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Abstract

Companies standardise and automate their business processes in order to improve process efficiency and minimise

operational risks. However, it is difficult to eliminate all process risks during the process design stage due to the fact

that processes often run in complex and changeable environments and rely on human resources. Timely identification

of process risks is crucial in order to insure the achievement of process goals. Business processes are often supported

by information systems that record information about their executions in event logs. In this article we present an

approach and a supporting tool for the evaluation of the overall process risk and for the prediction of process outcomes

based on the analysis of information recorded in event logs. It can help managers evaluate the overall risk exposure

of their business processes, track the evolution of overall process risk, identify changes and predict process outcomes

based on the current value of overall process risk. The approach was implemented and validated using synthetic event

logs and through a case study with a real event log.
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1. Introduction

In order to deliver desirable outcomes in an efficient manner and minimise operational risks companies often stan-

dardise and automate their business operations. Business processes are exposed to different risks that can jeopardise

the achievement of process goals in terms of cost, timeliness or the quality of outputs [14]. It is not possible to con-

sider all process execution scenarios and to eliminate all operational risks during the process design stage [27, 30] as

processes are often executed in complex [35] and changeable [2] environments. Multiple cases (i.e., process instances)

are often processed in parallel, e.g., multiple loan applications can be processed in a bank at the same time. The same

resources may be involved in execution of these process instances. Human resources tend to make mistakes and their

productivity levels can vary. Human factors are considered to be “unequivocally the single most important element

that can affect project success” [31]. A case can be affected by events, either happening in the case itself or external to

the case [35]. For example, when a resource is busy processing a complex case, he may neglect other cases assigned

to him, hence causing delays. Sometimes an event that is not risky on its own can be risky in combination with other
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events, e.g., consider the arrival of an urgent case – one such case will typically not be a problem, but when multiple

urgent cases arrive within a short period of time, outcomes (e.g., quality and duration) of all cases active during this

period may be affected.

Furthermore, it can be very costly to address all known process risks during the process design stage. For example,

in order to decrease the likelihood of human mistakes, the result of every completed task instance can be checked by

a human resource not involved in its execution (“four-eyes principle” [39]). However, this strategy is very time-

consuming and is too costly to be applied in non-critical processes. Although it is not always possible to build

mechanisms into a process that address all known process risks during the process design stage, it is important to

evaluate the level of overall process risk during the execution of a process.

Effective risk management is crucial for organisations [8]. ISO Guide 73:2009 defines risk as the “effect of

uncertainty on objectives” where effect is “a deviation from the expected – positive and/or negative” [13]. Risk

identification is a critical task and one of the most challenging in the risk management process [29]. Although many

risk management approaches provide high-level guidelines about risk identification strategies, they do not provide any

guidelines on how to operationalise them [21, 29]. Recently a few approaches have been proposed that allow us to

identify some process-related risks [3, 5, 24, 25]. Existing approaches typically analyse characteristics of individual

process instances and predict risks on the process instance level, though “the handling of cases is influenced by a much

broader context” [35]. They also do not consider the fact that process risk can change over time. As managing risks

in individual process instances can be very costly, for non-critical processes companies may be more interested in

managing overall process risk rather than dealing with risks in individual process instances. For example, a manager

may wish to be alerted only when overall process risk reaches some predefined threshold rather than receiving “delay

likelihood” notifications for individual process instances.

Up to now insufficient attention has been paid to the problem of evaluation of overall process risk [4], i.e., the

risk that threatens the achievement of overall process goals (e.g., completing the majority of cases within a given

time period or within a given budget) and can be caused by different process-related risk factors in multiple process

instances. Hence, our first research question in this paper is: how can we evaluate overall process risk at a given point

in time considering different risk factors across all running process instances? A method for evaluation of overall

process risk at different points in time can help managers identify changes in overall process risk. In the case of a

significant increase of overall process risk, managers may wish to look more closely at business operations in order to

investigate sources of the risk increase and take corresponding actions. For example, they can discover that the overall

risk increased because specific tasks in a process are often repeated or delayed. Consequently, they may decide to

provide training to resources that execute these tasks or to hire additional employees.

