources. Work items may also be executed by automatic software services, but this is not the

situation in the majority of setting. In [16], it is shown that push strategies already perform very poorly

when the resource work-load is moderately high. Therefore, work items ought to be distributed with a pull

mechanism, i.e. enabled work items are put in a common pool and offered to qualifying resources, which

can freely pick any of them. As a matter of fact, a pull metho is far the most common used in current-day

process-aware information systems.

2.3. Operational Support

The work proposed in this paper is also related to body of work that is concerned with devising frame-

works and architectures to provide operational support for business processes as a service. For instance,

Nakatumba et al. [17] propose a service for operational support which generalizes what is proposed in [18].

This service is implemented in ProM, a pluggable framework to implement process-aware techniques in a

standardized environment. On its own, the service does not implement recommendation algorithms but pro-

vides an architecture where such algorithms can be easily plugged in. For instance, the prediction technique

in [19] is an example of algorithm plugged into this architecture (more details on this work are provided

in the next subsection). Another example is the work in [20], which concerns a recommendation algorithm
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Table 1: Comparison of different approaches for operational support in Process-aware Information Systems

Approach Weight Process Perspectives Optimal Objective Assignment

Computation Distribution Method

Kim et al. [21] Dynamic Control-flow, Resource - Time, Cost -

Yang [22] Static - Instance level Customizable PUSH

Kumar et al. [23] Dynamic Control-flow, Resource Instance level Cooperation
a

PUSH

Kumar et al. [16] Static - Instance level Suitability, Urgency, Workload PUSH/PULL
b

Huang et al. [24] Dynamic Control-flow, Resource, Data, Time Instance level Customizable PUSH

van der Aalst et al. [25] Dynamic Control-flow - Time -

Folino et al. [26] Dynamic Control-flow, Resource, Data, Time - Time -

van der Spoel et al. [27] Dynamic Control-flow - Cost -

Cabanillas et al. [28] Static Control-flow, Resource Process level User preference
c

PUSH

Barba et al. [29] Static Control-flow, Resource Instance level Time PULL

Maggi et al. [19] Dynamic Control-flow, Resource, Data - Customizable LTL formulas
d

-

a
Work items are distributed to maximize the quality of the cooperation among resources. This approach assumes that some resources can cooperate

better than others when working on a process instance.

b
Resources declare their interest in picking some work items for performance. The approach assigns each work item to the interested resource that

guarantees the better distribution.

c
At design time, users provide preferences for work items. At run time, the system allocates work items to resources to maximize such preferences.

d
The expressiveness power of business goals in the form of a single LTL formula is lower than what our approach allows for. In principle, multiple

LTL formulas can be provided though one has to balance contrasting recommendations for the satisfiability of such formulas.

based on monitoring the satisfaction of business constraints. This work does not make any form of prediction

nor automatic optimal work-items’ distribution.

As a matter of fact, there is no conceptual or technical limitation that would prevent our approach from

being implemented as a plug-in for an operational-support service.

2.4. Work-item distribution

Our work on work-item distribution to minimize risks shares commonalities with Operational support

and Decision Support Systems (DSSs). We aim to provide recommendations to process participants to take

risk-informed decisions. Our work fully embraces the aim of these systems to improve decision making

within work systems [30], by providing an extension to existing process-aware information systems.

Mainstream commercial and open-source BPM systems do not feature work-item prioritization. They

only allow one to indicate a static priority for tasks (e.g. low, medium or high priority), independently of the

characteristics of the process instance and of the qualified resources. Similarly, the YAWL system, which is

the one we extended, does not provide means for operational support, besides the extension proposed by de

Leoni et al. [31], which, however, defines very basic metrics only.

Several approaches have been proposed in the literature. Table 1 summarizes and compares the most

significant ones, using different criteria:

Weight Computation. In order to perform an optimal distribution, every work item needs to be assigned

a weight, which may also depend on the resources that is going to perform it or on the moment in

time when such work item is performed. These weights can be defined either statically by analysts or

dynamically computed on the basis of the past history recorded in an event log.
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Process Perspective. When weights are dynamically defined, they may be computed considering different

perspectives: control-flow, resources, data and time.

Optimal Assignment. The optimization of work-item distribution can be computed by considering single

instances in isolation or trying to optimize the overall performances of all running instances.

Objective. The work-item distribution can be optimized with respect to several factors, such as minimizing

the cost, time or maximizing the cooperation. Only few approaches allow one to customize the objective

function to minimize/maximize.

Assignment Method. Once an optimal distribution is computed, each work item can be pushed to a single

qualified resource (push method), or it can be put in a common pool and simply recommended to a

given resource within this pool, that can then pull the work item (pull method). Note that in this last

method different resources within the same pool other than the one the work item was recommended

to, may still execute the work item. method

Among the available approaches only the one by Cabanillas et al. [28] computes the optimal allocation

of resources at the process level. Specifically, this work proposes a priority-based resource allocation, where

resources are ranked according to preferences defined using the Semantic Ontology of User Preferences [32].

Once a work item needs to be executed it is pushed to the resource ranking the highest on the basis of the

expressed preferences.

Among the approaches providing optimal distribution only two approaches support a pull assignment.

The approach of Barba et al. [29] optimizes process performances, using constraint programming (planning

and scheduling problem) where constrains are defined considering control-flow and resources only. On the

other hand, the approach of Kumar et al. [16] aims to obtain the right balance between execution time

and quality. This approach uses work allocation metrics and various quality attributes to find the optimal

allocation strategy keeping into consideration the preference of resources for certain work items.

The approach of Yang [22], similar to all the approaches discussed so far, assigns a static weight to

each work item. This approach optimizes process execution time and total execution cost according to

user preferences. Preferences are defined using a multi-attribute utility function that is optimized using

the particle swarm optimization algorithm. A second approach by Kumar et al. [23], and the approach of

Huang et al. [24], conclude the list of approaches providing optimal distribution of work items. Kumar et

al. [23] propose an approach for optimal resource cooperation using integer linear programming to identify

the group of resources with the best synergy to perform a process instance while Huang et al. [24] propose

to use task operation models.

There are also approaches that focus on prediction only. Van der Aalst et al. [25] propose an approach

to predict total execution time and remaining execution time. The approach uses logs to generate transition
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systems annotated with timing information. Transition systems are employed to provide predictions using

similarly completed executions as a reference. Folino et al. [26] use a combination of clustering techniques

and transition systems. Using clustering they identify process variants in a log and for each cluster they

generate a transition system. When a prediction is required, using decision trees the authors identify which

cluster the current instance belongs to, and then use the associated transition system to provide a prediction.

Van der Spoel et al. [27] propose an approach to predict the cash flow of a process. This approach uses

a combination of process flow prediction, i.e. predicting how the process execution will proceed, and cost

prediction, i.e. predicting how much the execution of a predicted activity will cost. Kim et al. [21] propose

the use of decision trees to minimize completion time or total labor cost, where the resource with the lowest

predicted completion time or total labor cost is suggested.

Finally, Maggi et al. [19] propose a predictive approach to prevent process constraints violation. Users

can define linear temporal logic constraints at any point in time during the execution of a process. Then,

when a prediction is required, the approach retrieves all traces having a similar prefix of the current instance.

These instances are then used to generate a decision tree that is used to predict how the process execution

should proceed to satisfy the predefined constraints.

There are also approaches (e.g.,[33, 34, 35]) that mine association rules from event logs to define the

preferable distribution of work items. However, in the end a resource manager needs to manually assign

work items to resources. Manual distributions are clearly inefficient because they are both unlikely to be

optimal and some work items probably remain unassigned for a certain amount of time until the manager

takes charge of their assignment. Moreover, the mined rules consider process instances in isolation.

On the basis of the insights emerging from Table 1, we propose a technique that satisfies the following

requirements: it should i) use information form different process perspectives to provide predictions; ii)

use such predictions to compute an optimal distribution that is not local to individual process instances

(instance level) but global across all running instances, which can be from different processes (process level);

iii) use user-defined faults as objective functions; iv) leave process participants the final choice of whether

to execute a recommended work item (pull assignment method).

This paper is an extended version of the conference paper in [36]. With respect to the conference paper,

the main extension relates to the provision of support for multi-instance risk prediction. This is achieved by

combining our existing technique for risk estimation [36], with a technique for identifying the best distribution

of resources to work items of concurrent process instances, using integer linear programming. This technique

has been implemented via a new YAWL custom service, the Multi Instance Prediction Service. Further, the

evaluation has been completely redone using a real-life business process in use at a large insurance company.

With input from a team of risk analysts from the company, this process has been extensively simulated

on the basis of an event log recording one year of completed instances of this process, to show that it is

feasible to predict risks across multiple process instances without impacting on performance, and that the
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recommendations provided by our recommendation system significantly reduce the number and severity of

faults, for all instances simulated.

3. Risk Framework

In this section we elaborate on the type of process-related risks that we can address and on the basis of

this, we illustrate an overarching approach for managing process-related risks within which the contribution

of this paper fits.

