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Abstract—Tremendous developments in Information Tech-
nology (IT) have enabled us to store and process huge amounts
of data at unprecedented rates. This impacts business processes
in various ways. Throughput times of processes decrease while
the data stored associated to the execution of these processes
increases. The field of process discovery, originating from
the area of process mining, is concerned with automatically
discovering process models from event data related to the
execution of business processes. In this paper, we assess the
scalability of applying process discovery techniques in data
intensive environments. We propose ways to compute parts
of the internal data abstractions used by the discovery tech-
niques within the MapReduce framework. The combination of
MapReduce and process discovery enables us to tackle much
bigger event logs in less time. Our generic approach scales
linearly in terms of the size of the data and the number of
computational resources used, and thus, shows great potential
for the adoption of process discovery in a Big Data context.

Keywords-Process mining; MapReduce; Hadoop; Big Data;
Automated process discovery; Scalability; ProM

I. INTRODUCTION

The amount of data being recorded has increased tremen-
dously over the last few years. Nowadays, the total amount
of data generated within a few minutes equals the total
amount of data generated between the Stone Age and 2003.
Moreover, the rate of data generation keeps increasing [[1].
The main challenge related to this data explosion phe-
nomenon is not the storage, but the extraction of valuable
information from these huge collections of data [2].

The latter challenge also applies to the analysis of business
processes. Multiple events related to the execution of busi-
ness processes are recorded everyday including the activities
performed, the resource executing the activity, the associated
cost, etc. A collection of such events is referred to as an
event log. A thorough analysis of an event log can lead
to improvements in the operational process under study,
e.g., causing increases in revenue, system reliability, process
quality, client satisfaction, etc. Enabling the aforementioned
improvements is the main goal of process mining [3|].

Process mining includes three types of analysis. Process
discovery, the most prominent process mining task, is con-
cerned with automatically extracting a process model from
an event log. Conformance checking measures how well
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the behaviour recorded in an event log fits a given process
model and vice versa. Process enhancement is concerned
with improving an existing model using information about
the actual process recorded in an event log.

The spectacular growth of event data poses new chal-
lenges for process mining techniques. The majority of pro-
cess mining techniques are not designed to scale, i.e., they
assume all data to be in local memory and do not apply dis-
tributed computation schemes across several computers [4]].
These assumptions are reflected in the poor handling of
large amounts of data by tools used for process mining, e.g.,
the ProM frameworK'} Discd?] etc. Hence, current process
mining techniques fail when being applied to large amounts
of data.

Some approaches to tackle the scalability issues in process
mining have been proposed, e.g., the application of divide
and conquer schemes for the purpose of problem decom-
position [5]]. Additionally a first implementation of process
discovery algorithms using the MapReduce [6] framework
was proposed [7]. However, an exhaustive study of the pos-
sible benefits of the use of distributed computing techniques
in the context of process mining is still missing.

MapReduce is of special interest as it concerns a scalable
distributed computing paradigm suitable for data-intensive
applications [8]. Apache Hadoo;ﬂ is the most popular open
source implementation supporting MapReduce. Addition-
ally, Hadoop provides a distributed file system (HDFS)
suitable for storing data at a large-scale. Thus, Hadoop
provides a bridge between large amounts of event data,
typically stored in a company’s data warehouse, and the
MapReduce paradigm.

The main goal of this paper is to assess the scalability
and viability of distributed process discovery approaches.
For this purpose, we have designed a distributed approach
for large-scale process discovery based on MapReduce. The
approach starts with partitioning the input event log and
computing different data abstractions suitable to be used
by different process discovery techniques. Then, the process
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model calculated from these abstraction is discovered and
visualized within the ProM framework, the most widely used
process mining tool, taking advantage of the algorithms and
methods already available in the tool. Thus, the integration
of these technologies enables researchers and practitioners in
the process mining community to use and develop distributed
process mining techniques and provides the opportunity
of improving the performance and scalability of existing
techniques.

A comprehensive assessment of the scalability of the
developed approach is carried out by performing several
experiments varying different dimensions like event log size,
computational resources used, and event log characteristics.
The results obtained from the conducted experiments prove
the scalability of the solution and the importance of the spe-
cific log in the final execution time. The results demonstrate
the viability of using this type of techniques in the process
mining field. Thus, the analysis of vast amounts of data is
possible in a reasonable time.