When multiple events that increase process risks (we refer to them as risky process behaviours) happen in a

process within a short period of time, many cases that are active during this period may not achieve their goals (e.g.,

in terms of time or quality). Let us consider as an example a service desk organisation. Within a few hours many

urgent requests may be lodged, a few complex incidents may be re-opened and a special type of expertise may be
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Figure 1: Evaluating overall process risk and predicting process outcomes

required for some urgent cases. During such periods resources may become abnormally busy. Due to the fact that

the resources need to solve many urgent or complex issues it is likely that many cases that are active during this

period may be delayed or completed with mistakes. Our second research question we tackle in this paper is: how can

we predict aggregate process outcomes based on the current value of overall process risk? Examples of aggregate

process outcomes include: the percentage of active cases that will not produce a process outcome of a high quality

or the number of active cases that will be delayed. Such a prediction may help managers to mitigate significant risks,

e.g., when they learn that many running process instances are likely to be delayed or completed with mistakes, they

may prioritise tasks or decide to outsource some work.

Companies often use information systems to support executions of their business processes. These information

systems record information about process executions, e.g., process tasks that were executed and resources involved in

the tasks. Such information can be converted to event logs. Information systems may record different data attributes,

e.g., case complexity or task urgency, or these may be derived from raw data. In this paper we present an approach

and a supporting tool that allows to 1) evaluate overall process risk and 2) predict aggregate process outcomes based

on the analysis of information about process executions recorded in event logs (Figure 1). As the first step, we need

to be able to capture risky behaviours of a process. An input to our approach is a process model that models desired

process behaviour, i.e., behaviour that does not threaten the achievement of process goals. We consider deviations

from such process model as risky process behaviours. Then, we need to identify such risky process behaviours in

process instances. To tackle this issue we use an existing technique for replaying an event log on a process model [6].

We devise two measures of overall process risk at a given point in time that are based on the identified risky process

behaviours. To track the evolution of the overall process risk over time we generate a time series of the overall process
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risk values, visualise them and annotate with automatically detected change points to facilitate the analysis for a user.

Time series are often used to model the evolution of different phenomena [16]. (An example of the overall process

risk time series is depicted in Figure 15.) To tackle our second research question, we generate overall process risk

time series for all processes whose behaviours affect outcomes of a given process as described above; we then extract

aggregate process outcome time series from an event log, learn a regression model from past process executions (using

extracted overall process risk time series and aggregate process outcome time series), and predict aggregate process

outcome based on the current value of overall process risk. The approach is implemented as a plugin of the process

mining framework ProM1. We demonstrate the approach using an illustrative example and evaluate it using synthetic

event logs. We also present a case study on the overall process risk evaluation using a real event log.

2. Related work

A few approaches have been proposed that deal with risks in individual process instances. Conforti et al. [5]

proposed a sensor-based approach for real-time monitoring of process risks. Their approach provides a language for

definition of process risks, allows to monitor running process instances and to alert managers when the likelihood of

some risk in a process instance exceeds a given threshold. In other work, Conforti et al. [3] proposed a method for

predicting risks in individual process instances by learning predictors from historical data. Wickboldt et al. proposed

a framework that uses process execution data for risk assessment [37]. Risk assessment modules of the framework use

information about risk events reported during past activity executions. Grigori et al. proposed a method for exception

analysis, prediction, and prevention [9]. Maggi et al. proposed a framework for predictive monitoring of business

processes that monitors business goals specified by users using Linear Temporal Logic and attempts to predict the

likelihood of achieving these goals [20]. In our own previous work we presented an approach for identification of

the risk of case delays [24, 25]. We defined Process Risk Indicators for case delays and methods for recognising

their presence in process instances. All these methods focus on risks, exceptions or constraints in individual process

instances, while in this paper we focus on overall process risk.

Conforti et al. [4] proposed a recommendation system that recommends actions to resources (i.e., recommends

tasks and data values) that minimise risk across all running process instances. Their recommendation system first

estimates risks for individual process instances and then finds an optimal distribution of tasks to resources which

“minimizes the weighted sum of overall execution time and overall risk across all running instances” [4]. Our goal

on the other hand was not to provide an optimal distribution of tasks to resources, but to be able to evaluate overall

process risk based on given risky process behaviours, track the evolution of overall process risk over time, and predict

aggregate process outcomes based on the current value of overall process risk.

