
Discovery of Frequent Episodes in Event Logs

Maikel Leemans and Wil M.P. van der Aalst
m.leemans@tue.nl,w.m.p.v.d.aalst@tue.nl

Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.

Abstract. Lion’s share of process mining research focuses on the discov-
ery of end-to-end process models describing the characteristic behavior
of observed cases. The notion of a process instance (i.e., the case) plays
an important role in process mining. Pattern mining techniques (such as
traditional episode mining, i.e., mining collections of partially ordered
events) do not consider process instances. In this paper, we present a
new technique (and corresponding implementation) that discovers fre-
quently occurring episodes in event logs, thereby exploiting the fact that
events are associated with cases. Hence, the work can be positioned in-
between process mining and pattern mining. Episode Discovery has its
applications in, amongst others, discovering local patterns in complex
processes and conformance checking based on partial orders. We also
discover episode rules to predict behavior and discover correlated behav-
iors in processes, and apply our technique to other perspectives present
in event logs. We have developed a ProM plug-in that exploits efficient
algorithms for the discovery of frequent episodes and episode rules. Ex-
perimental results based on real-life event logs demonstrate the feasibility
and usefulness of the approach.

Keywords: Episode Discovery, Partial Order Discovery, Process Dis-
covery

1 Introduction

Process mining provides a powerful way to analyze operational processes based
on event data. Unlike classical purely model-based approaches (e.g., simulation
and verification), process mining is driven by “raw” observed behavior instead
of assumptions or aggregate data. Unlike classical data-driven approaches, pro-
cess mining is truly process-oriented and relates events to high-level end-to-end
process models [1].

In this paper, we use ideas from episode mining [2] and apply these to the
discovery of partially ordered sets of activities in event logs. Event logs serve as
the starting point for process mining. An event log can be viewed as a multiset
of traces [1]. Each trace describes the life-cycle of a particular case (i.e., a process
instance) in terms of the activities executed. Often event logs store additional
information about events, e.g., the resource (i.e., the person or device) executing
or initiating the activity, the timestamp of the event, or data elements (e.g., cost
or involved products) recorded with the event.

2 Discovery of Frequent Episodes in Event Logs

Each trace in the event log describes the life-cycle of a case from start to
completion. Hence, process discovery techniques aim to transform these event
logs into end-to-end process models. Often the overall end-to-end process model
is rather complicated because of the variability of real life processes. This results
in “Spaghetti-like” diagrams. Therefore, it is interesting to also search for more
local patterns in the event log – using episode discovery – while still exploiting
the notion of process instances. Another useful application of episode discovery
is discovering patterns while using other perspectives also present the event log.
Lastly, we can use episode discovery as a starting point for conformance checking
based on partial orders [3].

Since the seminal papers related to the Apriori algorithm [4, 5, 6], many
pattern mining techniques have been proposed. These techniques do not con-
sider the ordering of events [4] or assume an unbounded stream of events [5, 6]
without considering process instances. Mannila et al. [2] proposed an extension
of sequence mining [5, 6] allowing for partially ordered events. An episode is a
partially ordered set of activities and it is frequent if it is “embedded” in many
sliding time windows. Unlike in [2], our episode discovery technique does not
use an arbitrary sized sliding window. Instead, we exploit the notion of process
instances. Although the idea is fairly straightforward, as far as we know, this
notion of frequent episodes was never applied to event logs.

Numerous applications of process mining to real-life event logs illustrate that
concurrency is a key notion in process discovery [1, 7, 8]. One should avoid show-
ing all observed interleavings in a process model. First of all, the model gets too
complex (think of the classical “state-explosion problem”). Second, the result-
ing model will be overfitting (typically one sees only a fraction of the possible
interleavings). This makes the idea of episode mining particularly attractive.

The remainder of this paper is organized as follows. Section 2 positions the
work in existing literature. The novel notion of episodes and the corresponding
rules are defined in Section 3. Section 4 describes the algorithms and correspond-
ing implementation in the process mining framework ProM, available through
the Episode Miner package [9]. The approach and implementation are evaluated
in Section 5 using several publicly available event logs. Section 6 concludes the
paper.

2 Related Work

The notion of frequent episode mining was first defined by Mannila et al. [2].
In their paper, they applied the notion of frequent episodes to (large) event se-
quences. The basic pruning technique employed in [2] is based on the frequency
of episodes in an event sequence. Mannila et al. considered the mining of se-
rial and parallel episodes separately, each discovered by a distinct algorithm.
Laxman and Sastry improved on the episode discovery algorithm of Mannila by
employing new frequency calculation and pruning techniques [10]. Experiments
suggest that the improvement of Laxman and Sastry yields a 7 times speedup
factor on both real and synthetic datasets.

Related to the discovery of episodes or partial orders is the discovery of end-
to-end process models able to capture concurrency explicitly. The α algorithm

Discovery of Frequent Episodes in Event Logs 3

[11] was the first process discovery algorithm adequately handling concurrency.
Several variants of the α algorithm have been proposed [12, 13]. Many other dis-
covery techniques followed, e.g., heuristic mining [14] able to deal with noise and
low-frequent behavior. The HeuristicsMiner is based on the notion of causal nets
(C-nets). Moreover, completely different approaches have been proposed, e.g.,
the different types of genetic process mining [15, 16], techniques based on state-
based regions [17, 18], and techniques based on language-based regions [19, 20]. A
frequency-based approach is used in the fuzzy mining technique, which produces
a precedence-relation-based process map [21]. Frequencies are used to filter out
infrequent paths and nodes. Another, more recent, approach is inductive process
mining where the event log is split recursively [22]. The latter technique always
produces a block-structured and sound process model. All the discovery tech-
niques mentioned are able to uncover concurrency based on example behavior
in the log. Additional feature comparisons are summarized in Table 1. Based on
the above discussion we conclude that Episode Discovery is the only technique
whose results focus on local behavior while exploiting process instances.

Table 1. Feature comparison of discussed discovery algorithms

Exploits
proces

s insta
nces

Disc
overs

en
d-to

-en
d model

Focu
s on loc

al
beh

av
ior

Soundness
guarantee

d

Sequen
ce

Choice

Concu
rre

ncy

Sile
nt (ta

u) tra
nsit

ions

Duplic
ate

Acti
vitie

s

Agrawal, Sequence mining [4] - - - n.a. + - - - -
Manilla, Episode mining [2] - - + n.a. + - + - -
Leemans M., Episode Discovery + - + n.a. + - + - +
Maggi, DECLARE Miner [23, 24, 25] + +/- - n.a. + + + - +
Van der Aalst, α-algorithm [11] + + - - + + + - -
Weijters, Heuristics mining [14] + + - - + + + - -
De Medeiros, Genetic mining [15, 16] + + - - + + + + +
Solé, State Regions [17, 18] + + - - + + + - -
Bergenthum, Language Regions [19, 20] + + - - + + + - -
Günther, Fuzzy mining [21] + + - n.a. + +/- +/- - -
Leemans S.J.J., Inductive [22] + + - + + + + + -

The discovery of Declarative Process Models, as presented in [23, 24, 25], aims
to discover patterns to describe an overall process model. The underlying model
is the DECLARE declarative language. This language uses LTL templates that
can be used to express rules related to the ordering and presence of activities.
This discovery technique requires the user to limit the constraint search-space by
selecting rule templates to search for. That is, the user selects a subset of pattern
types (e.g., succession, not-coexists, etc.) to search for. However, the underly-
ing discovery technique is pattern-agnostic, and simply generates all pattern
instantiations (using apriori-based optimization techniques), followed by LTL

4 Discovery of Frequent Episodes in Event Logs

evaluations. The major downside of this approach is a relatively bad runtime
performance, and we will also observe this in Section 5.4.

The discovery of patterns in the resource perspective has been partly tack-
led by techniques for organizational mining [26]. These techniques can be used
to discover organizational models and social networks. A social network is a
graph/network in which the vertices represent resources (i.e., a person or device),
and the edges denote the relationship between resources. A typical example is
the handover of work metric. This metric captures that, if there are two subse-
quent events in a trace, which are completed by resource a and b respectively,
then it is likely that there is a handover of work from a to b. In essence, the
discovery of handover of work network yields the “end-to-end” resource model,
related to the discovery of episodes or partial orders on the resource perspective.

The episode mining technique presented in this paper is based on the discov-
ery of frequent item sets. A well-known algorithm for mining frequent item sets
and association rules is the Apriori algorithm by Agrawal and Srikant [4]. One
of the pitfalls in association rule mining is the huge number of solutions. One
way of dealing with this problem is the notion of representative association rules,
as described by Kryszkiewicz [27]. This notion uses user specified constraints to
reduce the number of ‘similar’ results. Both sequence mining [5, 6] and episode
mining [2] can be viewed as extensions of frequent item set mining.