The remainder of this paper is organized as follows.
Section [[I] provides an overview of the process mining field,
MapReduce and Hadoop. In Section the MapReduce-
based approach for large-scale distributed process discovery
is explained. Section presents the evaluation of the
approach using several datasets and discusses the results.
In Section [V|related work is discussed. Finally, Section
summarizes and concludes the paper.

II. PRELIMINARIES
A. Event Logs and Process Models

We present a brief overview of the key concepts within
the field of process mining. For a more detailed overview of
the field and associated concepts we refer to [3].

The typical input for process mining is an event log. An
event log corresponds to a collection of traces, referring to
a specific execution of the business process, i.e. a process
instance or case. Each trace is an ordered sequence of events.
Each event represents an execution of an activity that is part
of the process in the context of a case. In addition, other
information about events can also be recorded and used for
further analysis. For instance, the resource that is executing
the activity or the timestamp of the event are attributes of
interest that can be recorded with an event. As an example
of an event log consider Table [ adopted from [3]].

The event log describes two cases of a (fictional) process
related to handling compensation requests. The two cases
depicted in the table are identified by the Case-id column,
i.e. 355410 and 355411. Various activities are performed
within the process, i.e. register request, check ticket, etc.,
and various resources are active within the business process,
i.e. Alfred, Lucy, etc.

Techniques for process discovery return process models
learned from event data. A process model describes the
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Figure 1: BPMN model adopted from [3]], describing the
two traces presented in Table E}

possible flow of execution of a business process. An ex-
ample of a business process model, using BPMN [9] as
process modelling language, able to describe the two traces
presented in Table [I] is depicted in Figure [I]

The process model allows for different traces of events
as well. In fact, due to the loop structure (i.e. executing
reinitiate request), the process model describes an infinite
number of traces.

B. Process Discovery Techniques

The main goal of process discovery is to construct a
process model, based on event data stored in an event log.
An abundance of process discovery techniques exist. We
refer to [|10] for an overview. The solution proposed in this
paper is tailored towards three specific process discovery
techniques which we describe in more detail, i.e., the Alpha
Miner [11], the Inductive Miner [12] and the Flexible
Heuristics Miner |[13]]. These three techniques are represen-
tative for a wider range of process discovery techniques.
The conceptual computational structures of the algorithms
indicating the data relations are depicted in Figure [2]

Alpha Miner: The Alpha Miner consists of three stages
as shown in Figure First, direct succession information
of the activities in the event log is recorded in a directly-
follows graph (stage 1). Direct succession of activity a

Case-id Activity Resource Time-stamp

355410 register request Alfred 2015-07-08T08:45:37+00:00
355410 examine thoroughly Lucy 2015-07-09T09:13:37+00:00
355410 check ticket Alfred 2015-07-15T09:14:25+00:00
355410 decide Ralph 2015-07-18T10:11:15+00:00
355410 reject request Ralph 2015-07-19T10:28:18+00:00
355411 register request Lucy 2015-07-08T10:33:37+00:00
355411 examine casually Rob 2015-07-10T10:43:56+00:00
355411 check ticket Ralph 2015-07-12T11:00:28+00:00
355411 decide Rob 2015-07-15T11:14:04+00:00
355411 reinitiate request Rob 2015-07-15T11:35:17+00:00
355411 examine thoroughly Lucy 2015-07-18T11:55:38+00:00
355411 check ticket Alfred 2015-07-22T11:57:46+00:00
355411 decide Alfred 2015-07-22T12:20:32+00:00
355411 pay compensation Lucy 2015-07-25T12:26:56+00:00

Table I: A fragment of a fictional event log adopted from [J3]].
Each line corresponds to an event.



by some activity b means that in some trace, activity a is
immediately followed by activity b. For example in Table
register request is directly followed by examine thoroughly.
The directly-follows graph used by the Alpha Miner is
unweighted, i.e., it only records whether a direct succession
occurs within the event log or not. Next, a causal footprint
matrix is calculated using the directly-follows graph as input
(stage 2). The matrix indicates for any two activities if
they are executed in parallel, sequentially or whether they
never follow each other directly. Finally, a process model
representing is constructed by the a-algorithm [[11]] based on
the casual footprint matrix (stage 3). The Alpha Miner
uses Petri Nets as a representation.