Our approach is inspired by quality improvement programs such as Six Sigma and Lean that originated in the

manufacturing world. Six Sigma uses statistical metrics to monitor the quality of outputs and Lean is focused on
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elimination of waste and reduction of variability [1]. Multiple approaches to measuring process performance have

been proposed, e.g., Balanced Scorecard or Statistical Process Control (SPC) [17]. They aim to evaluate how well a

process performs based on a set of measures. SPC methods typically focus on monitoring of “final product quality

variables” or different manufacturing process characteristics, e.g., temperature or pressure [19]. Similar to quality

improvement programs and process performance evaluation approaches our method also reasons about an overall

process by analysing its characteristics, but unlike these approaches we focus on overall process risk rather than

quality or performance and we provide a method that can mine such risks from event logs.

In recent years multiple Business Intelligence tools have been proposed, however these typically focus on data,

rather than processes. An exception is the Business Process Intelligence tool suite proposed by Grigori et al. [10]

that helps to manage process execution quality. Their tool suite allows users to analyse, predict, monitor, control

and optimise different process behaviors, e.g., they can “examine how many process instances per fiscal quarter are

initiated by a certain user” or “the variance of the duration” of a service during weekends [10]. The tool also allows to

predict risks of “abnormal behaviors” [10] for running process instances. Like them we also analyse event logs and use

user-defined process characteristics as inputs, but we focus on overall process risk, rather than different characteristics

of process quality or risks in individual process instances.

A framework for detecting process concept drifts was proposed by Bose et al. [2]. In this article we also consider

the fact that processes change over time, but we focus on evaluation of overall process risk and prediction of aggregate

process outcomes, rather than detection of process changes.

In summary, the approach we present in this paper is novel because it focuses on the overall process risk and

aggregate process outcomes (rather than looking at risks in individual process instances, process performance or

quality), it is based on the analysis of information recorded in event logs, and it allows to track the evolution of overall

process risk over time.

3. Approach

The main input to our approach is an event log that contains information about process executions. An event log

is a set of events with different attributes. We assume that events in a log have at least the following attributes: case

identifier, task name, resource involved in the task, transaction type (e.g., start or complete) and a time stamp. They

can also have different data attributes, e.g., cost or urgency. Figure 2 depicts an example of an event log that contains

four events with attributes: Case ID, Task, Resource, Time, Type, and Urgency. We can see, for example, that in an

urgent case with identifier ‘123’ Sara completed task ‘Investigate Problem’ in less than two hours.

Another input to our approach is a process model that models desired process behaviour, i.e., behaviour that does

not lead to process risks. In this paper, we use Petri nets with data [7]. We consider deviations from such process

models as risky process behaviours. To identify the presence of risky process behaviours in process instances, we

use an existing technique for replaying an event log on a process model [6] that allows us to identify discrepancies
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Figure 2: Example of an event log

between an event log and a process model. Then we evaluate overall process risk based on the identified risky process

behaviours and produce a chart that depicts values of the overall process risk at different points in time, e.g., as shown

below in Figure 15. In our method for predicting aggregate process outcomes, we extract overall process risk time

series as described above, extract aggregate process outcome time series, learn a regression model from past process

executions and predict aggregate process outcome by evaluating the current value of overall process risk. To evaluate

the prediction method, we learn the regression model from a training data set, apply the model to a test data set

and produce a chart depicting real and predicted aggregate process outcomes in the test data set, e.g., as shown in

Figure 16.

To facilitate the description of our proposed methods in this section, we first provide an illustrative example

(Section 3.1), we then define the research problem (Section 3.2), this is followed by the description of our method for

evaluating overall process risk (Section 3.3), and we conclude with the description of our method for predicting an

aggregate process outcome based on the current value of overall process risk (Section 3.4).