3 Definitions: Event Logs, Episodes, and Episode Rules

This section defines basic notions such as event logs, episodes and rules. Note
that our notion of episodes is different from the notion in [2] which does not
consider process instances.

3.1 Preliminaries

Multisets Multisets are used to describe event logs where the same trace may
appear multiple times.

We denote the set of all multisets over some set A as B(A). We define B(a)
for some multiset B ∈ B(A) as the number of times element a ∈ A appears in
multiset B. For example, given A = {x, y, z}, a possible multiset B ∈ B(A) is
B = [x, x, y]. For this example, we have B(x) = 2, B(y) = 1 and B(z) = 0. The
size |B| of a multiset B ∈ B(A) is the sum of appearances of all elements in the
multiset, i.e.: |B| = Σa∈AB(a).

Note that the ordering of elements in a multiset is irrelevant.

Sequences Sequences are used to represent traces in an event log.
Given a setX, a sequence overX of length n is denoted as σ = 〈a1, a2, . . . , an〉 ∈

X∗. We denote the empty sequence as 〈〉.
Note that the ordering of elements in a sequence is relevant.

Functions Given sets X and Y , we write f : X 7→ Y for the function with
domain dom f ⊆ X and range ran f = { f(x) | x ∈ X } ⊆ Y . In this context,
the 7→ symbol is used to denote a specific function.

Discovery of Frequent Episodes in Event Logs 5

As an example, the function f : N 7→ N can be defined as f = {x 7→ x+ 1 | x ∈ N }.
For this f we have, amongst others, f(0) = 1 and f(1) = 2 (i.e., this f defines
a succession relation on N).

3.2 Event Logs

Activities and Traces Let A ⊆ UA be the alphabet of activities occurring in the
event log. A trace is a sequence σ = 〈a1, a2, . . . , an〉 ∈ A∗ of activities ai ∈ A
occurring at time index i relative to the other activities in σ.

Event log An event log L ∈ B(A∗) is a multiset of traces. Note that the same
trace may appear multiple times in an event log. Each trace corresponds to an
execution of a process, i.e., a case or process instance. In this simple definition
of an event log, an event refers to just an activity. Often event logs store addi-
tional information about events, such as the resource (i.e., the person or device)
executing or initiating the activity, and the timestamp of the event.

Note that, in this paper, we assumed simple event logs using the default
activity classifier, yielding partial orders on activities. It should be noted that
the technique discussed in this paper is classifier-agnostic. As a result, using
alternative classifiers, partial orders on other perspectives can be obtained. An
example is the flow of work between persons by discovering partial orders using
a resource classifier on the event log.

3.3 Episodes

Episode An episode is a partially ordered collection of events. A partial order
is a binary relation which is reflexive, antisymmetric and transitive. Episodes
are depicted using the transitive reduction of directed acyclic graphs, where the
nodes represent events, and the edges imply the partial order on events. Note
that the presence of an edge implies serial behavior. Figure 1 shows the transitive
reduction of an example episode.

Formally, an episode α = (V,≤, g) is a triple, where V is a set of events
(nodes), ≤ is a partial order on V , and g : V 7→ A is a left-total function
from events to activities, thereby labeling the nodes/events [2]. For two vertices
u, v ∈ V we have u < v iff u ≤ v and u 6= v.

Note that if |V | ≤ 1, then we got a singleton or empty episode. For the rest
of this paper, we ignore empty episodes. We call an episode parallel when there
are two or more vertices, and no edges.

Subepisode and Equality An episode β = (V ′,≤′, g′) is a subepisode of α =
(V,≤, g), denoted β � α, iff there is an injective mapping f : V ′ 7→ V such that:

(∀v ∈ V ′ : g′(v) = g(f(v))) All vertices in β are also in α

∧ (∀v, w ∈ V ′ ∧ v ≤′ w : f(v) ≤ f(w)) All edges in β are also in α

An episode β equals episode α, denoted β ≡ α iff β � α ∧ α � β. An episode β
is a strict subepisode of α, denoted β ≺ α, iff β � α ∧ β 6≡ α.

6 Discovery of Frequent Episodes in Event Logs

A

(A1)

B

(B)

C

(C)

A

(A2)

D

(D)

Fig. 1. Shown is the transitive reduction of the partial order for an example episode.
The circles represent nodes (events), with the activity labeling imposed by g inside the
circles, and an event ID beneath the nodes in parenthesis. In this example, events A1

and B can happen in parallel (as can A2 and D). However, event C can only happen
after both an A1 and a B have occurred, and A2 and D can only happen after an C
has occurred.

Episode Construction Two episodes α = (V,≤, g) and β = (V ′,≤′, g′) can be
‘merged’ to construct a new episode γ = (V ′′,≤′′, g′′). α⊕β is a smallest γ (i.e.,
smallest sets V ′′ and ≤′′) such that α � γ and β � γ.

The smallest sets criterion implies that every event v ∈ V ′′ and ordered pair
v, w ∈ V ′′ ∧ v ≤′′ w must be represented in α and/or β (i.e., have a witness, see
also the formulae below). Formally, an episode γ = α⊕β iff there exists injective
mappings f : V 7→ V ′′ and f ′ : V ′ 7→ V ′′ such that:

γ = (V ′′,≤′′, g′′)
≤′′= { (f(v), f(w)) | (v, w) ∈ ≤}

∪ { (f ′(v), f ′(w)) | (v, w) ∈ ≤′ } order witness

g′′ : (∀v ∈ V : g(v) = g′′(f(v))) ∧ (∀v′ ∈ V ′ : g′(v′) = g′′(f ′(v′))) correct mapping

V ′′ : ∀v′′ ∈ V ′′ : (∃v ∈ V : f(v) = v′′) ∨ (∃v′ ∈ V ′ : f ′(v′) = v′′) node witness

Observe that “order witness” and “correct mapping” are based on α � γ and
β � γ. Note that via “note witness” it is ensured that every vertex in V ′′ is
mapped to a vertex in either V or V ′. Every vertex in V and V ′ should be
mapped to a vertex in V ′′. This is ensured via “correct mapping”.

Occurrence An episode α = (V,≤, g) occurs in an event trace σ = 〈a1, a2, . . . , an〉,
denoted α v σ, iff there exists an injective mapping h : V 7→ {1, . . , n} such that:

(∀v ∈ V : g(v) = ah(v) ∈ σ) All vertices are mapped correctly

∧ (∀v, w ∈ V ∧ v ≤ w : h(v) ≤ h(w)) The partial order ≤ is respected

In Figure 2 an example of an “event to trace map” h for occurrence checking is
given. Note that multiple mappings might exists. Intuitively, if we have a trace
t and an episode with u ≤ v, then the activity g(u) must occur before activity
g(v) in t.

Discovery of Frequent Episodes in Event Logs 7

Event indices:

Episode:

Trace:

A(A1)

B

(B)

C

(C)

A (A2)

D

(D)

A

1

B

2

A

3

C

4

A

5

D

6

Mapping 1

A(A1)

B

(B)

C

(C)

A (A2)

D

(D)

A

1

B

2

A

3

C

4

A

5

D

6

Mapping 2

Fig. 2. Shown are two possible mappings h (the dotted arrows) for checking occurrence
of the example episode in a trace. The shown graphs are the transitive reduction of
the partial order of the example episode. Note that with the left mapping (Mapping 1)
also an episode with the partial order A1 < B occurs in the given trace, in the right
mapping (Mapping 2) the same holds for an episode with the partial order B < A1.

Frequency The frequency freq(α) of an episode α in an event log L ∈ B(A∗) is
defined as:

freq(α) =
| [σ ∈ L | α v σ] |

|L|

Given a frequency threshold minFreq , an episode α is frequent iff freq(α) ≥
minFreq . During the actual episode discovery, we use the contrapositive of the
fact given in Lemma 1. That is, we use the observation that if not all subepisodes
β are frequent, then the episode α is also not frequent.

Lemma 1 (Frequency and subepisodes). If an episode α is frequent in an
event log L, then all subepisodes β with β � α are also frequent in L. Formally,
we have for a given α:

(∀β � α : freq(β) ≥ freq(α))

3.4 Episode and Event Log Measurements

Activity Frequency The activity frequencyActFreq(a) of an activity a ∈ A in an
event log L ∈ B(A∗) is defined as:

ActFreq(a) =
| [σ ∈ L | a ∈ σ] |

|L|

Given a frequency threshold minActFreq , an activity a is frequent iff ActFreq(a) ≥
minActFreq .

8 Discovery of Frequent Episodes in Event Logs

Trace Distance Given episode α = (V,≤, g) occurring in an event trace σ =
〈a1, a2, . . . , an〉, as indicated by an event to trace map h : V 7→ {1, . . , n}. Then
the trace distance traceDist(α, h) is defined as:

traceDist(α, h) = max {h(v) | v ∈ V } −min {h(v) | v ∈ V }

In Figure 2, the left mapping h1 yields traceDist(α, h1) = 6 − 1 = 5, and the
right mapping h2 yields traceDist(α, h2) = 6− 2 = 4.