Inductive Miner: An overview of the stages carried
out by the Inductive Miner is presented in Figure The
Inductive Miner approach also converts the event log to a
directly-follows graph (stage 1). The technique is how-
ever able to apply a filtering scheme on a weighted-directly
follows graph. The weighted variant explicitly captures the
frequency of a direct succession. From the weighted directly-
follows graph, a process tree is discovered by considering the
frequencies of each relation (stage 2) [12]. The process
tree can be converted later to a Petri net or a BPMN model.

Flexible Heuristics Miner: The structure of the Flex-
ible Heuristics Miner is shown in Figure In the first
stage, three graphs are calculated (stage 1). The first
graph contains information about direct succession relations
represented by a directly-follows graph, including length-one
loops. The second graph represents length-two loop relations
within the event log. Finally, the third graph represents long
distance relations, i.e, the number of times each activity is
indirectly followed by another activity. Using these three
graphs, the algorithm builds a dependency graph that for
each activity indicates the possible preceding and succeed-
ing activities (stage 2). Then, the dependency graph is
annotated by detecting the splits and joins of each activity
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Figure 2: Structure of the different stages carried out in the
process discovery techniques under study.

(stage 3).XOR/AND/OR-splits/joins can be discovered
by considering subsets of predecessor and successor activ-
ities. To do so, the event log is revisited considering the
previously calculated dependency graph and detecting all
the activators and reactors of each activity in every trace.
This step is computationally expensive and the execution
time highly depends on the event log characteristics [[13].
Finally, a heuristics net model that visualizes the annotated
dependency graph is built (stage 4).

C. MapReduce and Apache Hadoop

MapReduce [6] is an easy-to-use programming model in-
troduced by Google inc. to process large datasets on clusters
of servers in an scalable manner. It is based on the use of
two functions, inspired from the functional programming
paradigm: map and reduce. The user needs to define
these two functions using key-value pairs to express both
the input and the output of the computation. The input of
the map phase is a list of key-value pairs, where the input
key represents the position of the data in the input file and
the input value is the actual data. Its output is a list of
intermediate key-value pairs. The output is grouped by key
and all the intermediate values associated with the same key
are provided together to the reduce function. Then, a set
of reducers merges the values, according to a user-defined
reduce function. The reduce phase outputs a list of key-
value pairs that represent the final output of the MapRe-
duce computation. Additionally, the MapReduce paradigm
is supported by the use of a distributed storage system that
allows partitioning the input files in several smaller files
across the cluster, increasing the scalability of the approach.
Within this paper the open-source implementation of the
MapReduce framework, Apache Hadoop, is used. It has
two main features. First a MapReduce programming model,
as explained above, and a resource manager (Yet Another
Resource Manager, YARN) to schedule computational jobs
along a cluster providing high-scalability and fault-tolerance
capabilities. Second, a distributed file system (Hadoop Dis-
tributed File System, HDFS) able to split input data in several
blocks that are distributed and replicated along the cluster
to provide high-throughput and reliable access to them.

III. COMPUTING INTERMEDIATE EVENT LOG
ABSTRACTIONS USING MAPREDUCE

A. Conceptual Approach

The MapReduce-based process discovery approach pro-
posed in this paper is based on calculating the intermediate
log abstractions (directly-follows graph, dependency graph,
etc.) required by the process discovery techniques. Computa-
tion of these intermediary results is done using one or several
MapReduce jobs. The final process model is calculated in
the ProM framework. The design decision is based on the
observation that computing the intermediate abstractions is
the most computational expensive task since the whole event



log must be analysed and different calculations must be per-
formed. Additionally, by calculating the final process model
in ProM, we can benefit from the use of the algorithms and
abstractions already included in the ProM framework.

First, the input event log is split into several independent
sublogs that contain a subset of traces. During the map
phase, the specific computations needed for the discovery
algorithm are performed calculating local abstractions corre-
sponding to each sublog. Next, the reduce phase aggregates
all intermediate data to get a final abstraction of the whole
event log and additionally performs, if necessary, some basic
transformations. Finally, when the last abstraction is calcu-
lated using one or several MapReduce jobs, the final process
model is discovered inside the ProM framework. Note that
this is possible since the size of the intermediate abstractions
is typically small (only depending on the number of unique
activities and not on the number of events).