3.1. Illustrative example

Consider processes in a processing center that provides transaction processing services to banks. Typical opera-

tions in such a processing center include: issuing of new credit cards, installation of new ATM2 and POS3 terminals,

processing card transactions, clearing card transactions with Payment systems, investigating and resolving incidents,

monitoring and preventing card transaction fraud, etc. The processes rely on human resources and they are exposed

to risks typical for a service desk environment: employees make mistakes leading to cost and quality issues, and cases

run over time or are re-opened. The same human resources can be involved in different processes. The number of

resources working in the processing center is constant, while the amount and type of work they perform can vary

significantly. We will use two processes as examples: process Add new terminal (Figure 3a) and process Investigate

incident (Figure 3b). Figures 3a and 3b depict desirable control flows for both processes (using BPMN notation [36]).

In real life deviations from these processes are possible and we will show examples of such deviations.

The first process (Figure 3a) specifies the steps followed by engineers in the processing center to add information

about new terminals (ATM or POS) on the host. The process starts when a client bank lodges a request for adding

a new terminal on the host (task Lodge Request). Then an engineer checks information provided by the bank (task

2Automated Teller Machine
3Point of Sale
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Figure 3: Desirable flows for processes Add new terminal (a) and Investigate incident (b)

Check Form) and adds information about the terminal on the host (task Add on the Host). Then information about the

terminal on the host is double-checked by another engineer (task Approve). For ATM terminals network access should

be allowed (task Network Access). Then security keys are loaded on the host to enable safe communication with the

terminal (task Load Keys). ATM terminals should be started after this (task Load ATM). For POS terminals tasks

Network Access and Load ATM are not performed. Then an engineer checks the quality of the terminal installation

(task Quality Check) and fills in a form with the host specifications of the terminal which is sent to the bank (task

Complete Form).

The second process (Figure 3b) provides a high-level specification of the steps followed by engineers to resolve

an incident. The process starts when a client bank lodges an incident (task Lodge Incident), an engineer investigates

the incident and provides a solution (task Investigate Problem), then the solution is checked (task Check Solution) and

the incident is closed (task Problem Resolved).

Figures 3a and 3b depict desirable control flows for the processes. Deviations from these processes are possible

in practice and they can be risky. For example, in process Add new terminal task Approve can be skipped, or it can be

completed by the same engineer that completed task Add on the Host. Let us consider two scenarios.

3.1.1. Scenario 1

In our first scenario we look at examples of situations that may happen in process Add new terminal and can cause

financial losses, i.e., we describe risky process behaviours that increase the risk of cost overrun (depicted in Figure 4).

• Let us consider situations when task Approve is skipped or tasks Add on the Host and Approve are executed by

the same engineer. As a result, the likelihood of mistakes in a terminal’s specification on the host increases.

For example, a wrong currency may be assigned to an ATM cassette or a terminal may be assigned to a wrong

terminal profile on the host. Consequently, incorrect amounts of money will be withdrawn which may cause

financial loss for a bank or for a client.

• Another example of a risky situation in the process is when an urgent case is not started within three hours after
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Figure 4: Scenario 1: risky process behaviours in process Add new terminal

it was lodged by a bank as this breaks the existing Service Level Agreement (SLA) between the bank and the

processing center, which may result in a monetary penalty for the processing center.

Such undesirable situations in processes are often known by domain or process experts and some companies may

even keep risk registers [22, 38]. (Note that the process model depicted in Figure 4 allows for execution of tasks

Correct Form and Restart which are not a part of desirable process flow depicted in Figure 3a, but in this scenario we

do not consider the execution of these tasks risky.) Let us now assume that a manager would like to know the overall

process risk with respect to the risky process behaviors that can cause financial losses and see how the risk evolves

over time. We tackle the problem of evaluation of overall process risk in Section 3.3 and demonstrate how to evaluate

overall process risk for this scenario in Section 4.1.

3.1.2. Scenario 2

In the second scenario we look at process behaviours that can affect outcomes of process Add new terminal in

terms of time or quality (depicted in Figure 5). We assume that the same resources can be involved in processes

Add new terminal and Investigate incident at the same time. Moreover, one resource can be involved in multiple

instances of the two processes at a given moment of time. Hence, when a resource is very busy working on a case

other instances of the two processes in which the resource is involved may get less attention resulting in delays or

mistakes. We assume that process analysts or domain experts can provide us with process behaviours that contribute

to more risky periods. Let us consider examples of behaviours in process Add new terminal that contribute to such

risky periods.