Given a trace distance interval [minTraceDist ,maxTraceDist], an episode α
is accepted in trace σ with respect to the trace distance interval iff there exists
a mapping h such that minTraceDist ≤ traceDist(α, h) ≤ maxTraceDist .

Informally, the conceptual idea behind a trace distance interval is that we
are interested in a partial order on events occurring relatively close in time.

Eventually-follows Relation The eventually-follows relation �L for an event log
L and two activities a, b ∈ A is defined as:

a�L b =
∣∣{σ ∈ L ∣∣ ∃0≤i<j<|σ| : σ(i) = a ∧ σ(j) = b

}∣∣
Informally, the eventually-follows valuation for a �L b equals the amount

of traces in which a happens (at timestamp i), and is followed by b at a later
moment (at timestamp j with i < j).

If we evaluate the eventually-follows relation for every a, b ∈ A, we obtain
the eventually-follows matrix. In Table 2 the eventually-follows matrix is given
for an example event log.

Table 2. The eventually-follows matrix for the following example event log:
L = [〈a, b, a, c, a, d〉, 〈a, b, a, d〉, 〈b, d〉]. Each cell gives the valuation for row �L column,
where row is the activity shown to the left, and column is the activity shown on the
top of the table.

�L a b c d

a 2 2 1 2

b 2 0 1 3

c 1 0 0 1

d 0 0 0 0

Lemma 2 (Eventually-follows Relation and Episode Frequency).
The eventually-follows valuation g(u)�L g(v) for any two vertices u, v ∈ V

with u ≤ v is an upper bound for the frequency of the episode α = (V,≤, g) in
event log L. Formally:

(∀u, v ∈ V ∧ u ≤ v :
g(u)�L g(v)

|L|
≥ freq(α))

Consequently, if an episode α = (V,≤, g) is frequent in an event log L, then
for any two vertices u, v ∈ V with u ≤ v also the eventually follows valuation
for g(u)�L g(v) is frequent.

Discovery of Frequent Episodes in Event Logs 9

Based on Lemma 2, the eventually-follows relation can be used as a fast
approximation of early occurrence checking. Concretely, by contraposition, we

know that if there exists u, v ∈ V with u ≤ v for which g(u)�Lg(v)
|L| < minFreq,

then the episode α cannot be frequent. We use this fact as an optimization
technique in the realization of our Episode Discovery technique.

3.5 Episode Rules

Episode Rule An episode rule is an association rule β ⇒ α with β ≺ α stating
that after seeing β, then likely the larger episode α will occur as well.

The confidence of the episode rule β ⇒ α is given by:

conf (β ⇒ α) =
freq(α)

freq(β)

Given a confidence threshold minConf , an episode rule β ⇒ α is valid iff
conf (β ⇒ α) ≥ minConf . During the actual episode rule discovery, we use
Lemma 3.

Lemma 3 (Confidence and subepisodes). If an episode rule β ⇒ α is valid
in an event log L, then for all episodes β′ with β ≺ β′ ≺ α the event rule β′ ⇒ α
is also valid in L. Formally:

(∀β ≺ β′ ≺ α : conf (β ⇒ α) ≤ conf (β′ ⇒ α))

Episode Rule Magnitude Let the graph size size(α) of an episode α be denoted
as the sum of the nodes and edges in the transitive reduction of the episode. The
magnitude of an episode rule is defined as:

mag(β ⇒ α) =
size(β)

size(α)

Intuitively, the magnitude of an episode rule β ⇒ α represents how much
episode α ‘adds to’ or ‘magnifies’ episode β. The magnitude of an episode rule
allows smart filtering on generated rules. Typically, an extremely low (approach-
ing zero) or high (approaching one) magnitude indicates a trivial episode rule.

4 Realization

The definitions and insights provided in the previous section have been used to
implement an episode (rule) discovery plug-in in the process mining framework
ProM, available through the Episode Miner package [9]. To be able to analyze
real-life event logs, we need efficient algorithms. These are described next.

10 Discovery of Frequent Episodes in Event Logs

4.1 Notation in realization

In the listed algorithms, we will reference to the elements of an episode α =
(V,≤, g) as α.V , α.≤ and α.g.

For the implementation, we rely on ordered sets, i.e., lists of unique elements.
The order of a set is determined by the order in which elements are added to the
sets, which is leveraged to make the algorithms efficient. We assume individual
elements can be accessed via an index, with indexing starting at zero. We use
the following operations and notations in the algorithms to come:

A = {x, y, z} with x < y < z Note: n = |A| = 3

A[0] = x Access the first element

A[n− 1] = z Access the last element

(A ∪ {v}) = {x, y, z, v} with x < y < z < v Adding new elements to a set

(A ∪ {x}) = A Every element is unique

(A ∪ {v})[n] = v Access the new last element

A[0 . . n− 2] = {x, y} with x < y Access a subset of a set

4.2 Frequent Episode Discovery

Discovering frequent episodes is done in two phases. The first phase discovers
parallel episodes (i.e., nodes only); the second phase discovers partial orders (i.e.,
adding the edges). The main routine for discovering frequent episodes is given
in Algorithm 1.

Algorithm 1: Episode Discovery
Input: An event log L, an activity alphabet A, a frequency threshold minFreq.
Output: A set of frequent episodes Γ
Description: Two-phase episode discovery. Each phase alternates between recognizing
frequent candidates in the event log (Fl), and generating new candidate episodes (Cl).
Proof of termination: Note that candidate episode generation with Fl = ∅ will yield
Cl = ∅. Since each iteration the generated episodes become strictly larger (in terms of V
and ≤), eventually the generated episodes cannot occur in any trace. Therefore, always
eventually Fl = ∅, and thus we will always terminate.
EpisodeDiscovery(L,A,minFreq)
(1) Γ = ∅
(2) // Phase 1: discover parallel episodes
(3) l = 1 // Tracks the number of nodes
(4) // Initialize: create a candidate episode for every activity in A
(5) Cl = { (V,≤, g) | |V | = 1, ≤ = ∅, g = {v 7→ a}, v ∈ V, a ∈ A}
(6) // Step: recognize and construct larger episodes from smaller episodes
(7) while Cl 6= ∅
(8) Fl = RecognizeFrequentEpisodes(L,Cl,minFreq)
(9) Γ = Γ ∪ Fl

(10) Cl = GenerateCandidateParallel(l, Fl)
(11) l = l + 1
(12) // Phase 2: discover partial orders
(13) l = 1 // Tracks the number of edges
(14) // Initialize: create candidate episodes based on results from Phase 1
(15) Cl = { (γ.V,≤, γ.g) | γ ∈ Γ, ≤ = {(v, w)}, v, w ∈ γ.V, v 6= w }
(16) // Step: recognize and construct larger episodes from smaller episodes
(17) while Cl 6= ∅
(18) Fl = RecognizeFrequentEpisodes(L,Cl,minFreq)
(19) Γ = Γ ∪ Fl

(20) Cl = GenerateCandidateOrder(l, Fl)
(21) l = l + 1
(22) return Γ

Discovery of Frequent Episodes in Event Logs 11

4.3 Episode Candidate Generation

The generation of candidate episodes for each phase is an adaptation of the well-
known Apriori algorithm over an event log. Given a set of frequent episodes Fl,
we can construct a candidate episode γ by combining two partially overlapping
episodes α and β from Fl. Note that this implements the episode construction
operation γ = α⊕ β.

For phase 1, we have Fl contains frequent episodes with l nodes and no edges.
A candidate episode γ will have l+1 nodes, resulting from episodes α and β that
overlap on the first l− 1 nodes. This generation is implemented by Algorithm 2.

For phase 2, we have Fl contains frequent episodes with l edges. A candidate
episode γ will have l+ 1 edges, resulting from episodes α and β that overlap on
the first l − 1 edges and have the same set of nodes. This generation is imple-
mented by Algorithm 3. Note that, formally, the partial order ≤ is the transitive
closure of the set of edges being constructed.