The distributed computing approach takes advantage of
the possibility of calculating the intermediate abstractions in
parallel, at trace level, and aggregating the results later. This
type of computation is highly suitable to be modelled within
MapReduce since the computation of the intermediate phase
can be performed during the map phase and the aggregation
of the results can be carried out during the reduce phase.

An important aspect of the approach is the input format
used to represent the event logs. The eXtensible Event
Stream (XES) formaﬂ [14] is used since it is a standard
language to represent event logs tailored towards process
mining, data mining, text mining and statistical analysis. To
use the MapReduce based approach, the event log must be
stored in the HDFS. Thus, the event log is split in blocks
of some predefined size, i.e, every block can be considered
as an independent sublog. Then, a mapper calculates the
intermediate data corresponding to each sublog. Although
the blocks do not respect the division of the log in term
of traces, Hadoop automatically manages the traces that are
split in two blocks providing complete traces to mappers.

B. Intermediate Abstractions

Both the Alpha Miner and the Inductive Miner use the
directly-follows graph as an intermediate abstraction of the
event log (stage 1 of Figures[2aland[2b). Hence we design
the computation of the directly-follows graph as a MapRe-
duce job. Figure [3|shows schematically the calculation of the
directly-follows graph illustrating the MapReduce approach
proposed in this paper. First, the log must be placed in the
HDFS. As a consequence, the input log is automatically
partitioned in several sublogs which serve as input to the
mappers. Next, a directly-follows graph from each sublog
is calculated during the map phase. For instance, the local
graph corresponding to the second sublog in the example
indicates that a is the start activity two times, a is followed
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Figure 3: Example showing the MapReduce computation of
a directly-follows graph in Hadoop.

by b twice, b is followed by d on two occasions and d
is the end activity two times. Finally, all the intermediate
graphs calculated by the mappers are aggregated during the
reduce phase by using a single reducer. Thus, a directly-
follows graph representing an abstraction of the whole log
is calculated as output of the MapReduce job and used
to discover a process model by applying the Alpha or the
Inductive discovery algorithm.

For the Flexible Heuristics Miner, two MapReduce jobs
are executed sequentially. The first one calculates the depen-
dency graph and the second one annotates it by computing
the splits and joins. The map phase of the first MapReduce
job calculates the directly-follows, length-two loops and
long distance relations graphs of each sublog (stage 1
of Figure [2c). Next, a reducer aggregates all the graphs
and computes the dependency graph that is written in the
HDFS as result of the job (stage 2 of Figure [2c). The
second MapReduce job computes the annotated dependency
graph (stage 3 of Figure [2c). Before starting the job, the
dependency graph generated in the first MapReduce job is
written in the Hadoop distributed cache so it can be used by
all the mappers of the second job. These mappers calculate
the splits and joins of each sublog using the dependency
graph. Finally, they emit the split and joins that are received
by the reducer to compose the annotated dependency graph
that is written as output.

C. Final Process Model

Once the event log abstractions have been calculated
using MapReduce, the final process model is discovered
using the ProM framework. Thereby, these abstractions are
downloaded from the remote Hadoop cluster and the selected
discovery algorithm is applied to get the final process
model. This way, we benefit from using the algorithms and
techniques previously developed within the tool.

The integration of the MapReduce-based approach and
ProM provides plugins with the ability to establish a con-
nection with a Hadoop cluster, to import XES logs stored
in a remote HDFS and to execute the implemented Hadoop-


http://www.xes-standard.org/

based process discovery techniques. The plug-ins automat-
ically manage the communication with the Hadoop cluster,
the execution of the MapReduce jobs in the remote cluster,
the transfer of the intermediate results and the computation
and visualization of the final process model. Additionally,
generic methods to enable the development of new process
mining techniques are included. Thus, the developer only
needs to implement the new MapReduce jobs and the
final computation of the process model, meanwhile ProM
manages the interaction with the remote cluster. For more
details on the integration of Apache Hadoop in the ProM
framework we refer to [[15]].

IV. EXPERIMENTAL EVALUATION

We have evaluated the proposed approach to discover
process models from large events logs using Apache MapRe-
duce. In the experiments, we measured the execution time
of applying different process discovery techniques and eval-
vated the scalability of the solution. The quality of the
generated models is not evaluated as the focus of this work
is on scalability of the existing techniques when they face
huge event logs.