• When a higher number of urgent cases arrive within a short period of time employees will focus on the urgent

cases, as a result other types of cases may be neglected.

• In process Add new terminal two types of cases are possible – adding a new ATM terminal or a new POS

terminal. Adding ATM terminals is more time-consuming as the process has more steps, hence, a higher

number of requests for adding ATM terminals within a short period of time also contributes to “busy” periods.

• Another example is the execution of task Correct Form after task Check Form. If these two tasks are performed

in this order in a case, this means that the bank provided incomplete or erroneous information about a terminal

which is often associated with case delays or problems with the terminal in the future.
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Figure 5: Scenario 2: risky process behaviours in processes Add new terminal (a) and Investigate incident (b)

• Another risky behaviour is execution of task Restart after task Quality Check which indicates that there were

problems with the terminal’s installation.

• It may be known that some resources are often associated with delays or mistakes when executing certain tasks.

For example, here we consider the execution of task Load Keys by a given resource as a risky behaviour.

• Finally, when tasks Investigate Problem and Check Solution are repeated in process Investigate incident it typi-

cally indicates a more complex incident as it was not resolved after the initial investigation. Hence, repetitions

of these tasks also contribute to risky periods.

It is important to underline that situations like arrival of an urgent case or repetition of a task in a case are not

necessarily risky on their own, but multiple occurrences of such process behaviours within a short period of time can

be risky. After we have defined risky process behaviours we would like to be able to predict aggregate outcomes

of process Add new terminal (in terms of the process timeliness and erroneousness) by evaluating the current level

of overall process risk. We describe our method for predicting aggregate process outcomes in Section 3.4 and in

Section 4.1 we demonstrate how to predict aggregate process outcomes for Scenario 2.

Note that risky process behaviours described in Scenario 1 and Scenario 2 are related to different process per-

spectives: the control-flow perspective (skipping of task Approve, repetition of tasks Investigate Problem and Check

Solution, execution of tasks Restart or Correct Form); the resource perspective (execution of tasks Add on the Host

and Approve by the same resource, execution of task Load Keys by a specific resource); the time perspective (a case

is not started within three hours after it was lodged); and the data perspective (a higher number of urgent cases arrive

or an ATM has to be added on the host).
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3.2. Research problem

In this section we describe the research problem without reference to the particular technical solution (which will

be presented in later sections). We start by introducing notations for related concepts.

Risky process behavior, rpb, is a process behaviour displayed in a case that may pose a risk on its own or in

combination with other risky process behaviours in the same case or in other cases, and which can threaten the

achievement of goals by the case, by other cases of the same process or by other processes in a company. An example

of a risky process behaviour is the execution of a specific task in a case, e.g., execution of task Restart in process Add

new terminal (Section 3.1). This task is only executed when there is a problem with a terminal and it can cause a delay

of the case or other cases processed by the same engineer. It also increases the chance of problems in the terminal’s

operations in the future. Another example concerns the arrival of urgent cases. While arrival of one urgent case will

not usually be considered risky, arrival of multiple urgent cases within a short period of time increases the chance of

delays for other cases processed by the same resources, as the resources will give priority to the urgent cases. Other

examples of risky process behaviours include: repetitions of certain tasks [12], involvement of certain resources who

have been involved in case failures before, and delayed execution of tasks.

3.2.1. Basic notations

Let t, t1, and t2 be given points in time, t1 ď t2, and c be a given case. Then we introduce the following notations.

Captq – the set of all cases active4 at time t, i.e., cases that were started before or on t and completed after t.

Capt1, t2q – the set of all cases active during the period rt1, t2q. Analysts may want to look at cases that were started

or completed during the period, or were started before t1 and completed after t2.

RPBpc, tq – the set of all risky process behaviours that happened in case c before time t.

RPBpC, tq fi
Ť

cPC RPBpc, tq – the set of all risky process behaviours that happened in all cases in C before time t.