3.1. Process-related Risk

In this paper we focus on process-related risks that can be identified within the boundaries of a business

process. In particular, we only consider process-related risks which depend on information available during

process execution, e.g. task input and output data, allocated resources, time performance. This implies

that process-related risks depending on information outside the process boundaries, i.e. the process context

(e.g. market fluctuations or weather forecast), cannot be detected. For this reason organizational risks in

general are not addressed, such as those related to partners going bankrupt, or price of the fuel going up.

Moreover, since we require process execution information we only consider executable business processes.

These processes should either be executed by a BPMS on the basis of a process model or be supported by

an information system that produces event logs [37], i.e. logs of process-related information which we can

use to reconstruct the process instances being executed by aggregating events, such that each instance can

be unequivocally identified.

3.2. Risk Approach

The technique proposed in this paper can be seen as part of a wider approach for the management of

process-related risks. This approach aims to enrich the four phases of the traditional BPM lifecycle (Process

Design, Implementation, Enactment and Diagnosis) [38] with elements of risk management (cf. Figure 1).
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Figure 1: Risk-aware BPM lifecycle.

Before the Process Design phase,

we define an initial phase, namely

Risk Identification, where existing

techniques for risk analysis such as

Fault Tree Analysis [39] or Root

Cause Analysis [40] can be used to

identify possible risks of faults that

may eventuate during the execution

of a business process. Faults and

their risks identified in this phase are
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mapped onto specific aspects of the process model during the Process Design phase, obtaining a risk-

annotated process model. In the Process Implementation phase, a more detailed mapping is conducted

linking each risk and fault to specific aspects of the process model, such as the content of data variables and

resource states. In the Process Enactment phase such a risk-annotated process model can be executed to

ensure risk-aware process execution. Finally, in the Process Diagnosis phase, information produced during

Process Enactment is used in combination with historical data to monitor the occurrence of risks and faults

as process instances are executed. This monitoring may trigger mitigation actions in order to (partially)

recover the process instance from a fault.

The technique presented in this paper fits in this latter phase, since it aims to provide run-time support

in terms of risk prediction, by combining information on risks and faults with historical data. The techniques

developed to support the other phases of our risk-aware BPM approach fall outside the scope of this paper,

but have beed addressed in our earlier work [3, 5, 4].

4. YAWL Specification and Running Example

We developed our technique on top of the YAWL language [41] for several reasons. First, this language is

very expressive as it provides comprehensive support for the workflow patterns2, patterns covering all main

process prospective such as control-flow, data-flow, resources, and exceptions. Further, it is an executable

language supported by an open-source BPM system, namely the YAWL System. This system is based on a

service-oriented architecture, which facilitates the seamless addition of new services, like the ones developed

as part of this work. Further, the open-source license facilitates its distribution among academics and

practitioners (the system has been downloaded over 100,000 times since its first inception in the open-source

community). However the elements of the YAWL language used by our technique are common to all process

modeling languages, so our technique can in principle be applied to other executable process modeling

languages such as BPMN 2.0.

In this section we introduce the basic ingredients of the YAWL language and present them in the context

of a running example. This example, whose YAWL model is shown in Figure 2, captures the Carrier

Appointment subprocess of an Order Fulfillment process, which is subjected to several risks. This process is

inspired by the VICS industry standard for logistics [42], a standard endorsed by 100+ companies worldwide.

The Carrier Appointment subprocess (see Figure 2) starts when a Purchase Order Confirmation is

received. A Shipment Planner then estimates the trailer usage and prepares a route guide. Once ready, a

Supply Officer prepares a quote for the transportation indicating the cost of the shipment, the number of

packages and the total freight volume.

2www.workflowpatterns.com
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Figure 2: The carrier appointment subprocess of an order fulfillment process, shown in YAWL.

If the total volume is over 10,000 lbs a full trackload is required. In this case two different Client Liaisons

will try to arrange a pickup appointment and a delivery appointment. Before these two tasks are performed,

a Senior Supply Officer may create a Shipment Information document. In case the Shipment Information

document is prepared before the appointments are arranged, a Warehouse Officer will arrange a pickup

appointment and a Supply Officer will arrange a delivery appointment, with the possibility of modifying

these appointments until a Warehouse Admin Officer produces a Shipment Notice, after which the freight

will be picked up from the Warehouse.

If the total volume is up to 10,000 lbs and there is more than one package, a Warehouse Officer arranges

the pickup appointment while a Client Liaison may arrange the delivery appointment. Afterwards, a Senior

Supply Officer creates a Bill of Lading, a document similar to the Shipment Information. If a delivery

appointment is missing a Supply Officer takes care of it, after which the rest of the process is the same as

for the full trackload option.

Finally, if a single package is to be shipped, a Supply Officer has to arrange a pickup appointment, a

delivery appointment, and create a Carrier Manifest, after which a Warehouse Admin Officer can produce

a Shipment Notice.

In YAWL, a process model is encoded via a YAWL specification. A specification is made up of one or

more nets (each modeling a subprocess), organized hierarchically in a root net and zero or more subnets.

Each net is defined as a set of conditions (represented as circles), an input condition, an output condition,

and a set of tasks (represented as boxes). Tasks are connected to conditions via flow relations (represented

as arcs). In YAWL trivial conditions, i.e. those having a single incoming flow and a single outgoing flow, can

be hidden. To simplify the discussion in the paper, without loss of generality, we assume a strict alternation
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between tasks and conditions.

Conditions denote states of execution, for example the state before executing a task or that resulting

from its execution. Conditions can also be used for routing purposes when they have more than one incoming

and/or outgoing flow relation. In particular, a condition followed by multiple tasks, like condition FTL in

Figure 2, represents a deferred choice, i.e. a choice which is not determined by some process data, but rather

by the first process participant that is going to start one of the outgoing tasks of this condition. In the

example, the deferred choice is between tasks Arrange Delivery Appointment, Arrange Pickup Appointment

and Create Shipment Information Document, each assigned to a different process participant. When the

choice is based on data, this is captured in YAWL by an XOR-split, if only one outgoing arc can be taken

like after executing Prepare Transportation Quote. If one or more outgoing arcs can be taken it is captured

by an OR-split like after executing Create Shipment Information Document. Similarly, we have XOR-joins

and OR-joing that merge multiple incoming arcs in to one. If among all the incoming arcs only one is active

we use a XOR-join like before executing Produce Shipment Notice, while if among all incoming arcs one or

more arcs are active we use a OR-join like before executing task Create Bill of Lading. Finally, an AND-split

is used when all outgoing arcs need to be taken, like after Receive Confirmation Order, while an AND-join

is used to synchronize parallel arcs like before executing Prepare Transportation Quote. Splits and joins are

represented as decorators on the task’s box.

Tasks are considered to be descriptions of a piece of work that forms part of the overall process. Thus,

control-flow, data, and resourcing specifications are all defined with reference to tasks at design time. At

runtime, each task acts as a template for the instantiation of one or more work items. A work item

w = (ta, id) is the run-time instantiation of a task ta for a process instance id.

A new process instance id is started and initialized by placing a token in the input condition of a YAWL

net. The token represents the thread of control and flows through the net as work items are executed. The

execution of a work item (ta, id) consumes one token from some of ta’s input conditions (depending on the

task’s type of join) and produces one token in some of ta’s output conditions (depending on the task’s type

of split). In YAWL, work items are performed by either process participants (user tasks) or software services

(automated tasks). An example of an automated task is Receive Confirmation Order in Figure 2, while an

example of user task is Estimate Trailer Usage.

Finally, the preset •t of a task t is the set of its input conditions. Similarly, the postset t• of a task t is

the set of its output conditions. The preset and postset of a condition can be defined analogously.

The notions presented above are formalized in the Appendix.

5. Event Logs and Fault Severity

The execution of completed and running process instances can be stored in an event log:
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Definition 1 (Event Log). Let T and V be a set of tasks and variables, respectively. Let U be the set of

values that can be assigned to variables. Let R be the set of resources that are potentially involved during the

execution. Let D be the universe of timestamps. Let Φ be the set of all partial functions V 6→ U that define

an assignment of values to a sub set of variables in V . An event log L is a multiset of traces where each

trace (a.k.a. process instance) is a sequence of events of the form (t, r, d, φ), where t ∈ T is a task, r ∈ R is

the resource performing t, d ∈ N is the event’s timestamp, φ ∈ Φ is an assignment of values to a sub set of

variables in V . In other words, L ∈ B((T ×R× N× Φ)∗).3

Each completed trace of the event log is assigned a fault’s severity between 0 and 1, where 0 identifies

an execution with no fault and 1 identifies a fault with the highest severity. To model this, a risk analyst

needs to provide a fault function f . The set of all such functions is:

F = (T ×R× N× Φ)∗ → [0, 1]

In many settings, processes are associated with different faults. These faults can be combined together by

assigning different weights. Let us suppose to have n faults {f1, . . . , fn} ⊂ F , we can have a composite fault :

f̂(σ) =

∑
1≤i≤n wifi(σ)∑

1≤i≤n wi
∈ F

where wi is the weight of the fault fi, with 1 ≤ i ≤ n.