Algorithm 2: Candidate episode generation – Parallel
Input: A set of frequent episodes Fl with l nodes.
Output: A set of candidate episodes Cl+1 with l + 1 nodes.
Description: Generates candidate episodes γ by merging overlapping episodes α and β (i.e.,
γ = α⊕ β). For parallel episodes, overlapping means: sharing l− 1 nodes.
GenerateCandidateParallel(l, Fl)
(1) Cl+1 = ∅
(2) for i = 0 to |Fl| − 1
(3) for j = i to |Fl| − 1
(4) α = Fl[i]
(5) β = Fl[j]
(6) // Check if α and β overlap (see also description, index start at 0)
(7) if ∀0 ≤ i ≤ l− 2 : α.g(α.V [i]) = β.g(β.V [i])
(8) // Create candidate γ = α⊕ β
(9) γ = (V,≤, g) where V = (α.V [0 . . l− 1] ∪ β.V [l− 1]), ≤ = ∅, g = α.g ∪ β.g
(10) Cl+1 = Cl+1 ∪ {γ}
(11) else
(12) break
(13) return Cl+1

Algorithm 3: Candidate episode generation – Partial order
Input: A set of frequent episodes Fl with l edges.
Output: A set of candidate episodes Cl+1 with l + 1 edges.
Description: Generates candidate episodes γ by merging overlapping episodes α and β (i.e.,
γ = α⊕ β). For partial order episodes, overlapping means: sharing all nodes and l− 1 edges.
GenerateCandidateOrder(l, Fl)
(1) Cl+1 = ∅
(2) for i = 0 to |Fl| − 1
(3) for j = i+ 1 to |Fl| − 1
(4) α = Fl[i]
(5) β = Fl[j]
(6) // Check if α and β overlap (see also description, index start at 0)
(7) sharingAllNodes = (α.V = β.V ∧ α.g = β.g)
(8) overlappingEdges = (α.≤[0 . . l− 2] = β.≤[0 . . l− 2])
(9) if sharingAllNodes ∧ overlappingEdges
(10) // Create candidate γ = α⊕ β
(11) γ = (α.V,≤, α.g) where ≤ = (α.E[0 . . l− 1] ∪ β.E[l− 1])
(12) Cl+1 = Cl+1 ∪ {γ}
(13) else
(14) break
(15) return Cl+1

12 Discovery of Frequent Episodes in Event Logs

4.4 Frequent Episode Recognition

In order to check if a candidate episode α is frequent, we check if freq(α) ≥
minFreq . The computation of freq(α) boils down to counting the number of
traces σ with α v σ. Algorithm 4 recognizes all frequent episodes from a set
of candidate episodes using the above described approach. Note that for both
parallel and partial order episodes we can use the same recognition algorithm.

Recall that an event log is a multiset of traces. Based on this observation, we
note that particular trace variants typically occur more than once in an event
log. We use this fact to reduce the number of iterations in Algorithm 4, and
consequently the number of occurrence checks performed (i.e., Occurs() in-
vocations). Instead of iterating over all the process instances on line 2 of the
algorithm, we consider each trace variant σ only once. For the support count we
use the L(σ) multiset operation to get the correct number of process instances.

Algorithm 4: Recognize frequent episodes
Input: An event log L, a set of candidate episodes Cl, a frequency threshold minFreq.
Output: A set of frequent episodes Fl

Description: Recognizes frequent episodes, by filtering out candidate episodes that do not occur
frequently in the log.
Note: If Fl = ∅, then Cl = ∅.
RecognizeFrequentEpisodes(L,Cl,minFreq)
(1) support = [0, . . . , 0] with |support| = |Cl|
(2) foreach σ ∈ L
(3) for i = 0 to |Cl| − 1
(4) if Occurs(Cl[i], σ) then support[i] = support[i] + L(σ)
(5) Fl = ∅
(6) for i = 0 to |Cl| − 1

(7) if
support[i]

|L| ≥ minFreq then Fl = Fl ∪ {Cl[i]}
(8) return Fl

Checking whether an episode α occurs in a trace σ = 〈a1, a2, . . . , an〉 is done
via checking the existence of the mapping h : α.V 7→ {1, . . , n}. This results
in checking the two propositions shown below. Algorithm 5 implements these
checks.

– Checking whether each node v ∈ α.V has a unique witness in trace σ.

– Checking whether the (injective) mapping h respects the partial order indi-
cated by α.≤.

For the discovery of an injective mapping h for a specific episode α and trace σ
we use the following recipe. First, we declare the class of models H : A 7→ P(N)
such that for each activity a ∈ A we get the set of indices i at which a = ai ∈ σ.
Next, we try all possible models derivable from H. A model h : α.V 7→ {1, . . , n}
is derived from H by choosing an index i ∈ H(f(v)) for each node v ∈ α.V . With
such a model h, we can perform the actual partial order check against α.≤.

Discovery of Frequent Episodes in Event Logs 13

Algorithm 5: Occurrence checking for an episode
Input: An episode α, a trace σ.
Output: True iff α v σ
Description: Implements occurrence checking based on finding an occurrence proof in the form of
a mapping h : α.V 7→ {1, . . , n}.
Occurs(α = (V,≤, g), σ)
(1) // H indicates for each activity a all the indices i at which a = ai ∈ σ
(2) H = { a 7→ { i | a = ai ∈ σ } | a ∈ A}
(3) h = ∅
(4) return checkModel(α,H, h)

Algorithm 6: This algorithm implements occurrence checking via recursive
discovery of the injective mapping h as per the occurrence definition.
Input: An episode α, a class of mappings H : A 7→ P(N), and an intermediate map-
ping h : α.V 7→ {1, . . , n}.
Output: True iff there is a mapping h, as per the occurrence definition, derivable from H
Description: Recursive implementation for finding h based on induction to the number of mapped
vertices:
Base case (if -part): Every v ∈ V is mapped (v ∈ dom h).
Step case (else-part): (IH) n vertices are mapped, step by adding a mapping for a vertex v /∈ dom h.
checkModel(α = (V,≤, g), H, h)
(1) if ∀v ∈ V : v ∈ dom h
(2) // Every v ∈ V is mapped, check the edge relation
(3) return (∀(v, w) ∈ ≤ : h(v) ≤ h(w))
(4) else
(5) // Choose a mapping for a vertex v /∈ dom h
(6) pick v ∈ V with v /∈ dom h
(7) // Compute ∃i ∈ H(g(v)) : checkModel(v mapped to i)
(8) exists = False
(9) foreach i ∈ H(g(v)) do exists ∨ checkModel(α,H[g(v) 7→ H(g(v)) \ {i}], h[v 7→ i])
(10) return exists

4.5 Time complexity analysis

The theoretical time complexity of the provided algorithms is dominated by two
aspects: 1) the Apriori-style iterations in Algorithm 1, and 2) the occurrence
checking in Algorithm 6. For the worst case time complexity we will first investi-
gate the occurrence checking, and then briefly display the total time complexity.

Analysis of Occurence checking (Alg 6) Consider trace σ = [a1, a2, . . . , an]
and episode with V = {v1, v2, . . . , vm}. Worst case, m = n.

Finding mapping h is done by, for each vi find a aj such that the order con-
dition holds. Checking the order condition takes O(|≤|). Worst case, we check
mappings in ascending order (v1 → a1, . . . v1 → an) where only the last mapping
is valid. Hence, we need n! attempts, resulting in worst case complexityO(n!·|≤|).

Total time complexity of Algorithm 1 The total worst case running time
consists of O(Phase1) + O(Phase2), and is given by:

O(TL
2 · |A|TL+1 ·

(
|A|TL+1 + |L| ·ΣTL

l=1(l − 1)!
)

+ TL
5 ·Σ

1
2TL

2− 1
2TL

l=1

(
TL · (TL − 1)

l

)
·
((

TL · (TL − 1)

l

)
+ |L| · (TL − 1)!

)
)

14 Discovery of Frequent Episodes in Event Logs

Where: TL = max { |σ| | σ ∈ L } is the max trace size in log, |L| is the size of
event log (# trace variants), and |A| is the size of alphabet (# event classes).

Note that, despite the theoretical worst case time complexity, our episode
discovery algorithm is very fast in practice. See also the evaluation in Section 5.

4.6 Pruning

Using the pruning techniques described below, we reduce the number of gener-
ated episodes (and thereby computation time and memory requirements) and fil-
ter out uninteresting results. These techniques eliminate less interesting episodes
by ignoring infrequent activities and skipping partial orders on events not occur-
ring relatively close in time. In addition, for pruning based on the antisymmetry
of ≤ and the Eventually-follows Relation, we leverage the fact that it is cheaper
to prune candidates during generation than to eliminate them via occurrence
checking.

Activity Pruning Based on the frequency of an activity, uninteresting episodes
can be pruned in an early stage. This is achieved by replacing the activity al-
phabet A with the largest set A′ ⊆ A satisfying (∀a ∈ A′ : ActFreq(a) ≥
minActFreq), on line 5 in Algorithm 1. This pruning technique allows the episode
discovery algorithm to be more resistant to logs with many infrequent activities,
which are indicative of exceptions or noise. Note that, if minActFreq is set too
high, we can end up with A′ = ∅. In this case, no episodes are discovered.

Trace Distance Pruning The pruning of episodes based on a trace distance
interval can be achieved by adding the trace distance interval check to line 3
of Algorithm 6. Note that if there are two or more interpretations for h, with
one passing and one rejected by the interval check, then we will find the correct
interpretation thanks to the ∃ on line 7.