CRpc, tq, or case risk at time t, is a function of all risky process behaviours displayed in case c before time t, i.e.,

CRpc, tq “ gpRPBpc, tqq, CRpc, tq P r0, 1s (g is a place-holder function; the function definition will be provided in a

later section, as here we define the research problem without reference to the particular technical solution).

OPRptq, or overall process risk at time t, is a function of all risky process behaviours displayed before time t in

the process instances that were active at time t, i.e., OPRptq “ f pRPBpCaptq, tqq, OPRptq P Rě0 ( f is a place-holder

function which will be defined in a later section).

OPRpt1, t2q, overall process risk during the period [t1, t2) is a function of all risky process behaviours displayed in

the process instances that were active during the period [t1, t2), i.e., OPRpt1, t2q “ f pRPBpCapt1, t2qqq, OPRpt1, t2q P

Rě0.

Figure 6 depicts process instances, each consisting of a sequence of task instances A, B, etc., started at different

points in time and risky process behaviours (denoted by triangles). Those risky process behaviours that contribute to

the overall process risk at time t are highlighted with circles.

4We consider the time of the first event in a case as the case start time and the time of the last event in a case as the case completion time.
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Figure 6: Risky process behaviours contributing to overall process risk at time t

Our first goal can now be re-expressed as: How to evaluate overall process risk at a given point in time, OPRptq,

or during a given period, OPRpt1, t2q?

3.2.2. Notations for basic outcomes

Let Outcomepcq denote an outcome of case c, e.g., case duration, cost or the quality of output.

APOptq, or aggregate process outcome at a given point in time t, is a function of outcomes of all cases that were

active at time t.

Let v denote a given case outcome value, e.g., it can be used to specify the value of normal case duration or an

acceptable level of output quality.

APOpt, vq denotes aggregate process outcome at time t for a given case outcome value v.

Some examples of aggregate process outcomes include: the number of cases that produced low-quality outputs,

the fraction of delayed cases with respect to the total number of active cases, average case cost, or the number of cases

that received negative customer feedback.

Notation APOpt, rvsq is used as a generalisation of APOptq and APOpt, vq, i.e., we use it in contexts that are

applicable to both APOptq and APOpt, vq.

Let EAPOpt, rvsq denote the expected aggregate process outcome for cases active at time t.

Our second goal can therefore be re-expressed as: How to predict expected aggregate process outcome at time t,

EAPOpt, rvsq, based on the value of overall process risk at time t, OPRptq?

3.3. A method for evaluation of overall process risk

An input to our method is information about risky process behaviours. Domain experts often know which factors

can cause negative process outcomes. Some companies keep risk registries specifying these risky behaviours. For

example, in a hospital emergency department the following process behaviours increase patients’ health risks: task X-

ray is not performed for a patient with chest pain, an urgent patient is not attended to within 15 minutes after admission,

a patient record is not completed within an hour after the patient is discharged, etc. Some of these behaviours may be

more risky than others, e.g., not performing task X-ray is more risky than not completing a patient’s record in time.

Other examples of risky process behaviours were described in Section 3.1.

Our method uses as an input a process model that represents desirable (i.e., not risky) process behaviour. We

consider deviations in cases from the process model as risky process behaviours. We use Petri nets with data [7]. Petri
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Figure 7: Example of a Petri net with data

nets with data can be translated/created from processes captured in well-known process modelling languages such as

BPMN [36] or EPCs [32] if needed.

A Petri net with data is “a Petri net in which transitions can write variables” [6]. It can be defined as

N “ pP,T, F,V,U,W,Gq, where pP,T, Fq define a Petri net (P – a set of places, T – a set of transitions,

F – the flow relation between transitions and places), V – a set of variables, U – a function that defines

the domain of each variable in V , W – a write function “that labels each transition with a set of write

operations”, G – a guard function that “associates a guard with each transition” [6]. A guard is a formula

over the process variables, that can use the logical operators conjunction, disjunction, and negation [6].