A. Experimental Setup

For the experiments, we have used a Hadoop cluster
composed of 5 computing nodes. One of them is configured
as the master node and the remaining four as worker nodes.
The master node consists of eight Intel Xeon CPU E5430
at 2.66 GHz processors, 32 GB of RAM memory and five
300 GB hard disks. Each worker node consists of eight Intel
Xeon CPU E5-2407 v2 at 2.40 GHz processors, 64 GB of
RAM memory and eight 1 TB hard disks.

Regarding Apache Hadoop, version 2.6.0 was deployed
in the cluster. The main configuration parameters establish
that up to 16 Hadoop tasks per worker node can be carried
out in parallel using up to 56 GB of memory. The HDFS
is configured to store files in blocks of 256 MB making
2 replicas of each block. This configuration is in line
with the recommended guidelines by different MapReduce
distributionfﬂ and was adopted after different performance
tests.

Finally, the following parameters for the process discovery
techniques were used in all the experiments. For the Alpha
Miner, there are no configuration parameters and hence, the
default implementation is used. For the Inductive Miner, the
Inductive Miner - infrequent variant with the noise threshold
set to 0.2 is used. For the Flexible Heuristics Miner, the all
tasks connected and long distance dependency heuristics are
selected whereas the dependency, length-one-loop, length-
two-loops and long-distance thresholds are set to 90.0 and
the relative-to-best threshold is set to 5.0.

Shttp://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/
hadoop-common/ClusterSetup.html

Shttp://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.6.0/
bk_installing_manually_book/content/rpm-chap1-11.html

All results presented below are based on an average of
five executions.

B. Varying the Size of the Event Log

The aim of this experiment is to evaluate the scalability
of the presented approach according to the total size of the
event log, i.e., the total number of events in the log.

Setup: The dataset used in the experiments consists of
several event logs of different size that have been created
randomly from a process tree consisting of 40 activities.
The size of the events logs varies from 2 GB to 218 GB,
from almost 1 million to 100 million traces and from around
32 million to 3.500 million events (Table [I). On average,
the traces are composed of 35 events.

Results: Figure @] summarizes the obtained results.
Specifically, Figure fa] shows the execution time of applying
the Alpha Miner and the Inductive Miner whereas Figure
shows the results concerning the Flexible Heuristics Miner.

The results of Alpha and Inductive Miner are compa-
rable. Both algorithms perform the same computation in
the Hadoop cluster (calculating the directly-follows graph)
and, then, use this information as an input for the mining
algorithms which take only a few seconds.

For the Flexible Heuristics Miner, Figure shows the
execution time of the first MapReduce phase (Computing
DGraph dotted line), the execution time of the second
MapReduce phase (Annotating DGraph dotted line) and the
total execution time resulting of considering both phases
(Flexible Heuristics Miner line). There is a big difference
between both MapReduce phases. The execution time of the
first phase is slightly higher than the execution time of Alpha
Miner and Inductive Miner. The second phase is much more
computationally expensive and accounts for around 90% of
the total execution time of the discovery algorithm.

Discussion: The experiments show that the proposed
approach is scalable in terms of event log size. We identify
a linear increase in execution time w.r.t. the event log
size for all techniques. An interesting result is the small
difference between the execution time of the Alpha Miner,
the Inductive Miner and the execution time of the first part
of the Flexible Heuristics Miner. In the two first algorithms,
this time corresponds to the computation of the directly-
follows graph, whereas in the second case, it corresponds

Log size (GB) | Number of traces | Number of events

2 926.006 32.407.324

8 3.671.032 128.481.890

16 7.341.929 256.963.820
32 14.683.619 513.927.754
64 29.367.284 1.027.855.444
128 58.734.750 2.055.710.794
218 100.000.000 3.499.987.460

Table II: Summary of log size, number of traces and events
corresponding to the event logs forming the first dataset used
in the experiments.
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Figure 4: Scalability results when varying the size of the event log. The plots show the execution time of the studied process
discovery techniques when the total number of events in the log is increased.

to calculation of the directly-follows graph including the
length-two loops graph and the long distance relations graph.
Thus, the additional time used to calculate more information
in the first part of the Flexible Heuristics Miner does not
have a great impact on the final execution time. Furthermore,
it is explained because Hadoop is best suited to support large
and computing-intensive tasks instead of real-time ones.