Pruning Based on the Antisymmetry of ≤ During candidate generation in
Algorithm 3 we can leverage the antisymmetry of ≤. Recall that in Algorithm 3
we generate candidate episodes γ from merging episodes α and β overlapping
on the first l − 1 edges. If we extend the predicate on line 9 with the check
reverse(β.≤[l−1]) /∈ α.≤ we ensure that we don’t generate candidate episodes γ
that violate the antisymmetry of ≤. (Note: reverse((a, b)) = (b, a).)

Pruning Based on the Eventually-follows Relation During seeding the
partial order candidates in Algorithm 1 on line 15 we can utilize the eventually-
follows relation as a fast approximation of early occurrence checking. Using this
relation, we can extend the predicate on line 15 with the check a�Lb

|L| ≥ minFreq ,

where a = g(v) ∧ b = g(w).
In practice, we pre-calculate the eventually-follows matrix, having a space-

complexity of |A|2, where |A| the number of unique activities in the event log.
This allows us to compute the eventually-follows values only once in a linear
scan over the log, and reuse values, accessing them in constant time.

Discovery of Frequent Episodes in Event Logs 15

4.7 Episode Rule Discovery

The discovery of episode rules is done after discovering all the frequent episodes.
For all frequent episodes α, we consider all frequent subepisodes β with β ≺ α
for the episode rule β ⇒ α.

For efficiently finding potential frequent subepisodes β, we use the notion of
“discovery tree”, based on episode construction. Each time we recognize a fre-
quent episode β created from combining frequent episodes γ and ε, we recognize
β as a child of γ and ε. Similarly, γ and ε are the parents of β. See Figure 3 for
an example of a discovery tree.

Using the discovery tree we can walk from an episode α along the discovery
parents of α. Each time we find a parent β with β ≺ α, we can consider the par-
ents and children of β. As a result of Lemma 3, we cannot apply pruning in either
direction of the parent-child relation based on the confidence conf (β ⇒ α). This
is easy to see for the child direction. For the parent direction, observe the dis-
covery tree in Figure 3 and δ ≺ α. If for episode α we would stop before visiting
the parents of β, we would never consider δ (which has δ ≺ α).

This principle of traversing the discovery tree is implemented by Algorithm 7.
This implementation uses a discovery front queue for traversing the discovery
tree, similar to the queue used in the Breadth-first search algorithm. The dis-
covery tree is traversed for each discovered episode (each α ∈ Γ). Hence, we
consider the discovery tree as a partial order on the set Γ , and use that struc-
ture to efficiently find sets of subsets.

Algorithm 7: Discovering episode rules
Input: A list of episodes Γ , a confidence threshold minConf and a magnitude interval specified by
minMag and maxMag.
Output: A set of valid episode rules R
Description: Episode rule discovery. For each discovered episode (each α ∈ Γ), the discovery tree
is traversed in a Breadth-first search style, searching for candidate β episodes yielding episode rules
β ⇒ α.
RuleDiscovery(Γ,minConf,minMag,maxMag)
(1) R = ∅
(2) foreach α ∈ Γ
(3) discovered = ∅
(4) Let front be an empty FIFO queue
(5) foreach parent ∈ α.parents
(6) discovered = discovered ∪ {parent}
(7) front.enque(parent)
(8) while front 6= ∅
(9) β = front.deque()
(10) foreach parent ∈ β.parents
(11) discovered = discovered ∪ {parent}
(12) front.enque(parent)
(13) if β � α
(14) // prune siblings of α
(15) if β /∈ α.parents
(16) foreach child ∈ β.children ∧ child /∈ discovered
(17) discovered = discovered ∪ {child}
(18) front.enque(child)
(19) if conf (β ⇒ α) ≥ minConf ∧minMag ≤ mag(β ⇒ α) ≤ maxMag
(20) R = R ∪ {β ⇒ α}

16 Discovery of Frequent Episodes in Event Logs

A

C

B

C

A

C

B

A

C

B

A

C

ε

γ

δ

β α

Fig. 3. Part of an example discovery tree. Each block denotes an episode. The dashed
arrows between blocks denote a parent-child relationship. In this example we have,
amongst others: β ≺ α, ε ≺ β, ε ≺ δ and δ ≺ α (not shown as a parent-child relation).

4.8 Implementation Consideration

We implemented the episode discovery algorithm as a ProM 6 plug-in (see also
Figure 7), written in Java. Since the Occurs() algorithm (5) is the biggest
bottleneck, this part of the implementation was considerably optimized.

5 Evaluation

This section reviews the feasibility of the approach using both synthetic and
real-life event data.

5.1 Methodology

We used three different event logs for our experiment. The first event log, bigger-
example.xes, is an artificial event log from Chapter 5 of [1] and available via http:
//www.processmining.org/event_logs_and_models_used_in_book. The sec-
ond and third event logs, BPI Challenge 2012.xes and BPI Challenge 2013.xes,
are real life event logs available via doi:10.4121/uuid:3926db30-f712-4394-
aebc-75976070e91f and doi:10.4121/uuid:500573e6-accc-4b0c-9576-aa54
68b10cee respectively. The experiment consists of two parts: first a series of tests
focused on performance and the number of discovered episodes, and second, a
case study focused on comparing our technique with existing discovery tech-
niques. For these experiments we used a laptop with a Core i7-4700MQ CPU
(2.40 GHz), Java SE Runtime Environment 1.7.0 67 (64 bit) with 4 GB RAM.

5.2 Performance and Number of Discovered Episodes

In Table 3 some key characteristics of the event logs are given. We examined the
effects of the parameters minFreq , minActFreq and maxTraceDist on the running

Discovery of Frequent Episodes in Event Logs 17

time, the discovered number of episodes (number of results), and the total num-
ber of intermediate candidate episodes. In Figure 7 an indication (screenshots)
of the ProM plugin output is given.

Table 3. Metadata for the used event logs.

events / trace
traces # variants # activities avg. min. max.

bigger-example.xes 1, 391 21 8 5.42 5 17
BPI Challenge 2012.xes (BPIC 2012) 13, 087 4, 366 36 20.05 3 175
BPI Challenge 2013.xes (BPIC 2013) 7, 554 2, 278 13 8.68 1 123

In Figures 4, 5, and 6 the results of the experiments are given.
The metric “# Episodes (result)” indicates the size of the end result. This

metric is given by |Γ | in Algorithm 1. The metric “# Candidate episodes” indi-
cates the size of the intermediate results, after episode construction and pruning,
but before occurrence checking. This metric is calculated by summing |Cl| across
iterations in both discovery phases in Algorithm 1. The “runtime”, indicates the
average running time of the algorithm, and its associated 95% confidence inter-
val. Note that the scale of the runtime is in milliseconds.

As can be seen in the experimental results, we see that the running time is
strongly related to the discovered number of episodes. Note that if some param-
eters are poorly chosen, like high minFreq in Figure 4(b), then a relatively large
class of episodes seems to become frequent, thus increasing the running time
dramatically.

For a reasonably low number of frequent episodes (< 500, more will a human
not inspect), the algorithm turns out to be quite fast (under one second). We
noted a virtual nonexistent contribution of the parallel episode mining phase to
the total running time. This can be explained by a simple combinatorial argu-
ment: there are far more partial orders to be considered than there are parallel
episodes. Also note the increasing number of candidate episodes in Figure 5(b),
which consists solely of parallel episodes, but there is no significant change in
the runtime.

An analysis of the effects of changing the minFreq parameter (Figure 4(a),
4(b), and 4(c)) shows that a poorly chosen value results in many episodes. In
addition, the minFreq parameter gives us fine-grained control of the number of
results. It gradually increases the total number of episodes for lower values. Note
that, especially for the BPIC 2012 event log, low values for minFreq can dramat-
ically increase the running time. This is due to the large number of (candidate)
episodes being generated.

Secondly, note that for the minActFreq parameter (Figure 5(a), 5(b), and 5(c)),
there seems to be a cutoff point that separates frequent from infrequent activi-
ties. Small changes around this cutoff point may have a noticeable effect on the
number of episodes discovered.

Finally, for the maxTraceDist parameter (Figure 6(a), 6(b), and 6(c)), we see
that this parameter seems to have a sweet-spot where a low – but not too low –

18 Discovery of Frequent Episodes in Event Logs

number of episodes are discovered. Chosen a value for maxTraceDist just after
this sweet-spot yields a large number of episodes.

When comparing the artificial and real life event logs, we see a remarkable
pattern. The artificial event log (bigger-example.xes), shown in Figure 4(a) ap-
pears to be far more fine-grained than the real life event log (BPIC 2012) shown
in Figure 4(b) and 4(c). In the real life event log there appears to be a clear
distinction between frequent and infrequent episodes. In the artificial event log
a more fine-grained pattern occurs. Most of the increase in frequent episodes,
for decreasing minFreq, is again in the partial order discovery phase.