A complete trace σ of our Carrier Appointment process, can be affected by three faults:

Over-time fault. This fault is linked to a Service Level Agreement (SLA) which establishes that the

process must terminate within a predefined Maximum Cycle Time dmct (e.g. 21 hours), in order to

avoid pecuniary penalties that will incur as consequence of a violation of the SLA. The severity of the

fault grows with the amount of time that the process execution exceeds dmct. Let dσ be the duration

of the process instance, i.e. difference between the timestamps of the last and first event of σ. Let dmax

be the maximum duration among all process instances already completed (including σ). The severity

of an overtime fault is measured as follows:

ftime(σ) = max

(
dσ − dmct

max(dmax − dmct, 1)
, 0

)
Reputation-loss fault. During the execution of the process when a “pickup appointment” or a “delivery

appointment” is arranged, errors with location or time of the appointment may occur due to a mis-

understanding between the company’s employee and the customer. In order to keep the reputation

high, the company wants to avoid these misunderstandings and having to call the customer again.

The severity of this fault is:

frep(σ) =



0 if tasks Modify Delivery Appointment and Modify Pick-up Appointment

do not appear in σ

1 if both Modify Delivery Appointment and Modify Pick-up Appointment

appear in σ

0.5 otherwise

3B(X) is the set of all multisets over X
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Cost Overrun fault. During the execution of this process, several activities need to be executed, and each

of these has an execution cost associated with it. Since the profit of the company decreases with a

higher shipping cost of a good (or goods), the company wants to reduce them. Of course, there is a

profit cost beyond which the company will not make any profit. The severity increases as the cost

goes beyond the profit cost. Let cmax be the greatest cost associated with any process instance that

has already been completed (including σ). Let cσ be the cost of σ and cmin be the profit cost. The

severity of a cost fault is:

fcost(σ) = min

(
max(cσ − cmin, 0)

max(cmax − cmin, 1)
, 1

)
Moreover, we assume that the company considers Reputation-loss Fault to be less significant than the other

faults. The company could decide to define a composite fault where the reputation weights half:

fcar(σ) =
(
fcost(σ) + ftime(σ) + 0.5 · frep(σ)

)
/2.5

The risk is the product of the estimation of the fault’s severity at the end of the process-instance execution

and the accuracy of such an estimation.

When a process instance is being executed, many factors may influence the risk and, ultimately, the

severity of a possible fault. For instance, a specific order in which a certain set of tasks is performed may

increase or decrease the risk, compared to any other. Nonetheless, it is opportune to leave freedom to

resources to decide the order of their preference. Indeed, there may be factors outside the system that let

resources opt for a specific order. For similar reasons, when there are alternative tasks that are all enabled for

execution, a risk-aware decision support may highlight those tasks whose execution yields less risk, anyway

leaving the final decision up to the resource.

6. Risk Estimation

We aim to provide work-items’ recommendation to minimize the risk corresponding to the highest product

of fault severity and likelihood. For this purpose, it is necessary to predict the most likely fault severity

associated with continuing the execution of a process instance for each enabled task. The problem of

providing such a prediction can be translated into the problem of finding the best estimator of a function.

Definition 2 (Function estimator). Let X1, . . . , Xn be n finite or infinite domains. Let Y be a finite

domain. Let f : X1 × X2 × . . . × Xn → Y . An estimator of function f is a function ψf : Y →

2X1×X2×...×Xn×[0,1], such that, for each y ∈ Y , ψf (y) returns a set of tuples (x1, . . . , xn, l) where (x1, . . . , xn) ∈

(X1 ×X2 × . . . ×Xn) is an input domain tuple for which the expected output is y and l is the accuracy of

such an estimation. Moreover, (x1, . . . , xn, l1) ∈ ψf (y1) ∧ (x1, . . . , xn, l2) ∈ ψf (y2)⇒ l1 = l2 ∧ y1 = y2.

The function estimator is trained through a set of observation instances. An observation instance is a

pair (−→x , y) where −→x ∈ X1 ×X2 × . . .×Xn is the observed input and y ∈ Y is the observed output.
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The function estimator can easily be built using a number of machine learning techniques. In this paper,

we employ the C4.5 algorithm to build decision trees. We decided to use decision tree classification, and

specifically the C4.5 algorithm, for the following reasons: i) it can handle both continuous and discrete

(categorical) attributes; ii) it can handle training data with missing attribute values; iii) it can build models

that can be easily interpreted; iv) it can deal with noise; v) it automatically finds a subset of the features

that are relevant to the classification (i.e. no need for feature selection); and vi) it automatically discretizes

continuous features. This last function helps us significantly simplify the problem of finding an optimal

distribution of work items to resources, as we will discuss in Section 7.

Decision trees classify instances by sorting them down in a tree from the root to some leaf node. Each

non-leaf node specifies a test of some attribute x1, . . . , xn and each branch descending from that node

corresponds to a range of possible values for this attribute. In general, a decision tree represents a disjunction

of conjunctions of expressions: each path from the tree root to a leaf corresponds to an expression that is,

in fact, a conjunction of attribute tests. Each leaf node is assigned one of the possible output values: if an

expression e is associated with a path to a leaf node y, every tuple −→x ∈ X1 ×X2 × . . .×Xn satisfying e is

expected to return y as output.

We link the accuracy of a prediction for ψf (y) to the quality of e as classifying expression. Let I be

the set of observation instances used to construct the decision tree. Let Ie = {(−→x , y) ∈ I | −→x satisfies e}

and Ie,y = {(−→x , y) ∈ Ie | y = y}. The accuracy is l = |Ie,y|/|Ie|; therefore, for all ((x1, . . . , xn), y) ∈

Ie, (x1, . . . , xn, l) ∈ ψf (y).

Figure 3 shows an example of a possible decision tree. It is the estimator ψfĉ of a function that returns

a value belonging to the set H containing the numbers between 0 and 1 with no more than 2 decimals. It is

obtained through a set of observation instances based on all data attributes generated during the execution

of the process. For example, having as data attributes a resource, a task, the cost of a good, and a process

instance’s elapsed time, we obtained the following function fĉ : Resource×Task×GoodCost×TimeElapsed →

H. For instance, let us consider the value y = 0.6. Analyzing the tree, the value is associated with two

expressions: e1 is (Resource = MichaelBrown ∧ Task = ArrangePickupAppointment) and e2 is (Resource 6=

MichaelBrown ∧ GoodCost < 3157 ∧ TimeElapsed < 30 ∧ Task = CreateShipmentInformationDocument).

Let us suppose that, among observation instances (Resource, Task , GoodCost , TimeElapsed , y) s.t. e1 or e2

evaluates to true, y = 0.6 occurs 60% or 80% of times, respectively. Therefore, ψfĉ(0.6) contains the tuples

(Resource, Task , GoodCost , TimeElapsed , 0.6) satisfying e1, along with tuples (Resource,Task , GoodCost ,

TimeElapsed , 0.8) satisfying e2. Regarding computational complexity, if decision trees are used, training

ψf with m observation instances is computed in quadratic time with respect to the dimension n (i.e. the

number of attributes) of the input tuple, specifically O(n2 ·m) [43].
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Figure 3: An example of decision tree used to build a

function estimator.

As mentioned before, it is necessary to predict the

most likely fault severity associated with continuing

the execution of a process instance with each task en-

abled for execution. Function estimators are used for

such a prediction.

Let N = (TN , CN , RN , VN , UN , canN ) be a YAWL

net. In order to provide accurate risks associated with

performing work items of a certain process instance,

it is important to incorporate the execution history

of that process instance into the analysis. In order

to avoid overfitting predictive functions the history

needs to be abstracted. Specifically, we abstract the

execution history as two functions: Cr : TN → R

denoting the last executor of each task and Ct : TN →

N denoting the number of times that each task has

been performed in the past. Pairs (cr, ct) ∈ Cr × Ct
are called contextual information. Given the execution trace of a (running) instance σ′ ∈ (TN×RN×N×Φ),

we introduce function getContextInformation(σ′) that returns the contextual information (cr, ct) that can be

constructed from σ′.

Let Φ be the set of all possible assignments of values to variables, i.e. the set of all partial functions

VN 6→ UN . Each condition c ∈ CN can be associated with a function fc : Φ× c• ×RN ×N×Cr ×Ct → H.

If fc(φ, t, r, n, cr, ct) = y, at the end of the execution of the process instance, the fault’s severity is going to

be y if the instance continues with resource r ∈ RN that performs task t ∈ c• at time n with contextual

information (cr, ct) when variables are assigned values as for function φ. Of course, this function is not

known but it needs to be estimated, based on the behavior observed in an event log L. Therefore, we need

to build am estimator ψfc for fc. Let us consider condition cFTL (see Figure 2), and the associated function

estimator ψfcFTL
. Let us suppose that the accuracy is 1, i.e. for each t ∈ cFTL

•, ψfcFTL
(t) always returns 1.

If the execution is such that there is a token in FTL, GoodCost < 3157, executing tasks Arrange

Pickup Appointment, Arrange Delivery Appointment are associated with a risk of 0.2 and 0.45, respectively.

Conversely, executing task Create Shipment Information Document is given a risk of either 0.6 or 0.7,

depending on the moment in which task Create Shipment Information Document is started. Therefore, it

is evident that it is less “risky” to execute Arrange Pickup Appointment.

The generation of function estimators is obtained as follows. For each process instance in the log and for

each event generated during the execution of each process instance, we retrieve context information, time

elapsed, and data variables produced. These three elements together constitute an observation instance.
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This observation instance is assigned to the decision point which precedes the activity generating the event.