C. Varying the Number of Computational Resources

In this experiment we analyse the speed-up achieved when
increasing the number of computing resources used.

Setup: In this experiment, the previous experiment was
repeated with different numbers of available computational
resources. The experiment is repeated using 1, 2 and 3
worker nodes and is compared with the previous results,
i.e., where the whole cluster (4 worker nodes) was used.

Results: Figure [5] shows the results of this second
experiment. The figure shows the speed-up of the 2, 3 and 4
workers nodes deployments compared with the single worker
configuration of the Hadoop cluster. Figure [5a] shows the
speed-up of computing the directly-follows graph in Hadoop,
corresponding to computation performed in both the Alpha
Miner and the Inductive Miner. Figure [5b] shows the results
corresponding to the execution of the Flexible Heuristics
Miner. In both cases, one can see the same trend and the
algorithms get an almost linear speed-up when the input log
is large enough.

Discussion: The approach presents a great scalability
with the number of worker nodes. The results show an
almost linear speed-up compared to the 1 worker node
deployment when the log is large enough. The execution
time for the 2 GB log is independent of the number of
computing resources because the whole computation can be

completed using only 1 worker node and as a consequence,
there is no speed-up when several nodes are added. In the
2 nodes deployments, an almost linear speed-up is achieved
when the log size is at least 16 GB. When 3 worker nodes
are used, the linear speed-up is obtained from the 32 GB log.
Finally, for the whole cluster deployment, the size varies in
the Alpha and Inductive Miner and in the Flexible Heuristics
Miner. For the first two miners, an almost linear speed is
achieved with the 32 GB logs. However, for the Flexible
Heuristics Miner we at least need the 64 GB event log. The
reason for the requirement of increasing the event log size to
achieve linear speed-ups is twofold. First, more mappers are
needed to fill all the worker nodes. Second, communication
and network-related delays increase. Obviously, these values
will vary in other clusters since it depends on the number of
parallel tasks executed in every node and the HDFS block
size.

D. Varying the Number of Activities

The main reason for analysing the impact of the number
of activities with regard to performance is its great influence
on the computational cost of process discovery techniques.
Some techniques analyse complex properties and explore
several possibilities whereby the number of events per trace
and the number of activities forming the process can greatly
influence the execution time, e.g., in the case of the Flexible
Heuristics Miner.

Setup: In this experiment, three different datasets rep-
resenting three different business processes are used. The
first dataset corresponds to the event logs used in the
previous experiments, i.e. as shown in Table [II} The second
dataset corresponds to event logs generated from the same
underlying business process with an additional loop present
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Figure 5: Scalability results varying the number of worker nodes used in the Hadoop cluster. The figures show the speed-up
of distributed configurations compared to a single worker node deployment.

Log size (GB) | Number of traces | Number of events
3,6 926.006 64.814.648
14,2 3.671.032 256.963.780
28,5 7.341.929 513.927.640
56,9 14.683.619 1.027.855.444
113,9 29.367.284 2.055.710.888
2278 58.734.750 4.111.421.588
387,9 100.000.000 6.999.974.920

Table III: Summary of log size, number of traces and events
corresponding to the event logs in the second and third
datasets used in the last scalability experiment.

at the end of the process model. The loop is configured to
execute one additional iteration of the process. The number
of events per trace doubles compared to event logs in the
first dataset whereas the number of activities remains the
same. The third dataset is based on the process model used
for the second one. However, the activities in the second
iteration of the loop have been renamed. Hence, the event
logs in the third dataset has both a double number of events
and a double number of activities per trace, compared to
the logs in the first dataset. The characteristics of the two
additional datasets are depicted in Table Summarizing,
the logs in the first dataset include 40 possible activities and
35 events per trace, the ones in the second dataset include
40 possible activities and 70 events per trace whereas the
logs in the third dataset include 80 possible activities and
70 events per trace.