Table 4. Case Study results – Comparison of discovered sub-patterns per discovery
algorithm. In the top part of this table, an x in two consecutive rows a and b indicate
a sub-pattern a ≤ b. In the bottom part of this table, a + indicates the corresponding
patterns was revealed by the corresponding discovery algorithm output.

Activities
and pattern



A SUBMITTED+COMPLETE x
A PARTLYSUBMITTED+COMPLETE x x x
A PREACCEPTED+COMPLETE x x
W Complementeren aanvraag+SCHEDULE x x
W Complementeren aanvraag+START x
A DECLINED+COMPLETE x

Discovery
algorithms


Episode Discovery + + + + +a

α-algorithm [11] +
Heuristics miner [14] + + +
Inductive miner [22] + +b +b + +b

DECLARE miner [23] + +c + + +c

a Indicates the pattern was revealed, but only after increasing maxTraceDist.
b Indicates the pattern was revealed, but obfuscated by choice constructs.
c Due to the aggregated overview of the DECLARE model, it is not immediately clear
that these patterns are disjoint.

5.3 Case Study – Pattern Discovery Compared with Existing
Algorithms

As noted in the introduction, often the overall end-to-end process models are
rather complicated. Therefore, the search for local patterns (i.e., episodes) is
interesting. In this section we perform a short case study using the BPI Chal-
lenge 2012, an event log of a loan application process. We explored this event
log using: the α-algorithm [11], Heuristics miner [14], Inductive miner [22], DE-
CLARE Miner [23], and our Episode Discovery technique. For this case study,
we assume no prior knowledge about this event log. Instead, we want to get ini-
tial insight into the recorded behavior, and are interested in the most important
patterns. For all the algorithms we use the default parameter settings and the
“Activity classifier” defined in the event log (the default values are provided in

Discovery of Frequent Episodes in Event Logs 19

-5

0

5

10

15

20

25

0

100

200

300

400

500

600

700

1 0,95 0,9 0,85 0,8 0,75 0,7 0,65 0,6 0,55 0,5 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

ti
m

e
 (

m
s)

 [
9

5
%

 c
o

n
f.

 in
te

rv
al

]

e

p
is

o
d

e
s

minFreq

bigger-example.mxml -- minFreq

Episodes (results) # Candidate episodes runtime

(a) Event log: bigger-example.mxml , minActFreq = 1.0, maxTraceDist = 4

0

1000

2000

3000

4000

5000

6000

7000

0

500

1000

1500

2000

2500

1 0,95 0,9 0,85 0,8 0,75 0,7 0,65 0,6 0,55 0,5 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

ti
m

e
 (

m
s)

 [
9

5
%

 c
o

n
f.

 in
te

rv
al

]

e

p
is

o
d

e
s

minFreq

BPI Challenge 2012 -- minFreq

Episodes (results) # Candidate episodes runtime

(b) Event log: BPI Challenge 2012 , minActFreq = 1.0, maxTraceDist = 4

0

50

100

150

200

250

300

350

400

450

0

20

40

60

80

100

120

140

1 0,95 0,9 0,85 0,8 0,75 0,7 0,65 0,6 0,55 0,5 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

ti
m

e
 (

m
s)

 [
9

5
%

 c
o

n
f.

 in
te

rv
al

]

e

p
is

o
d

e
s

minFreq

BPI Challenge 2013, incidents -- minFreq

Episodes (results) # Candidate episodes runtime

(c) Event log: BPI Challenge 2013, incidents , minActFreq = 1.0, maxTraceDist = 4

Fig. 4. Effects of the parameter minFreq on the number of results and candidate
episodes. Observe that the minFreq parameter gives us fine-grained control of the
number of results. Note that for less than 500 result episodes, the runtime is less than
one second.

20 Discovery of Frequent Episodes in Event Logs

0

1

2

3

4

5

6

7

0

20

40

60

80

100

120

140

1 0,95 0,9 0,85 0,8 0,75 0,7 0,65 0,6 0,55 0,5 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

ti
m

e
 (

m
s)

 [
9

5
%

 c
o

n
f.

 in
te

rv
al

]

e

p
is

o
d

e
s

minActFreq

bigger-example.mxml -- minActFreq

Episodes (results) # Candidate episodes runtime

(a) Event log: bigger-example.mxml , minFreq = 0.45, maxTraceDist = 4

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70

80

1 0,95 0,9 0,85 0,8 0,75 0,7 0,65 0,6 0,55 0,5 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

ti
m

e
 (

m
s)

 [
9

5
%

 c
o

n
f.

 in
te

rv
al

]

e

p
is

o
d

e
s

minActFreq

BPI Challenge 2012 -- minActFreq

Episodes (results) # Candidate episodes runtime

(b) Event log: BPI Challenge 2012 , minFreq = 0.50, maxTraceDist = 4

0

50

100

150

200

250

300

350

60

61

62

63

64

65

66

67

68

69

1 0,95 0,9 0,85 0,8 0,75 0,7 0,65 0,6 0,55 0,5 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

ti
m

e
 (

m
s)

 [
9

5
%

 c
o

n
f.

 in
te

rv
al

]

m
in

A
ct

Fr
e

q

minActFreq

BPI Challenge 2013, incidents -- minActFreq

Episodes (results) # Candidate episodes runtime

(c) Event log: BPI Challenge 2013, incidents , minFreq = 0.45, maxTraceDist = 4

Fig. 5. Effects of the parameter minActFreq on the number of results and candidate
episodes. Observe that there seems to be a cutoff point that separates frequent from
infrequent activities. Note that the runtime is never greater than a third of a second.

Discovery of Frequent Episodes in Event Logs 21

0

1

2

3

4

5

6

7

8

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9

ti
m

e
 (

m
s)

 [
9

5
%

 c
o

n
f.

 in
te

rv
al

]

e

p
is

o
d

e
s

maxTraceDist

bigger-example.mxml -- maxTraceDist

Episodes (results) # Candidate episodes runtime

(a) Event log: bigger-example.mxml , minFreq = 0.45, minActFreq = 0.65

0

10

20

30

40

50

60

70

80

90

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9

ti
m

e
 (

m
s)

 [
9

5
%

 c
o

n
f.

 in
te

rv
al

]

e

p
is

o
d

e
s

maxTraceDist

BPI Challenge 2012 -- maxTraceDist

Episodes (results) # Candidate episodes runtime

(b) Event log: BPI Challenge 2012 , minFreq = 0.50, minActFreq = 0.55

0

50

100

150

200

250

300

350

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9

ti
m

e
 (

m
s)

 [
9

5
%

 c
o

n
f.

 in
te

rv
al

]

e

p
is

o
d

e
s

maxTraceDist

BPI Challenge 2013, incidents -- maxTraceDist

Episodes (results) # Candidate episodes runtime

(c) Event log: BPI Challenge 2013, incidents , minFreq = 0.45, minActFreq = 1.00

Fig. 6. Effects of the parameter maxTraceDist on the number of results and candidate
episodes. Observe that maxTraceDist seems to have a sweet-spot where a low – but not
too low – number of episodes are discovered. Note that the runtime is never greater
than a third of a second.

22 Discovery of Frequent Episodes in Event Logs

the footnotes). The observations made below are summarized in Table 4. Ex-
periments show that only the Episode Discovery was able to unobfuscated and
unambiguously discover all the mentioned patterns.

Episode Discovery With our Episode Discovery technique we get a small overview
of twelve frequent episodes (Figure 7(a)). Inspecting these episodes more closely,
we find two frequent patterns: the order A SUBMITTED+COMPLETE ≤
A PARTLYSUBMITTED+COMPLETE ≤ A PREACCEPTED+COMPLETE, and the order
A PREACCEPTED+COMPLETE ≤ W Complementeren aanvraag+SCHEDULE ≤
W Complementeren aanvraag+START (Figure 7(b)). The interpretation of these
patterns is twofold. One, frequently whenever a loan application is submitted
it either preaccepted or declined. And two, frequently whenever a loan applica-
tion is preaccepted, additional information is requested (“Complementeren aan-
vraag”). Clearly, we found a simple overview of the most important patterns in
the event log. After increasing the maxTraceDist parameter to fifty (50), we also
discover the patternA PARTLYSUBMITTED+COMPLETE≤ A DECLINED+COMPLETE (see
Figure 7(c)). In the remaining paragraph, we focus on finding patterns using
other discovery techniques, and we are particularly interested in finding similar
patterns.

α-algorithm 1 Figure 8(a) shows the overall Petri net model produced by the
α-algorithm [11]. Closer inspection of the bottom-left part (Figure 8(b)) reveals
the sub-pattern A SUBMITTED+COMPLETE ≤ A PARTLYSUBMITTED+COMPLETE. The
remaining of the previously discovered frequent patterns are not clearly visible
in this model. No other patterns were discovered.