Once all observation instances are generated, the observation instances associated with each decision point

are used to build the function estimator associated with the decision point, using, for example, decision

trees. In the Appendix we formalize this algorithm (see Algorithm 1).

In this section, we presented a technique to generate prediction functions. It is important to observe

that the number of risks that may eventuate during the execution of a process does not affect the prediction

algorithm, since we consider the combined risk level of all risks. Specifically, we do so by assigning a relative

weight to each risk. This weight system allows process administrators to fine tune the predictive function

on the basis of the relative importance of each risk.

7. Multi-Instance Work-Item Distribution

With the technique presented so far, each resource is given local risk advice as to what work item to

perform next, i.e. a resource is suggested to perform the work item with the lowest overall risk for that

combination of process instance and resource, without looking at other resources that may be assigned work

items within the same instance or in other instances running concurrently. Clearly, such a local work-item

distribution is not optimal, since work items have to compete for resources and this may not guarantee the

best allocation from a risk viewpoint. For example, let us consider two resources r1 and r2 and two work

items wa and wb such that the risk of r1 performing wa is 0.2, and the risk of r1 performing wb is 0.6,

while the risk of r2 performing wa is 0.1 and the risk of r2 performing wa is 0.4. Moreover for the company

executing these work items, it is equally important to minimize the eventuation of risks as well as the overall

execution time. If wa is assigned to r2 because locally this resource has the lowest risk, r1 will be forced to

perform wb leading to an overall risk of 0.7. Another option is to assign both work items to r2, yielding an

overall risk of 0.5. Both these solutions are non-optimal distributions: the former because the overall risk is

too high, the latter, despite the lower risk, because the workload between the two resources is unbalanced,

with the result of increasing the overall execution time.

In this section we combine our technique for risk prediction with a technique for computing an optimal

distribution of work items to resources (available or busy). By optimal distribution we mean a distribution

that minimizes the weighted sum of overall execution time and overall risk across all running instances. In

other words, the algorithm aims to balance the distribution of work items across resources while keeping

the risk low. This distribution can then be used to provide work item recommendations to resources, such

that these can be aided in selecting the best work item to perform. In the example above, the optimal

distribution is r1-wa and r2-wb with an overall risk of 0.6. While this is higher than 0.5 obtained with the

second solution, r1 and r2 will work in parallel thus reducing the overall execution time.
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7.1. Optimal Work-Item Distribution

Let f be a certain (composite) fault function and assuming we at time τ . Let I = {id1, . . . , idn} be the set

of running instances of N . Given an instance id ∈ I, timeElapsedτ (id) ∈ N denotes the time elapsed since

instance id has started and varAssignτ (id) ∈ (VN → UN ) is the current assignment of values to variables.

Moreover, let us denote a function useN : RN → 2TN×I that associates each resource with the work items

that he/she is executing within the set I of running process instances. Let WE be the set of work items

being executed, i.e. WE =
∑
r∈RN

useN (r). Let W ⊆ TN ×I be the set of work items that are enabled but not

started yet. Section 4 has discussed the concept of deferred choice, highlighting that some of the enabled

work items are mutually exclusive. Therefore, we introduce an equivalence relation ∼ between elements of

W , such that wa ∼ wb if, picking wa ∈ W for execution disables wb ∈ W or vice versa. Let W∼ be the

partition of W according to relation ∼.

For each enabled work item w ∈W , we perform an estimation time(w) of the expected duration of work

item w. For each started work item w ∈WE , we also perform an estimation time(w) of the amount of time

needed by w to be completed. To compute such estimations, we employ the technique proposed in [25] using

event log L as input.

Let Ψ be the set of function estimators that are computed through Algorithm 1, using net N , event log

L and given fault function f as input. For each work item w ∈ W , let us denote with riskr,w,t the risk of

starting a work item w at time t. For example, given a work item w, this can be computed by retrieving the

estimation function associated with each decision point preceding w and taking the maximum value of the

predicted risk: riskr,w,t = calcRisk(N, f, r, t, w,Ψ). See Algorithm 2 in the Appendix for a formal definition

of this algorithm.

Let maxTime =
∑

w∈W∪WE

time(w) be the maximum duration of executing all work items that are

currently enabled and started. This corresponds to the situation in which work items are just executed

sequentially, i.e. a new work item starts only when no other work item is being executed. Given a resource

r ∈ RN and a work item (ta, id) ∈ W such that ta ∈ canN (r), we compute the set of moments in time in

which the risk of r performing (ta, id): startr,w = {t ∈ [τ, τ +maxTime] | riskr,w,t 6= riskr,w,t−1} ∪ {τ}.

Certainly, this can be naively computed by computing the risk for all moments in time between τ and

τ+maxTime. Nonetheless, it can be done more efficiently by observing the occurrences of splits on the time

variable that are present in the decision trees. For instance, let us consider the decision tree in Figure 3: the

only time reference is 30. This reference occurs in a root-to-leaf path in which resource r 6= Michael Brown

and Task = Create Shipment Information. Therefore, for each resource r ∈ R\{Michael Brown} and work-

item w = (Create Shipment Information, id) ∈W , startr,w = {τ, elapsed(id)+30}. Moreover, for each work

item w = (ta, id) ∈W with ta 6= Create Shipment Information and for each resource r ∈ R, startr,w = {τ}.

Similarly, for each work item w = (ta, id) ∈W , startr′,w = {τ} with r′ = Michael Brown.
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Given a work item w, a resource r and a time t, ∆r,w(t) denotes the first moment t′ in time after t in

which the risk changes, i.e. t′ > t, t′ ∈ startr,w and there exists no t′′ ∈ startr,w such that t′ > t′′ > t. If

such a moment t′ does not exist, ∆r,w(t) = τ +maxTime.

We formulate the problem of distributing work items as a Mixed-Integer Linear Programming (MILP)

problem. The following two sets of variables are introduced:

• for each resource r ∈ RN and work-item w = (ta, id) ∈ W such that ta ∈ canN (r), there exists a

variable xr,w,t. If the solution of the MILP problem is such that xr,w,t = 1, r is expected to start

performing w in interval between t and ∆r,w(t), xr,w,t = 1; otherwise, xr,w,t = 0;

• for each work item w ∈ W ∪WE (i.e., running or enabled), we introduce a variable war,w. If work

item w is not being executed at time τ and is eventually distributed to resource r, the MILP solution

assigns to war,w a value that is equal to the moment in time when resource r is expected to start work

item w. If w is not expected to be started by r, war,w = 0; if w is already being executed by r at time

τ (i.e. w ∈WE ), war,w is statically assigned value τ .

The MILP problem aims to minimize the weighted sum of the expected total execution time and the overall

risk:

min

 α

maxTime

∑
r∈RN

∑
w∈W∪WE

war,w + (1− α)
∑
r∈RN

∑
w∈W∩canN (r)

∑
t∈startr,w

riskr,w,t · xr,w,t


where α ∈ [0, 1] is the weight of the expected total execution time w.r.t. the overall risk.

This MILP problem is subject to a number of constraints:

• for each r ∈ RN and w = (ta, id) ∈W such that ta ∈ canN (r), if r starts performing w in the interval

between t and ∆r,w(t), xr,w,t must be equal to 1 (and vice versa):

xr,w,t = 1⇔ ∆r,w(t) > war,w ∧ war,w ≥ t; (1)

• For each partition D ∈W∼, only one work item in D can be executed and it can only be executed by

one resource and can only start within one interval:∑
r∈RN

∑
w∈D∩canN (r)

∑
t∈startr,w

xr,w,t = 1 (2)

• Every resource r ∈ RN cannot execute more than one work item at any time. Therefore, for each

r ∈ RN and for each pairs of partitions D1, D2 ∈W∼:(∑
wa∈D1

war,wa−
∑

wb∈D2

war,wb≥
∑

wb∈D2

∑
t∈startr,wb

time(wb) · xr,wb,t
)
∨
(∑
wb∈D2

war,wb−
∑

wa∈D1

war,wa≥
∑

wa∈D1

∑
t∈startr,wa

time(wa) · xr,wa,t
)

(3)

In the Appendix, we show how constraints in Equation 1 and in Equation 3 can be translated into an

equivalent set of linear constraints.

We observe that we can compute ∆r,w(t) only if we use a machine-learning method, such as decision trees,

that can automatically discretize continuous features such as the time feature in this case. By automatically
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identifying those time moments that discriminate over risk values, we can split the time feature in time

intervals and thus base our predictions on such intervals (e.g., “if elapsed time < t OR elapsed time ≥ t”)

instead of working with individual time moments (“if elapsed time = t1 OR elapsed time = t2 OR elapsed

time = t3...”). If such automatic discretization of continuous features was not available, we could not

compute ∆r,w(t) and consequently we would need to introduce a different variable xr,w,t for each moment t

in time. This would lead to an increase of the complexity of finding a solution to the MILP problem, which

is exponential on the number of variables.