Results: Figure [6] shows the results of the experiment
corresponding to the three different datasets. Note the first
dataset contains logs with half events than the logs in
the other two datasets. The results of Inductive Miner are
provided in Figure [6a] The execution time is similar for

the three datasets. The results of the Flexible Heuristics
Miner are depicted in Figure [6b] In this case, there is a
big difference between the execution time of the logs in the
third dataset compared to the executing time of the ones in
the first two datasets. This is due to the computational cost
of the Flexible Heuristics Miner varies with the number of
activities in the log. The results related to the Alpha Miner
results are not shown since they are again roughly equal to
the results of the Inductive Miner.

Discussion: On the one hand, the results of the Induc-
tive Miner, and consequently the Alpha Miner, show that
the number of events per trace and the number of activities
have no influence on the techniques. The execution time is
linear in the size of the event logs since the computation
only considers the current and the next event in a trace. On
the other hand, the characteristics of the event log greatly
influence the execution time of the Flexible Heuristics Miner.
The first two datasets show the same trend and have a
similar execution time when the same number of events
is considered. However, the computation of the annotated
dependency graph corresponding to the logs in the third
dataset is much slower. This difference is mainly due to the
number of activities heavily impacts the computation of the
splits and joins used to annotate the dependency graph [[13]].

E. A Note on Storing Event Logs in the HDFS

The event logs have to be written to the HDFES, prior to
using them. We analysed the time required to perform this
operation for the three datasets considered in the evaluation.

Results: Figure /| shows the execution time required to
store the event logs in the datasets according to their size.
The time required to store the input log in the HDFS is
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Figure 6: Results of the influence of the number of events and activities experiment. The plots show the execution time
of the studied process discovery techniques when they are applied to event logs representing similar processes but with

different characteristics.
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Figure 7: Time required to store the event logs of the three
considered datasets in the Hadoop Distributed File System.

linear with the log size. The average I/O recorded is around
113 MB/s.

Discussion: Storing files in the HDFS has a linear
performance since the event log must be read and written
sequentially. Note that the contents of the input file are
not relevant for this operation since Apache Hadoop splits
the file in blocks of exactly 256 MB, as indicated in the
configuration, without considering its inner content.

F. General Discussion

The execution time of the Alpha Miner and the Inductive
Miner are roughly equal since both algorithms share the

same intermediate abstraction. Moreover, discovering the
process model is much faster than computing the interme-
diate directly-follows graph. The execution time of com-
puting the dependency graph (first MapReduce job of the
Flexible Heuristics Miner) takes a slightly longer time than
discovering the directly-follows graph. If we consider the
fact that this MapReduce job calculates more abstractions
than just the directly-follows graph, we can conclude that the
approach is more beneficial to address computing-intensive
discovery algorithms.

One of the requirements of the framework used for
evaluation is the use of the XML-based XES format to
represent the event log. However, event logs can be repre-
sented using different formats, e.g. CSV (Comma Separated
Values). Although the XES format is the standard format to
represent event logs, it could be interesting to explore the use
of different formats as well. Furthermore, the input format
heavily impacts the size of the log and, consequently, the
I/O performance. XES allows to perform specific computa-
tions trace by trace, as required for the process discovery
techniques. The read performance is however rather low.
If we consider other common formats, like CSV, the read
performance should be higher because events are read line
by line. In the case of CSV we however need an additional,
initial, MapReduce phase to transform the data in order to
be able to analyze the event log trace by trace. Another
possibility could be using a format specifically designed to
work in MapReduce environments like Apache Avr(ﬂ that
is designed to handle XML files in Hadoop. Most likely,
this will enable an improvement in I/O performance and a

7http://avro.apache.org/
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reduction in log size.

V. RELATED WORK

An overview of different options for distributed process
mining is presented in [5]. This work proposes to compute
several process models by partitioning the log in several sub-
logs and merging the results to obtain a final model. The first
option is to divide the event log in sub-logs that contains
the whole process but fewer cases (vertical partitioning).
The second option is to split the log in sub-logs that contain
specific parts of the process, i.e., by projecting on a subset
of activities (horizontal partitioning).

Closely linked to the previous approach is the use of
divide-and-conquer approaches [4], [16]-[18]]. In general,
the aim is to partition the event log, ensuring the resulting
models can be merged getting a valid result. Specifically,
the use of passages, special pairs of events that allows to
decompose the event log and aggregate the final results with
correctness guarantees, is explored in [16]; decomposing
the event log using overlapping sets of events is proposed
in [17] and partitioning the process model in several single-
entry single-exit subprocesses for conformance checking
in the large is presented in [18]]. However, the previous
techniques are limited to Petri nets. Finally, in [4] the divide
and conquer approach is generalized beyond Petri nets.
Compared to the previous approaches, our technique is based
on a vertical partition of the event log since this model is
more suitable for parallel MapReduce computations.