Heurisitcs miner 2 The heuristics net in Figure 9(a) is produced by the Heuristics
miner [14]. Closer inspection of this net (Figure 9(b)) reveals two sub-patterns:
the order A SUBMITTED+COMPLETE ≤ A PARTLYSUBMITTED+COMPLETE, and the
order A PREACCEPTED+COMPLETE ≤ W Complementeren aanvraag+SCHEDULE ≤
W Complementeren aanvraag+START. However, the sub-pattern A PARTLYSUBMITTED+
COMPLETE ≤ A PREACCEPTED+COMPLETE and A PARTLYSUBMITTED+COMPLETE ≤
A DECLINED+COMPLETE were not clearly visible in this model. No other patterns
were discovered.

Inductive miner 3 Figure 10(a) shows the overall process model (a process tree)
produced by the Inductive miner [22]. All frequent patterns can be found in
this model. However, as can be seen in the close-up in Figure 10(b), the choice
constructs obfuscate these patterns. After detailed inspection of this model, and
armed with our results from the Episode Discovery technique, we discovered one

1
Plugin action: “Mine for a Petri Net using Alpha-algorithm”.
Parameters: n/a

2
Plugin action: “Mine for a Heuristics Net using Heuristics Miner”.
Parameters: Activity classifier, Relative-to-best = 5.0, Dependency = 90.0, Length-one-loops =
90.0, Length-two-loops = 90.0, Long distance = 90.0, All tasks connected = On, Long distance
dependency = Off, Ignore loop dependency tresholds = On

3
Plugin action: “Mine process tree with Inductive Miner”.
Parameters: Variant = Inductive Miner - infrequent, Noise threshold = 0.20, Event classifier =
Event Name

Discovery of Frequent Episodes in Event Logs 23

(a) View of discovered episodes (twelve in total)

(b) The two most interesting episodes

(c) Additional pattern, discovered after increasing the maxTraceDist parameter to
fifty (50).

Fig. 7. Algorithm: Episode Discovery. Result in ProM for the BPIC 2012 event log.

(a) Overall process model (b) Zoomed-in on bottom-left part of model

Fig. 8. Algorithm: α-algorithm [11]. Result in ProM for the BPIC 2012 event log.

24 Discovery of Frequent Episodes in Event Logs

(a) Overall process model

(b) Zoomed-in on the left part of the model

Fig. 9. Algorithm: Heuristics miner [14]. Result in ProM for the BPIC 2012 event log.

less frequent pattern. We rephrase our first interpretation of the Episode Dis-
covery results as: “whenever a loan application is submitted it frequently either
preaccepted or declined, or in some rare cases followed by a fraud detection”
(“Beoordelen fraude”).

(a) Overall process model

(b) Zoomed-in on the bottom-left part of the model

Fig. 10. Algorithm: Inductive miner [22]. Result in ProM for the BPIC 2012 event log.

DECLARE Miner 4 Finally, in Figure 11, the DECLARE model is given, as
produced by the DECLARE Miner [23]. In this case we did change the fol-
lowing parameters: we chose the succession template and set the min support
to 50 (comparable to the default settings of Episode Miner). As can be ob-
served, all the frequent patterns can be found. However, note that due to the
aggregated overview of the DECLARE model, it is not immediately clear that

4
Plugin action: “Declare Maps Miner”.
Parameters: Selected Templates = {succession}, All Activities (considering Event Types), Min.
support = 50, Alpha = 0, Control Flow = On, Time = Off

Discovery of Frequent Episodes in Event Logs 25

the patterns A PARTLYSUBMITTED+COMPLETE ≤ A PREACCEPTED+COMPLETE and
A PARTLYSUBMITTED+COMPLETE ≤ A DECLINED+COMPLETE are disjoint. No other
patterns were discovered.

Fig. 11. Algorithm: DECLARE Miner [23]. Result in ProM for the BPIC 2012 event
log, using the succession template and a min support of 50.

As demonstrated in this case study, and summarized in Table 4, overall end-
to-end process models can be rather complicated, and the search for local pat-
terns (i.e., episodes) quickly reveals important insight into recorded behavior.

5.4 Case Study – Runtime Compared with Existing Algorithms

After showing the insights that can be gained by our algorithm, we now compare
the running time of our approach with existing algorithms. We revisit the same
set of algorithms, and investigate the average running time on all three event
logs. The same (default) parameter settings are used as in the previous section
(see footnotes footnotes 1–4).

The resulting running times are compared in Figure 12. Note that the runtime
is shown in milliseconds, on a logarithmic scale. Broadly speaking, the discovery
algorithms can be grouped in three classes, based on their runtime. Our episode
miner and the alpha miner form the fastest class of discovery algorithms. Next is
the class of algorithms to which the heuristics and inductive miner belong. These
algorithms are roughly ten times slower than the first class. Finally, there is the
class of the declare miner. This algorithm is roughly a hundred times slower than
the first class.

Looking at the difference between the BPIC 2012 and 2013 logs, we see ob-
serve the 2012 log has more event classes (36 for 2012, 13 for 2013), more traces
(13,087 for 2012, 7,554 for 2013), and longer traces (avg. 20.05 for 2012, avg.
8.68 for 2013). This increase in size is directly observable in terms of running
time for the existing algorithms, but has a less effect on the running time of the
episode miner (with default settings).

We conclude that our Episode Discovery realization is among the fastest of
algorithms. In particular, it is orders of magnitude faster than the Declare Miner
configured to discover only succession relations.

5.5 Case Study – Episode Rules

Continuing with our case study of the BPI Challenge 2012 event log, we also take
a look at the discovery of association rules. Here we use the episode rule genera-
tion feature of our Episode Discovery ProM plugin, and used the default settings.

26 Discovery of Frequent Episodes in Event Logs

 1 10 100 1.000 10.000 100.000 1.000.000

Episode Miner

Alpha Miner

Heuristics Miner

Inductive Miner

Declare Miner

runtime (ms) [95% confidence interval], logarithmic scale

Running time comparison -- BPIC 2012, BPIC 2013, bigger-example

BPI Challenge 2012 BPI Challenge 2013 bigger-example

Fig. 12. Comparison of the running time for the different discovery algorithms used
in the case study. The runtime is shown in milliseconds, on a logarithmic scale. We
distinguish three classes based on runtimes: 1) our Episode miner and the α-miner, 2)
the class of algorithms to which the Heuristics and Inductive miner belong, and 3) the
class of the Declare miner.

The result consists of six episode rules, one of which is shown in Figure 13.
The interpretation of the shown episode rule is as follows: “If we saw
A PARTLYSUBMITTED+COMPLETE ≤ A PREACCEPTED+COMPLETE occurring, we likely
will also see W Complementeren aanvraag+SCHEDULE occurring next”. In other
words, whenever a partially submitted request was preaccepted, it is likely that
we will request additional information (“Complementeren aanvraag”).

Similar, episode rules can be used in an online setting to predict likely follow-
up activities using episodes discovered in historical data.

Fig. 13. Episode rules discovered in ProM for the BPIC 2012 event log. The black solid
line indicates the assumed partial order (the β in β ⇒ α), the red dashed line indicates
the added pattern (the α).

5.6 Case Study – Alternative Perspective: Resources

We conclude our case study of the BPI Challenge 2012 event log with mining
patterns in the flow of work between persons. For this we used the Resource
classifier defined in the event log. We explored this perspective using: the Induc-
tive miner [22], Handover of Work Social Network miner [26], and our Episode
Discovery technique.

Discovery of Frequent Episodes in Event Logs 27

The discovered episodes are shown in Figure 14. The vertices in these re-
sults represent resources instead of activities. The first pattern shows that the
resource 112 is present in all traces (based on the observation that freq(112 ≤ 112 ≤ 112) =
1.0). Furthermore, we also discover that in most cases work is passed from the
resource 112 to tasks without a recorded resource (e.g., automated tasks). Ac-
tivities conducted by “no recorded resource” can be observed in Figure 14 as
empty vertices.

Figure 15(a) shows the overall process model (a process tree) for the resource
perspective, produced by the Inductive miner [22]. At first glance no obvious pat-
tern is visible. In the close-up in Figure 15(b), the resource 112 and “no recorded
resource”/“empty resource” are visible, but no clear patterns are visible.

In Figure 15(c) the handover of work social network is given, as produced by
the organizational miner [26]. Most of the resources are forming one big tightly-
connected cluster. The “no recorded resource”/“empty resource” is completely
disconnected, but the resource 112 is not easily found (it is in the top-left cor-
ner). The patterns found by the Episode Miner cannot be deduced from this
social network.