As an example of an instance of the class of MILP problems, let us consider a case where at time τ we

want to schedule three work items wa, wb and wc, and we have two resources, r1 and r2, who can perform

them. We know that wa and wb are mutually exclusive generating the following partitions D1 = {wa, wb},

and D2 = {wc}. Moreover, we know that the expected duration of each work item is time(wa) = 30 mins,

time(wb) = 10 mins, and time(wc) = 40 mins. We also know that the risk associated with each work

item does not change over time. Finally, we know that when performed by resource r1 the work items

have the following expected risk levels: riskr1,wa,τ = 0.2, riskr1,wb,τ = 0.7, and riskr1,wc,τ = 0.6 while

when performed by resource r2 the work items have the following expected risk levels: riskr2,wa,τ = 0.1,

riskr2,wb,τ = 0.7, and riskr2,wc,τ = 0.4.

The MILP problem for distributing work items will take the following form (assuming α = 0.5):

minimize
0.5

τ + 80
· (war1,wa + war1,wb + war1,wc + war2,wa + war2,wb + war2,wc)

+ 0.5 · (0.2 · xr1,wa,τ + 0.7 · xr1,wb,τ + 0.6 · xr1,wc,τ + 0.1 · xr2,wa,τ + 0.7 · xr2,wb,τ + 0.4 · xr2,wc,τ )

subject to the following constraints:

either work item wa or wb is executed, whereas wc has to (instantiation of Equation 2):

xr1,wa,τ + xr1,wb,τ + xr2,wa,τ + xr2,wb,τ = 1

xr1,wc,τ + xr2,wc,τ = 1

at any time, all resources, i.e. r1 and r2, can only perform one work item (Equation 3):(
war1,wc − war1,wa − war1,wb ≥ 30 · xr1,wa,τ + 10 · xr1,wb,τ

)
∨
(
war1,wa + war1,wb − war1,wc ≥ 40 · xr1,wc,τ

)
(
war2,wc − war2,wa − war2,wb ≤ 30 · xr2,wa,τ + 10 · xr2,wb,τ

)
∨
(
war2,wa + war2,wb − war2,wc ≤ 40 · xr2,wc,τ

)
instantiation of Equation 1 for resources r1 and r2 and work items wa, wb and wc:

xr1,wa,τ = 1⇔ war1,wa ≥ τ ∧ war1,wa < τ + 80 xr1,wa,τ = 1⇔ war2,wa ≥ τ ∧ war2,wa < τ + 80

xr1,wb,τ = 1⇔ war1,wb ≥ τ ∧ war1,wb < τ + 80 xr1,wb,τ = 1⇔ war2,wb ≥ τ ∧ war2,wb < τ + 80

xr1,wc,τ = 1⇔ war1,wc ≥ τ ∧ war1,wc < τ + 80 xr1,wc,τ = 1⇔ war2,wc ≥ τ ∧ war2,wc < τ + 80
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The optimal solution to this problem is war1,wa = 1, war1,wb = 0, war1,wc = 0, war2,wa = 0, war2,wb = 0,

war2,wc = 1, xr1,wa,τ = 1, xr1,wb,τ = 0, xr1,wc,τ = 0, xr2,wa,τ = 0, xr2,wb,τ = 0, xr2,wc,τ = 1, that is a schedule

where resource r1 performs work item wa and resource r2 performs work item wc.

7.2. Recommendations for Work Items Execution

After the optimal distribution is computed, we need to provide a recommendation to r for executing any

w ∈ W ∩ canN (r). For any work item w, the recommendation rec(w, r) is a value between 0 and 1, where

0 is assigned to the work item with the highest recommendation and 1 to the work item with the least one.

Let us consider an optimal solution s of the MILP problem to distribute work items while minimizing risks.

The work-item recommendations for each resource r are given as follows:

• If there exists a work item w ∈W∩canN (r) such that xr,w,τ = 1 for solution s, the optimal distribution

suggests w to be performed by r at the current time. Therefore, rec(w, r) = 0. For any other work

item w′, the value rec(w′, r) is strictly greater than 0 and lower than or equal to 1:

rec(w′, r) =
riskr,w′,τ + riskr,w,τ

riskr,w,τ + 1

rec(w′, r) grows proportionally to riskr,w′,τ , with rec(w′, r) = 1 if riskr,w′,τ = 1.

• Otherwise, r is supposed to start no work item at the current time. However, since recommendations

need to be provided also to resources that are not supposed to execute any work item, for each

w ∈W ∩ canN (r), we set rec(w, r) = riskr,w,τ .

It is possible that the optimal distribution assigns no work item to a resource r at the current time. This is

the case when r is already performing a work item (i.e., no additional work item should suggested) or there

are more resources available than work items to assign.

Let us consider the problem illustrated at the end of Section 7.1. In this problem we have two resources

r1 and r2 and three work items wa, wb, and wc. We recall that the expected risk levels associated with a

resource performing a given work item were: riskr1,wa,τ = 0.2, riskr1,wb,τ = 0.7, and riskr1,wc,τ = 0.6 for

resource r1, and riskr2,wa,τ = 0.1, riskr2,wb,τ = 0.7, and riskr2,wc,τ = 0.4 for resource r2. We can then derive

that the best allocation requires that resource r1 performs work item wa and resource r2 performs work item

wc. Finally, when recommendations about which work item should be performed and by whom will they

be required, the recommendation system will return the following values: rec(r1, wa) = 0, rec(r1, wb) = 0.75

and rec(r1, wc) = 0.67 for resource r1, and rec(r2, wa) = 0.36, rec(r2, wb) = 0.79 and rec(r2, wc) = 0 for

resource r2.

7.3. Recommendations for Filling Out Forms

In addition to providing risk-informed decision support when picking work items for execution, we provide

support during the execution of the work items themselves. Human resources usually perform work items
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by filling out a form with the required data. The data that are provided may also influence a process risk.

Therefore, we want to highlight the expected risk whenever a piece of data is inserted by the resource into

the form.

The risk associated with filling a form with particular data is also computed using Algorithm 2. When

used to compute the risk associated with filling a form to perform a work item (ta, id), varAssign(id) is the

variable assignment that would result by submitting a form using the data the resource has inserted so far.

8. Implementation

We operationalized our recommendation system on top of the YAWL BPM system, by extending an

existing YAWL plug-in and by implementing two new custom YAWL services. This way we realized a

risk-aware BPM system supporting multi-instance work distribution and forms filling-out.

The intent of our recommendation system is to “drive” participants during the execution of process

instances. This goal can be achieved if participants can easily understand the suggestions proposed by

our tool. For this we decided to extend a previous plug-in for the YAWL Worklist Handler, named Map

Visualizer [31]. This plug-in provides a graphical user interface to suggest process participants the work

items to execute, along with assisting them during the execution of such work items. The tool is based

on two orthogonal concepts: maps and metrics. A map can be a geographical map, a process model, an

organizational diagram, etc. For each map, work items can be visualized by dots which are located in a

meaningful position (e.g., for a geographic map, work items are projected onto the locations where they need

to be executed, or for a process-model map onto the boxes of the corresponding tasks in the model). Dots

can also be colored according to certain metrics, which determine the suggested level of priority of a work

item. This approach offers advantages over traditional BPM systems, which are only equipped with basic

client applications where work items available for execution are simply enlisted, and sorted according to

given criteria. When users are confronted with hundreds of items, this visualization does not scale well. The

validity of the metaphors of maps and metrics used for decision support in process execution was confirmed

through a set of experiments reported in [31]. De Leoni et al. [31] only define very basic metrics. We have

extended the repertoire of these metrics with a new metric that is computed by employing the technique

described in Section 7.

Figure 4a shows a screenshot of the Map Visualizer where a risk-based metric is employed. The map

shows the process model using the YAWL notation and dots are projected onto the corresponding elements

of the model. Each dot corresponds to a different work item and is colored according to the risks for the

three faults defined before. When multiple dots are positioned on the same coordinates, they are merged

into a single larger dot whose diameter grows with the number of dots being amalgamated. Colors go from

white to black, passing through intermediate shades of yellow, orange, red, purple and brown. The white
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(a) The UI to support participants in choosing

the next work item to perform based on risks.

(b) The UI to support participants in filling

out a form based on risks.

Figure 4: Screenshots of the Map Visualizer extension for risk-aware prediction in YAWL.

and black colors identify work items associated with a risk of 0 and 1, respectively. The screenshot in

Figure 4a refers to a configuration where multiple process instances are being carried out at the same time

and, hence, the work items refer to different process instances. The configuration of dots highlights that

the risk is lower if the process participant performs a work item of task Estimate Trailer Usage, Arrange

Pickup Appointment or Arrange Delivery Appointment for a certain instance. When clicking on the dot,

the participant is shown the process instance of the relative work item(s).

As discussed in Section 7.3, the activity of compiling a form is also supported. Figure 4b shows a

screenshot where, while filling in a form, participants are shown the risk associated with that specific input

for that form via a vertical bar (showing a value of 45% in the example, which means a risk of 0.45). While

a participant changes the data in the form, the risk value is recomputed accordingly.

Besides the extension to the Map Visualizer, we implemented two new custom services for YAWL,

namely the Prediction Service and Multi Instance Prediction Service. The Prediction Service provides risk

prediction and recommendation. It implements the technique described in Section 6 and constructs decision

trees through J48, which is the implementation of the C4.5 algorithm in the Weka toolkit for data mining.4

Since the algorithm is not capable of predicting continuous values, in order to provide a risk prediction we

grouped risk levels that are close to each other in intervals of 0.05 (e.g. all risk likelihoods from 0 to 0.04

are considered as 0, from 0.05 to 0.09 as 0.1 and so on).