MapReduce is rarely applied in a process mining con-
text. In [19]], MapReduce has been used to support event
correlation discovery, i.e., to identify the events that are
part of the same case. The approach uses two MapReduce
jobs to compute simple correlations conditions in the first
job and composite ones in the second job. In our case, we
assume that the input event log has information about the
process instance corresponding to each event. In the context
of process discovery, MapReduce was previously used to
implement the Alpha Miner and the Flexible Heuristics
Miner using the Amazon Elastic Map-Reduce service [7].
The implementation uses two MapReduce jobs for the Alpha
Miner and five jobs for the Flexible Heuristics Miner.

Although the work presented in [7] is related to the
approach presented in this paper, the implementation is
significantly different. Our approach overcomes some of the
problems not addressed in [7]]. The architecture proposed
in [7] does not fit properly with a MapReduce approach
since it uses the map phase to collect data and several
reducers to perform different computations in parallel. This
design decision has two main drawbacks. First, multiple
“identity” map phases are used, i.e., map phases that do not
manipulate any of the input key-value pairs. This increases
the amount of data transferred over the network and results
in useless computations with the sole goal of grouping sparse
data by key. Second, the number of key-value pairs emitted

in some reduce phases is higher than the input key-value
pairs. In such cases, much more data must be written to
the distributed storage system which increases the execution
time. Likewise, much more data must be read as input of the
following map phase. In this situation, using an “identity”
reducer is preferable.

We can not directly compare the approach of [7] to the
approach proposed here as different computing resources
and event logs are used. Moreover, the developed techniques
are not available so the work is hardly reproducible. In any
case, the execution times presented in the paper show poor
scalability of the approach. When moving from a cluster of
10 general-purpose processors (that uses up to 20 parallel
threads) to a cluster of 320 high-performance processors
(that uses up to 480 parallel threads), the speed-up is 10.5
for the Alpha Miner and 6.27 for the Flexible Heuristics
Miner. Hence, we adopted a new scheme to better allow for
scalable distributed process discovery.

Finally, there is a big difference in the size of the logs used
in both works. In [7]] the discovery techniques are applied to
a log consisting of 5 million traces and around 184,5 million
events. In this work, we apply them to logs consisting of
up to 100 million traces and almost 7 billion events getting
scalable results. Thus, our approach overcomes the approach
in [7] since it is applied to bigger logs and results prove
the scalability of the approach both regarding the log size
and the number of computational resources used.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have evaluated the scalability and
validity of using a MapReduce-based approach for large-
scale process discovery. The approach used for evaluation
is based on computing intermediate abstractions, such as
the directly-follows graph, used by the process discovery
algorithms as MapReduce jobs. Our evaluation demonstrated
that the approach is able to handle large event logs in
an efficient and scalable manner. Additionally, the solution
has been implemented within the ProM framework enabling
researches and practitioners of the process mining commu-
nity to use the developed algorithms and to implement new
MapReduce-based techniques. This overcomes one of the
main limitations of the tool since it was unable to analyse
huge event logs.

As future work, we plan to develop new process discovery
techniques using this approach and to extend the approach
to conformance checking and process enhancement. Specif-
ically, we consider that computing alignments should be
beneficial due to its high computational cost [20]. Another
interesting topic is to support the use of different input
formats, such as Comma Separated Values (CSV) or Apache
Avro, to represent the input event logs and to explore the
performance and scalability of the algorithms when different
input formats are used. Also, we would like to explore the
possibility of partitioning the log horizontally, by subsets of



activities, since super-linear speed-ups could be obtained for
process mining techniques whose computational complexity
is exponential in the number of activities [4]. Finally, we
intend to explore different technologies and approaches to
support in process mining in the large (Big Data). In this
aspect, we will explore other technologies that are built
on top of Hadoop like Apache Spar other distributed
computing paradigms like grid and cloud computing [21]
and the integration of several computing infrastructures that
allow for more parallelism level in discovery algorithms,
thus further reducing the execution time [22].
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