By using the resource perspective in combination with Episode Discovery, we
gained insight into the most important resources, and the flow of work between
resources. This demonstrates that Episode Discovery is not only useful in the
activity-focused control-flow perspective, but also in other perspectives. While
we only showed pattern discovery in the control-flow and resource domain, other
perspectives are possible. One example is discovering the flow of work between
event locations (e.g., system components or organization departments generating
the events). Another example is discovering the relations between data attributes
(e.g., which information is used in which order).

Fig. 14. Episodes discovered in ProM for the BPIC 2012 event log, using the Resource
classifier. In total, forty episodes were discovered. Note that the vertices in these results
represent resources instead of activities. The empty vertices indicate the absence of a
recorded resource (e.g., automated tasks).

6 Conclusion and Future Work

In this paper, we considered the problem of discovering frequently occurring
episodes in an event log. An episode is a collection of events that occur in a

28 Discovery of Frequent Episodes in Event Logs

(a) Inductive Miner:
Overall process model

(b) Inductive Miner: Zoomed-in on the
top part of the model

(c) Social Network model

Fig. 15. Result in ProM for the BPIC 2012 event log, using the Resource classifier.
Algorithms: Inductive miner [22], Handover of Work Social Network miner [26].

given partial order. We presented efficient algorithms for the discovery of fre-
quent episodes and episode rules occurring in an event log, and presented exper-
imental results.

Our experimental evaluation shows that, for a reasonably low number of fre-
quent episodes, the algorithm turns out to be quite fast (under one second); typ-
ically faster than existing many algorithms. The main problem is the correct set-
ting of the episode pruning parameters minFreq , minActFreq , and maxTraceDist .
In addition, comparison with existing discovery algorithms has shown the benefit
of episode mining in getting insight into recorded behavior. Moreover, we have
demonstrated the usefulness of episode rules that can be discovered. Finally,
the applicability of Episode Discovery for other perspectives (like the resources
perspective) was shown.

During the development of the algorithm for ProM 6, special attention was
paid to optimizing the Occurs() algorithm (Algorithm 5) implementation, which
proved to be the main bottleneck. Future work could be to prune occurrence
checking based on the parents of an episode, leveraging the fact that an episode
cannot occur in a trace if a parent also did occur in that trace.

Another approach to improve the algorithm is to apply the generic divide and
conquer approach for process mining, as defined in [28]. This approach splits the
set of activities into a collection of partly overlapping activity sets. For each ac-
tivity set, the log is projected onto the relevant events, and the regular episode
discovery algorithm is applied. In essence, the same trick is applied as used by the
minActFreq parameter (using an alphabet subset), which is to create a different
set of initial 1-node parallel episodes to start discovering with.

The main bottleneck is the frequency computation by checking the occurrence
of each episode in each trace. Typically, we have a small amount of episodes to
check, but many traces to check against. Using the MapReduce programming
model developed by Dean and Ghemawat, we can easily parallelize the episode

Discovery of Frequent Episodes in Event Logs 29

discovery algorithm and execute it on a large cluster of commodity machines
[29]. The MapReduce programming model requires us to define map and reduce
functions. The map function, in our case, accepts a trace and produces [episode,
trace] pairs for each episode occurring in the given trace. The reduce function
accepts an episode plus a list of traces in which that episode occurs, and outputs
a singleton list if the episode is frequent, and an empty list otherwise. This way,
the main bottleneck of the algorithm can be effectively parallelized.

References

[1] van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhance-
ment of Business Processes. Springer-Verlag, Berlin (2011)

[2] Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of Frequent Episodes in
Event Sequences. Data Mining and Knowledge Discovery 1(3) (1997) 259–289

[3] Lu, X., Fahland, D., van der Aalst, W.M.P.: Conformance checking based on
partially ordered event data. To appear in Business Process Intelligence 2014,
workshop SBS (2014)

[4] Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases. VLDB ’94, San Francisco, CA, USA, Morgan Kaufmann Publishers
Inc. (1994) 487–499

[5] Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proceedings of the
Eleventh International Conference on Data Engineering. ICDE ’95, Washington,
DC, USA, IEEE Computer Society (1995) 3–14

[6] Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalization and
Performance Improvements. In: Proceedings of the 5th International Conference
on Extending Database Technology: Advances in Database Technology. EDBT
’96, London, UK, UK, Springer-Verlag (1996) 3–17

[7] Lu, X., Mans, R.S., Fahland, D., van der Aalst, W.M.P.: Conformance Checking
in Healthcare Based on Partially Ordered Event Data. In Grau, A., Zurawski,
R., eds.: IEEE Emerging Technology and Factory Automation (ETFA 2014),
IEEE Computer Society (2014) 1–8

[8] Fahland, D., van der Aalst, W.M.P.: Model Repair: Aligning Process Models to
Reality. Volume 47. (January 2015) 220–243

[9] Leemans, M.: Episode Miner. https://svn.win.tue.nl/repos/prom/Packages/
EpisodeMiner/ [Online, accessed 9 Januari 2015].

[10] Laxman, S., Sastry, P.S., Unnikrishnan, K.P.: Fast Algorithms for Frequent
Episode Discovery in Event Sequences. In: Proceedings of the 3rd Workshop on
Mining Temporal and Sequential Data. SIGKDD, Seattle, WA, USA, Association
for Computing Machinery, Inc. (August 2004)

[11] van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering 16(9) (2004) 1128–1142

[12] de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.: Workflow
mining: Current status and future directions. In Meersman, R., Tari, Z., Schmidt,
C.D., eds.: On The Move to Meaningful Internet Systems 2003: CoopIS, DOA,
and ODBASE. Volume 2888 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2003) 389–406

[13] Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with
non-free-choice constructs. Data Mining and Knowledge Discovery 15(2) (2007)
145–180

30 Discovery of Frequent Episodes in Event Logs

[14] Weijters, A.J.M.M., van der Aalst, W.M.P., de Medeiros, A.K.A.: Process Mining
with the Heuristics Miner-algorithm. BETA Working Paper Series, WP 166,
Eindhoven University of Technology, Eindhoven (2006)

[15] de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic
Process Mining: An Experimental Evaluation. Data Mining and Knowledge
Discovery 14(2) (2007) 245–304

[16] Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the Role of
Fitness, Precision, Generalization and Simplicity in Process Discovery. In Meers-
man, R., Rinderle, S., Dadam, P., Zhou, X., eds.: OTM Federated Conferences,
20th International Conference on Cooperative Information Systems (CoopIS
2012). Volume 7565 of Lecture Notes in Computer Science., Springer-Verlag,
Berlin (2012) 305–322

[17] Solé, M., Carmona, J.: Process Mining from a Basis of State Regions. In:
Applications and Theory of Petri Nets (Petri Nets 2010). Volume 6128 of Lecture
Notes in Computer Science., Springer-Verlag, Berlin (2010) 226–245

[18] van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process Mining: A Two-Step Approach to Balance Between
Underfitting and Overfitting. Software and Systems Modeling 9(1) (2010) 87–111

[19] Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on
Regions of Languages. In Alonso, G., Dadam, P., Rosemann, M., eds.: Interna-
tional Conference on Business Process Management (BPM 2007). Volume 4714
of Lecture Notes in Computer Science., Springer-Verlag, Berlin (2007) 375–383

[20] van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.:
Process Discovery using Integer Linear Programming. Fundamenta Informaticae
94 (2010) 387–412

[21] Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining - -adaptive process simpli-
fication based on multi-perspective metrics. In: Business Process Management.
Springer (2007) 328–343

[22] Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-
structured Process Models from Incomplete Event Logs. In Ciardo, G., Kindler,
E., eds.: Applications and Theory of Petri Nets 2014. Volume 8489 of Lecture
Notes in Computer Science., Springer-Verlag, Berlin (2014) 91–110

[23] Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of
declarative process models. In: Computational Intelligence and Data Mining
(CIDM), 2011 IEEE Symposium on, IEEE (2011) 192–199

[24] Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of
understandable declarative process models from event logs. In: Advanced
Information Systems Engineering, Springer (2012) 270–285

[25] Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: A knowledge-based
integrated approach for discovering and repairing declare maps. In: Advanced
Information Systems Engineering, Springer (2013) 433–448

[26] Song, M., van der Aalst, W.M.P.: Towards comprehensive support for organiza-
tional mining. Decision Support Systems 46(1) (2008) 300–317

[27] Kryszkiewicz, M.: Fast Discovery of Representative Association Rules. In
Polkowski, L., Skowron, A., eds.: Rough Sets and Current Trends in Computing.
Volume 1424 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(1998) 214–222

[28] van der Aalst, W.M.P.: Decomposing Petri Nets for Process Mining: A Generic
Approach. Distributed and Parallel Databases 31(4) (2013) 471–507

[29] Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large
Clusters. Communications of the ACM 51(1) (2008) 107–113