The Prediction Service communicates with the Log Abstraction Layer described in [3], to be able to

4The Weka toolkit is available at www.cs.waikato.ac.nz/ml/weka/
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Figure 5: The integration of the implemented tools with the YAWL system.

retrieve event logs from textual files, such as from OpenXES event logs, or directly from the YAWL database,

which stores both historical information and the current system’s state.

The Multi Instance Prediction Service, similarly to the Prediction Service, provides risk prediction and

recommendation. The difference between these two services is that in the former a recommendation takes

into account all process instances currently running in the system. The Multi Instance Prediction Service

interacts with the Prediction Service to obtain “local” predictions that, in combination with other informa-

tion derived from the log (e.g. expected task duration, other running instances), are used to find the optimal

resource allocation using the technique described in Section 7. To this purpose, the Multi Instance Predic-

tion Service also interacts with the MILP Solver. The MILP Solver provides an interface for the interaction

with different integer linear programming solvers. So far we support Gurobi5, SCIP6 and LPSolve7. Finally,

the Multi Instance Prediction Service is invoked by the Map Visualizer to obtain the risk predictions and

recommendations and show these to process participants in the form of maps. The map visualizer works

with the standard Worklist Handler provided by YAWL to obtain the up-to-date distribution of work to

resources. Figure 5 shows the diagram of these connections.

9. Evaluation

We evaluated our recommendation system using the claims handling process and related event data, of

a large insurance company kept under condition of anonymity. The event data recording about one year of

completed instances (total: 1, 065 traces) was used as a benchmark for our evaluation. The claims handling

process, modeled in Figure 6, starts when a new claim is received from a customer. Upon receipt of a

claim, a file review is conducted in order to assess the claim, then the customer is contacted and informed

5Available at www.gurobi.com
6Available at scip.zib.de
7Available at lpsolve.sourceforge.net
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Figure 6: The Claims Handling process used for the evaluation.

about the result of the assessment. The customer may provide additional documents (“Receive Incoming

Correspondence”), which need to be processed (“Process Additional Information”) and the claim may need

to be reassessed. After the customer has been contacted, a payment order is generated and authorized in

order to process the payment. During the execution of the process model, several updates about the status

of the claim may need to be provided to the customer as follow-ups. The claim is closed once the payment

has been authorized.

As one can see from the model, this process contains several loops, each of which is executed multiple

times, in general.

Four risk analysts working in this insurance company were consulted through an iterative interview

process, to identify the risks this process is exposed to.8 They reported about three equally-important faults

related to complete traces σ of the claim handling process:

Over-time fault. This fault is the same as the over-time fault described in Section 5. For this risk we set

the Maximum Cycle Time dmct = 30 (i.e. 30 days) and the maximum duration dmax = 300 (i.e. 300

days). The severity of an overtime fault is measured as follows:

ftime(σ) = max

(
dσ − dmct

max(dmax − dmct, 1)
, 0

)
Customer-dissatisfaction fault. During the execution of the process, if a customer is not updated reg-

ularly on their claim, they may feel “unheeded”. A customer dissatisfied may generate negative con-

sequences such as negative publicity for the insurance company, leading to bad reputation. In order

to avoid this kind of situations, the company’s policy is to contact their customers at least once every

15 days. Given the set Λ = {(t, r, d, φ) ∈ σ|t = Request Follow Up ∨ t = Receive New Claim ∨ t =

Close Claim} of events belonging to task Request Follow Up, to task Receive New Claim, or to task

8Three interviews were conducted for a total of four hours of audio recording
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Close Claim, ordered by timestamp, the severity of this fault is:

fdissatisfaction(σ) =
∑

1≤i≤‖Λ‖

max(0, di+1 − di − 15days)

where di is the time stamp of ith event ∈ Λ.

Cost Overrun fault. Each task has an execution cost associated with it, e.g. the cost of utilizing a resource

to perform a task. Since the profit of the company decreases with a higher number of tasks executed,

the company clearly aims to minimize the number of tasks required to process a claim, for example by

reducing the number of follow-ups with the claimant or the need for processing additional documents,

and reassessing the claim, once the process has started. The severity of the cost overrun fault increases

as the cost goes beyond the minimum. Let cσ be the number of work items executed in σ, cmax be

the maximum number of work items (e.g. 30) that should be executed in any process instance that

has already been completed (including σ), and cmin be the number of work items with unique label

executed in σ. The severity of a cost overrun fault is:

fcost(σ) = min

(
cσ − cmin

max(cmax − cmin, 1)
, 1

)
The occurrence of these three faults in the logs is checked using the technique that we proposed in [5],

which was originally designed for run-time detection of process-related risks.

Trialling our recommendation system within the company was not possible, as the claims handling process

concerns thousands of dollars, which cannot be put in danger with experiments. So we had to simulate the

execution of this process and the resource behavior using CPN Tools.9 We mined the control-flow of our

simulation model from the original log and refined it with the help of business analysts of the company, and

added the data, resource utilization (i.e. who does what), and tasks duration, which we also obtained from

the log. We then add the frequency of occurrence of each of these elements, on the basis on that observed

from the log. This log was also used to train the function estimators.

The CPN Tools model we created is a hierarchical model composed of ten nets that all together count

65 transitions and 62 places. The main net is based on the model showed in Figure 6, with additional places

and transitions in order to guarantee the interaction with our recommendation system. The remaining nine

nets define the behavior of each one of the nine tasks showed in Figure 6.

We used this model to simulate a constant workload of 50 active instances, in order to maintain a similar

ratio to the original log (in the original log we had 271 active instances on average). In order to maintain

the ratio between active instances and resources, we reduced the number of resources utilized to one-sixth

of the original number observed in the log. Finally, we analyzed the fault distribution of the generated log

using the technique presented in [5].

9Available at www.cpntools.org
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Figure 7: Comparison of the fault severity when recommendations are and are not followed, with 0 denoting absence of faults.

The x-axis represents the severity of the composite fault and the y-axis represents the percentage of instances that completed

with a certain severity.

The model created with CPN Tools was able to reproduce the behavior of the original log. The

Kolmogorov-Smirnov Z two-samples test (Kolmogorov − SmirnovZ = 0.763, p = 0.605 > 0.05) shows no sig-

nificant difference between the distribution of the composite fault in the original log and that in the simulated

log. This result is confirmed by the Mann-Whitney test (U = 109, 163.0, z = −0.875, p = 0.381 > 0.05).

We performed three sets of experiments. In the first set, all the suggestions provided by the recommen-

dation system were followed. In the second set, only 66% of the times the suggestions were followed, and

executing the process as the company would have done for the remaining 33% of the times. Finally, in the

27



Reference Logs # Traces % Faulty Instances Average Median

Original 1065 89.4% 0.22 0.10

Simulation model 1065 92.5% 0.22 0.15

Suggestions 100% Suggestions 66% Suggestions 33%

Test Logs # Traces
% Faulty

Avg Mdn
% Faulty

Avg Mdn
% Faulty

Avg Mdn
Instances Instances Instances

Simulated aggregated 1065 26.8% 0.02 0.00 43.9% 0.03 0.00 76.3% 0.07 0.05

- Simulated α = 0.0 213 31.9% 0.02 0.00 53.1% 0.03 0.05 80.3% 0.08 0.05

- Simulated α = 0.25 213 24.9% 0.02 0.00 42.7% 0.02 0.05 76.5% 0.07 0.05

- Simulated α = 0.5 213 14.1% 0.01 0.00 37.1% 0.02 0.05 71.4% 0.07 0.05

- Simulated α = 0.75 213 22.1% 0.01 0.00 38.0% 0.02 0.05 77.5% 0.07 0.05

- Simulated α = 1.0 213 40.8% 0.03 0.00 48.8% 0.03 0.05 75.6% 0.08 0.05

Table 2: Percentage of faulty instances, mean and median fault severity occurring in the reference logs, i.e. original log and

simulation model log. Percentage of faulty instances, mean and median fault severity occurring in the test logs aggregated into

a unique log, i.e. simulated aggregated, and for each value of α, reported for each of the three sets of experiments (33%, 66%

and 100% suggestions used).

third set of experiments, only 33% of the times the suggestions provided by our recommendation system

were followed. Moreover, for each set of experiments we tested several values of α (i.e. 0.0, 0.25, 0.5, 0.75

and 1.0), where α equal to 0 will shift focus on reducing risks, while α equal to 1 on reducing the overall

execution time (see Section 7).

All experiments were executed simulating the execution of the process by means of the CPN Tools model.

For each experiment we generated a new log containing 213 fresh log traces (a fifth of the traces contained

in the original log). We used a computer with an Intel Core i7 CPU (2.2 GHz), 4GB of RAM, running

Lubuntu v13.10 (64bit). We used Gurobi 5.6 as MILP solver as this is the most efficient solver among the

three that we support [44]10 and imposed a time limit of 60 seconds, within which a solution needs to be

provided for each problem. For mission-critical processes, the time limit can also be reduced. If a time limit

is set and Gurobi cannot find a solution within the limit, a sub-optimal solution is returned, i.e. the best

solution found so far. The experiments have shown that, practically, the returned solution is always so close

to the optimal that it does not influence the final fault’s magnitude.

Figure 7 shows the results of each of the three sets of experiments, comparing the fault severity of the

original log with that obtained when recommendations are followed. It is worth highlighting how the results

are given in terms of severity measured for completed instances. Risks are relative to running instances and

estimate the expected fault severity and likelihood when such instances complete.

Table 2 shows the results of the experiments. In this table we show percentage of faulty instances, mean

and median fault severity obtained during our tests. The values are shown for the original log and the log

obtained by our simulation model without using our recommendation system (Simulation model). Same

values are also reported for each log obtained using our recommendation system, both in an aggregated log

10Gurobi is free of use for academic purposes but is not open-source. This is the reason why we also support other two

implementations: SCIP and LPSolve.
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(Simulated aggregated) and for each value of α, over the three sets of experiments (33%, 66% and 100%

suggestions used). In the best case (Simulated log with α = 0.5), our recommendation system was able to

reduce the percentage of instances terminating with a fault from 89.4% to 14.1% and the average fault severity

from 0.216 to 0.01. In particular, the use of our recommendation system significantly reduced the number

of instances terminating with faults, as evidenced by the result of the Person’s χ2 test (χ2(1) = 857.848,

p < 0.001 for the first set of experiments, χ2(1) = 494.907, p < 0.001 for the second set, and χ2(1) = 64.663,

p < 0.001 for the third one, computed over the original log and the simulated aggregated log). Based on

the odds ratio, the odds of an instance completing without a fault are respectively 23.06, 10.75, and 2.62

times higher if our suggestions are followed. Moreover, we tested if the number of suggestions followed

influences the effectiveness of our recommendation system. The Kruskal-Wallis test (H(3) = 1, 603.61,

p < 0.001) shows that the overall fault severity among the three sets of experiments (using the Simulated

overall dataset, i.e. independently of the value of the parameter α) and the original log is significantly

different, and as revealed by Jonkheere’s test (J = 1, 658, 630.5, z = −41.034, r = −0.63, p < 0.001), the

median fault severity decreases as more suggestions are followed (see Figure 8). These two tests indicate

that our recommendation system is capable of preventing the occurrence of faults and of reducing their

severity. Clearly, it is preferable to follow as many suggestions as possible in order to obtain the best results

though this may not always be possible.

Experiment

Exp100Exp66Exp33Original

F
au

lt
 S

ev
er

it
y

1.0000

.8000

.6000

.4000

.2000

.0000

Page 1

Figure 8: BoxPlot showing the fault severity occurring

in instances of each of the three experiments and of the

original log.

We tested how the value of the parameter α influ-

ences the effectiveness of our recommendation system.

We compared the performances obtained with each

value of α for each set of experiment. The Kruskal-

Wallis test (H(4) = 46.176, p < 0.001 for the first

set of experiments, H(4) = 17.191, p = 0.002 < 0.05

for the second one, H(4) = 5.558, p = 0.235 > 0.05

for the third one) shows how the value of the parame-

ter α significantly influences the median fault severity

if the suggestions proposed are followed in at least

66% of the instances. Jonkheere’s test (J = 251, 305,

z = 5.577, r = 0.17, p < 0.001 for the first set of

experiments, J = 246, 322.5, z = 3.918, r = 0.12,

p < 0.001 for the second one) revealed that the me-

dian fault severity increases when the value of α diverges from 0.5 moving either toward 0 or 1.

In the case study taken in exam, the duration of an instance has an influence over the over-time fault

and the cost overrun fault. A short execution time will directly minimize the duration of an instance (thus

preventing the over-time fault) but also reduce the number of activities that are executed inside such an
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Figure 9: Fault severity distribution using different time limits.

instance (thus preventing the cost overrun fault). In light of so, it is not strange that the best results are

obtained with α = 0.5 which strikes a good balance between minimizing risks and overall execution time.

Finally, we performed a sensitivity test over the time limit granted to the MILP solver. We tested

our recommendation system with five different time limits, while keeping the value of α equal to 0.5 and

following all suggestions (best configuration for risk prevention). The time limits used were: 5, 10, 20, 40

and 60 seconds. Figure 9 shows the distribution of fault severities obtained using these different time limits.

We can observe that changing the time limit yields statistically different distributions, as revealed by the

Kruskal-Wallis test (H(4) = 74.738, p < 0.001). Moreover, the Jonkheere’s test (J = 186, 238, z = −8.631,

r = −0.264, p < 0.001) reveals that the median fault severity decreases when more time is granted to the

MILP solver. From a practical point of view though, it is interesting to observe that even with a time limit

of 5 seconds the approach can still notably reduce the faults severity, with 90% of the instances terminating

with a fault severity up to 0.05 out of 1. This suggests that users may set the time limit to be granted to

the MILP solver on the basis of the number of process activities that are critical, i.e. using a low time limit

if the number of critical activities is low and a high time limit if that number is high.

Based on the results of our experiments we can conclude that the approach produces a significant

reduction in the number of faults and their severity. Specifically, for the case study in question we achieved

the best results with α equal to 0.5, with a time limits of 60 seconds. We observe that this parameter

can be customized based on the priorities of the company where our approach would be deployed, e.g. an

organization may use lower values of α if risk reduction is prioritized over reduction of process duration.

10. Conclusion

This paper proposes a recommendation system that allows users to take risk-informed decisions when

partaking in multiple process instances running concurrently. Using historical information extracted from

process execution logs, for each state of a process instance where input is required from a process participant,

the recommendation system determines the risk that a fault (or set of faults) will occur if the participant’s

input is going to be used to carry on the process instance. This input can be in the form of data used to fill
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out a user form, or in terms of the next work item chosen to be executed.

The recommendation system relies on two techniques: one for predicting risks, the other for identifying

the best assignment of participants to the work items currently on offer. The objective is to minimize both

the overall risk of each process instance (i.e. the combined risk for all faults) and the execution time of all

running process instances.

We designed the recommendation system in a language-independent manner, using common notions of

executable process models such as tasks and work items borrowed from the YAWL language. We then

implemented the recommendation system as a set of components for the YAWL system. For each user

decision, the recommendation system provides recommendations to participants in the form of visual aids

on top of YAWL models. We also extended the YAWL user form visualizer, to show a risk profile based on

the data inserted by the participant for a given form. Although we implemented our ideas in the context

of the YAWL system, our recommendation system can easily be integrated with other BPM systems by

implementing an interface that allows the communication through the “log abstraction layer” (in [5] we

showed how it can be integrated with the Oracle BPEL 10g database), and by extending the Map-Based

Worklist Handler in order to list work items belonging to a different BPM system than the YAWL system.

We simulated a real-life process model based on one year of execution logs extracted from a large insur-

ance company, and in collaboration with risk analysts from the company we identified the risks affecting this

process. We used these logs to train our recommendation system. Then we performed various statistical

tests while simulating new process instances following the recommendations provided by our recommen-

dation system, and measured the number and severity of the faults upon instance completion. Since in

reality it might not always be feasible to follow the recommendations provided, we varied the percentage

of recommendations to be followed by the simulated instances. Even when following one recommendation

out of three, the recommendation system was able to significantly reduce the number and severity of faults.

Further, results show that risks can be predicted online, i.e. while business processes are being executed,

without impacting on execution performance.

The proposed recommendation system can only address process-related risks in so far as these depend

on information available during process execution, i.e. task input and output data, allocated resources and

time performance. This implies that risks depending on information outside the boundaries of a process,

i.e. its context (e.g. market fluctuations or weather forecast) cannot be detected.

While our approach is independent of any specific machine-learning method, in this paper we leveraged

on decision-tree classification. Decision trees have, among others, the advantage of automatically discretizing

continuous features. We used this information to drastically simplify the MILP problem in order to find an

optimal work-item allocation to resources. However, decision trees cannot deal with class attributes that are

defined over a continuous domain, such as the fault severity. To overcome this issue, we had to discretize

the range of fault severity values (between 0 to 1) into intervals of 0.05. This limitation could be lifted by
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using methods that combine classification and regression trees, such as CART methods. This is certainly a

direction for future work.

Another limitation is that we cannot guarantee to find the optimal solution, because of the time bound

that we impose on the MILP solver for efficiency reasons. However, our experiments show that this time

limit can be as short as 5 seconds (i.e. near real-time), to obtain a significant reduction in the number of

faults.

The recommendation system we propose relies on a couple of assumptions. While we deal with multiple

process instances sharing the same pool of participants, we assume no sharing of data between instances.

Further, we only assume that one participant can perform a single task at a time. These assumptions

offer opportunities for future work. For example, for the sharing of data between instances we need to

reformulate the MILP problem in order to consider that the risk estimation of a work item may change as a

consequence of the modification of data by work items that have been scheduled to be performed first. For

allowing participants to perform multiple tasks at a time we need to assign a capacity to each resource as

the maximum number of work items that resource can perform in parallel. Our MILP problem needs to be

reformulated in order to take this capacity into account.
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Appendix A.

This appendix provides the formal definition of YAWL, the algorithms discussed in Section 6, and the

mathematical proofs of Lemma 1 and Lemma 2 discussed in Section 7.1.

YAWL Definition

Definition 3. A YAWL net N ∈ N is a tuple N = (TN , CN , i, o, FN , RN , VN , UN , canN ) where:

• TN is the set of tasks of N ;

• CN is the set of conditions of N ;

• i ∈ CN is the input condition;

• o ∈ CN is the output condition;

• A flow relation FN ⊆ (CN \ {o} × TN ) ∪ (TN × CN \ {i});
• RN is the set of resources authorized to perform any tasks in TN ;

• VN is the set of variables that are defined in the net;

• UN is the set of values that can be assigned to variables;

• canN : RN → 2TN is a function that associates resources with the tasks that are authorized to perform.

Compared to [41] we use a simplified definition of YAWL nets, which describes those parts that are

relevant for the article. YAWL supports sophisticated authorization mechanisms as described in the resource

patterns [45]. The above definition describes a simplified version where authorizations are specified at task

level and applies to all work items of a certain task. As such, this definition is generalizable to other

executable process modeling languages.

We use the following auxiliary functions from [41]. The preset of a task t is the set of its input conditions:

•t = {c ∈ CN | (c, t) ∈ FN}. Similarly, the postset of a task t is the set of its output conditions: t• = {c ∈

CN | (t, c) ∈ FN}. The preset and postset of a condition can be defined analogously.
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Algorithms

Algorithm 1: generateFunctionEstimatorsForRiskPrediction
Data: N = (TN , CN , RN , VN , UN , canN ) – A YAWL net, L – An event log, f ∈ F – A fault function

Result: A Function Ψ that associates each condition c ∈ CN with a function estimator ψc

1 Let I be a function whose domain is the set of conditions c ∈ CN , and initially for all c ∈ CN , I(c) = ∅.

2 foreach trace σ = 〈(t1, r1, d1, φ1), . . . , (tn, r1, dn, φn)〉 ∈ L do

3 Set function A such that dom(A) = ∅

4 for i← 1 to n do

5 (cr, ct)← getContextInformation(〈(t1, r1, d1, φ1), . . . , (ti, ri, di, φi)〉)

6 Time elapsed d← (di − d1)

7 J ← (A� (ti, ri, d)� cr � ct), f(σ))

8 foreach c ∈ •ti do I(c)← I(c) ∪ {J} ;

9 foreach variable v ∈ dom(φi) do A(v)← φi(v) ;

10 end

11 end

12 Set function Ψ such that dom(Ψ) = ∅

13 foreach condition c ∈ CN do Ψ(c)← buildFunctionEstimator
(
I(c)

)
;

14 return Ψ

Algorithm 1 details how function estimators ψfc can be constructed. In the algorithm, we use � to con-

catenate tuples: given two tuples −→x = (x1, . . . , xn) and −→y = (y1, . . . , ym), −→x �−→y = (x1, . . . , xn, y1, . . . , ym).

Operator � can also be overloaded to deal with functions defined on a finite and ordered domain. Let

f : W → Z be a function defined on an ordered domain W = {w1, . . . , wo}. If we denote zi = f(wi) with

1 ≤ i ≤ o, f �−→x = (z1, . . . , zo, x1, . . . , xn).

Algorithm 1 is periodically executed, e.g., every week or after every k process instances are completed.

In this way, the predictions are updated according to the recent process executions. The input parameters

of the algorithm are a YAWL net N , an event log with traces referring to past executions of instances of

the process modelled by N , and a fault function. The output is a function Ψ that associates each condition

c with function estimator ψfc . Initially, in line 1, we initialize function I which is going to associate each

condition c with the set of observation instances associated with the executions of tasks in the postset of p.

From line 2 to line 12, we iteratively replay all traces σ to build the observation instances. While replaying,

a function A keeps the current value’s assignment to variables (line 3). For each trace’s event (ti, ri, di, φi),

first we build the tuple C of the contextual information (line 5) and compute the elapsed time d (line 6).

Then, we build an observation instance J where tuple (A � (ti, ri, d) � cr � ct) is the observed input and

the fault severity f(σ) is the observed output. This observation instance is put into the set of observation

instances relative to each condition c ∈ •ti. In lines 11-13, we update the current value’s assignment during

the replay, i.e. we rewrite function A. Finally, in lines 16-19, we build each function estimator ψfc for

condition fc by the relative observation instances and rewrite Ψ s.t. Ψ(c) = ψc.
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Algorithm 2: calcRisk
Data: N = (TN , CN , RN , VN , UN , canN ) – A YAWL net, f ∈ F – A fault function, r – resource, t – time, (ta, id) – work item

Result: A risk value

1 risk ← 0

2 φ← varAssign(id)

3 d← timeElapsed(id)

4 (cr, ct)← getContextInformation(history(id))

5 foreach condition c ∈ •t do

6 ψ ← Ψ(c)

7 Pick (severity, l) such that (φ, ta, r, d, cr, ct, l) ∈ ψ(severity)

8 risk ← max(severity · l, risk)

9 end

Algorithm 2 details how to calculate the risk associated with the execution of a work item. When a

prediction for the execution of work item w by resource r is required, the algorithm retrieves the values of

all variables during the execution, the elapsed time (i.e. the time passed from the start of the process), and

contextual information about the process instance to which the work item belongs to.

The algorithm then retrieves the function estimator associated with each decision point in the pre-set of

w. From each of these function estimators, an prediction of the risk resulting from r executing w is obtained.

The variable assignments, the elapsed time, the contextual information, w, and r are used as input for the

function estimator. Finally, the prediction having the highest product between predicted fault severity and

likelihood of the prediction is returned.

Lemmas

Lemma 1. Constraints of the form as in Equation 1 can be rewritten into sets of equivalent constraints of

the form as in Equations A.1.

−war,w −M · (1− xr,w,t) ≤ −t

war,w −M · (1− xr,w,t) < ∆r,w(t)

war,w −M · xr,w,t −M · o′r,w,t < t

−war,w −M · xr,w,t −M · (1− o′r,w,t) ≤ −∆r,w(t)

(A.1)

where M is a sufficiently large number (e.g., the largest machine-representable number) and or,w,t is a

boolean variable that needs to be introduced in the MILP problem.

Proof of Lemma 1 Let us consider xr,w,t and its possible values 1 and 0. If xr,w,t = 1 then the last two

constraints will be satisfied by −M · xr,w,t � t − war,w and −M · xr,w,t � −∆r,w(t) − war,w. In order to

satisfy the first two constraints, since M · (1− xr,w,t) = 0, war,w must be war,w ≥ t∧war,w < ∆r,w(t), that

is exactly the second part of the constraint defined in Equations 1.
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If xr,w,t = 0 then M · (1− xr,w,t) = M . This satisfies the first two constraints since −M · (1− xr,w,t)�

−t+war,w and −M ·(1−xr,w,t)� ∆r,w(t)−war,w. The third constraint can be satisfied only if war,w < t or

if o′r,w,t = 1, similar thing can be said for the fourth constraint that will be satisfied only if war,w ≥ ∆r,w(t)

or if o′r,w,t = 0. We can derive that in order to satisfy the last two constraints we either have war,w < t and

o′r,w,t = 0, or we have war,w ≥ ∆r,w(t) and o′r,w,t = 1. As we can see for xr,w,t = 0 the only way to satisfy

the constraints of Equations A.1 is to violate the second part of the constraint defined in Equations 1. �

Lemma 2. Constraints of the form as in Equations 3 can be rewritten into sets of equivalent constraints of

the form as in Equations A.2.

Similarly, the constraints in Equation 3 can be transformed into a set of linear constraints as follows:∑
wb∈D2

war,wb −
∑

wa∈D1

war,wa +
∑

wb∈D2

∑
t∈startr,wb

time(wb) · xr,wb,t −M · or,D1,D2,t ≤ 0∑
wa∈D1

war,wa −
∑

wb∈D2

war,wb +
∑

wa∈D1

∑
t∈startr,wa

time(wa) · xr,wa,t −M · (1− or,D1,D2,t) ≤ 0
(A.2)

where M is a sufficiently large number and or,D1,D2,t is a boolean variable that needs to be introduced in

the MILP problem.

Proof of Lemma 2 Let us consider the constraints in Equations A.2, and let introduce for readability

purposes the following equality:∑
wb∈D2

war,wb −
∑

wa∈D1

war,wa +
∑

wb∈D2

∑
t∈startr,wb

time(wb) · xr,wb,t = a

∑
wa∈D1

war,wa −
∑

wb∈D2

war,wb +
∑

wa∈D1

∑
t∈startr,wa

time(wa) · xr,wa,t = b.

we can then rewrite Equations A.2 as:

a−M · or,D1,D2,t ≤ 0

b−M · (1− or,D1,D2,t) ≤ 0

The first constraint in Equations A.2 can only be satisfied if either a ≤ 0 or if −M ·or,D1,D2,t ≤ 0. Similarly,

the second constraint can only be satisfied if either b ≤ 0 or if −M · (1− or,D1,D2,t) ≤ 0. Since or,D1,D2,t can

only be 0 or 1, we can see that in order to satisfy both constraints either a ≤ 0 or b ≤ 0 must be satisfied

that is exactly the constraint defined in Equations 3. �
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