Figure 7 depicts an example of a Petri net with data which comprises the first four tasks from the process de-

picted in Figure 3a (Lodge Request, Check Form, Add on the Host and Approve). The table depicted in Figure 7

specifies variables written by each transition and transition guards. For example, transition Approve writes variable

Approve Resource5 and there is a guard associated with the transition: Approve Resource1 ‰ AddOnTheHost Resource6.

Modelling desired process behaviour as a Petri net with data allows us to consider different process perspectives, such

as the control-flow, time, resource and data perspectives (the resource and time perspectives are modelled as data [6]).

To evaluate overall process risk at a given point in time t our method follows the steps:

1. Select all cases Captq that were active at time t, i.e., started before t and completed after t.

2. For all c P Captq discard all events that happened after time t, and let Catptq denote the set of the resulting

truncated cases.

3. For all c P Catptq evaluate case risks at time t, CRpc, tq.

We use an existing algorithm for replaying an event log on a Petri net with data [6]. The algorithm finds

optimal alignments of cases in an event log and a process model. Figure 8 depicts an example of alignments

for two cases and the process model depicted in Figure 7. In Case 1 task Approve was not executed, hence

the case deviates from the process model, in Case 2 tasks Add on the Host and Approve were executed by the

5We add prefix [Transition name] to data variable names to simplify tracking the transitions that write these data variables.
6If a prime symbol is used with a variable in a transition guard it refers to the value of the variable after occurrence of the transition [6].
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Figure 8: Example of alignments of two cases with a process model

same resource (Mike) which does not satisfy the guard associated with task Approve (Figure 7), hence Case 2

also deviates from the model. The guard associated with task Check Form is not violated in both cases as

the time difference between tasks Check Form and Lodge Request is smaller than 3. The algorithm first finds

alignments of cases and a process model considering only the control-flow perspective, and then it applies

Integer Linear Programming to find an optimal alignment that also considers other process perspectives, such

as data, resource and time. The algorithm uses the costs of deviations as an input and aims to find alignments

that minimise the cost. When replaying truncated cases it is important not to penalise improper completion of

cases, the algorithm provides for this possibility. When replaying truncated cases we cannot consider skipping

of a task as a risky process behaviour as the algorithm cannot distinguish between an incomplete case and a

skipped task. This is a limitation of our approach and a direction for future work. The possibility to use other

approaches to identify risky process behaviours from event logs could also be explored, e.g., the use of ProM’s

LTL Checker, an approach based on Linear Temporal Logic, can be considered [34] or checking against a

Declare specification [23].

We replay all cases c P Catptq using the algorithm which returns an optimal alignment for each such case.

Risky process behaviours may have different levels of severity, hence our approach allows users to assign

different costs to different risky process behaviours (these costs are not the same as the costs used by the replay

algorithm). Recall that we model risky process behaviours as deviations from a process model which represents

desirable process behaviour. Such deviations include: execution of a task in a case that is not in the process

model, skipping of a task that is in the process model, non-writing of a variable by a task, and execution of a

task whose guard is false. If a guard is a conjunction of a few different constraints, our approach allows users

to assign different costs to these constraints. Let Costprpbq denote the cost of risky process behaviour rpb. The

case risk of case c at time t is:

CRpc, tq fi
ř

rpbPRPBpc,tq Costprpbq.

4. Evaluate overall process risk at time t, OPRptq.

We use two measures:

1) Mean process risk at time t: OPRMptq fi
ř

cPCatptqCRpc, tq{|Catptq|

2) Total process risk at time t: OPRT ptq fi
ř

cPCatptqCRpc, tq

To get an idea of the evolution of overall process risk over time we generate a time series of process risk values

at different points in time (e.g., daily or weekly). Time series are often used to model the evolution of different

13



Figure 9: The main idea of our method for evaluating overall process risk

phenomena [16]. As per formal definitions of sequence types in discrete mathematics, we model a time series as a

set of ordered pairs, where the first element of each pair determines the position in the series (timestamp in our case)

and the second element is the value at that position. The time series sampling rate is an input parameter. Selection of

the time series sampling rate is an important step that can affect the analysis results. It is a well-known problem often

discussed in the literature [18]. Let TS start be the starting time point, TS slotsize be the sampling rate and TS size be the

number of time slots, then an OPR time series can be defined as:

TS OPR fi tpt,OPRptqq | t P tTS start ` i ˚ TS slotsize | i P t0, 1, . . . ,TS size ´ 1uuu

Figure 9 depicts the main idea of the method, in which the overall process risk is evaluated at the end of each time

slot. We can see, for example, that at time t2 four cases are active and in one of the cases one risky process behaviour

occurred before t2 (depicted as a triangle on top of a process instance). Let the cost of this risky process behaviour,

Costprpbq, be 1. Then OPRT pt2q is 1 and OPRMpt2q is 0.25. We use notation OPRptq when evaluating overall process

risk at time t in one process; when considering multiple processes, we denote overall process risk of process Pi at time

t as OPRPiptq.

The procedure for evaluating overall process risk during a given period of time, OPRpt1, t2q, is similar to the

procedure for evaluation of overall process risk at a given point in time OPRptq described above with the following

differences. During the first step we select cases that were active during time slot pt1, t2q. Analysts may choose to

look at cases that were completed during time slot pt1, t2q, started during time slot pt1, t2q, or were started before t1 and

completed after t2. For the cases that were not completed by time t2 analysts may choose to use complete cases or cases

that are truncated at time t2. This allows for flexibility when selecting which cases and events should be considered.

The possibility to evaluate overall process risk considering cases active during a given time slot is introduced for users

who are only interested in tracking the changes of overall process risk over time, while we evaluate overall process

risk at a given point in time if we want to use it for prediction of aggregate process outcomes.

3.4. A method for predicting an aggregate process outcome by evaluating overall process risk

In this section we describe our method for predicting aggregate process outcomes. As a part of the method we

generate overall process risk time series as described in Section 3.3. We then extract aggregate process outcome time
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series and learn a prediction model as described below.

Recall that an aggregate process outcome at an earlier time t, APOpt, rvsq, is a function of outcomes of the cases

that started before t and were completed after t, and v denotes a given case outcome value. Examples of case outcomes

include: case duration, cost, quality of case output, customer feedback, etc. Our method allows one to look at the

following types of aggregate process outcomes: 1) the number of cases with a given case outcome (“total”), 2) the

fraction of cases with a given case outcome (“fraction”), and 3) the mean value of a given case outcome (“mean”).

The value of a case outcome should be stored in a case attribute or in an attribute of a given task (a user input).

1. Aggregate process outcome (total):

APOpt, vq fi |tc P Captq | Outcomepcq “ vu|, i.e., the number of cases that were active at time t and completed

with a given case outcome, e.g., the number of cases completed with quality level “Low”.

2. Aggregate process outcome (fraction):

APOpt, vq fi |tc P Captq | Outcomepcq “ vu|{|Captq|, i.e., the fraction of cases that were active at time t and

completed with a given case outcome, e.g., the fraction of cases completed with quality level “High”.

3. Aggregate process outcome (mean):

APOptq fi
ř

cPCaptq Outcomepcq{|Captq|, i.e., the mean value of a given case outcome for the cases that were

active at time t, e.g., mean case duration.

Our method for predicting aggregate process outcomes by evaluating overall process risk uses the following steps:

1. Generate aggregate process outcome time series.

For a given time series sampling rate we generate a time series that consists of the values of aggregate process

outcomes at each point in time. Let TS start be the starting time point, TS slotsize be the sampling rate, TS size be

the number of time slots, then an APO time series can be defined as:

TS APO fi tpt,APOpt, rvsqq | t P tTS start ` i ˚ TS slotsize | i P t0, 1, . . . ,TS size ´ 1uuu

2. Generate overall process risk time series. For each process P1 . . . Pn whose behaviours can affect the outcomes

of a given process we generate the overall process risk time series as described in Section 3.3 using the same

time series parameters as in Step 1 of this method. Let TS OPRPi
denote the overall process risk time series for

process Pi.

3. Learn a prediction model. For this purpose we use a method for non-parametric regression proposed by Racine

and Li [26]. It is a kernel-based method that works with continuous and categorical data and “do not impose any

functional form assumptions” [26]. The method is suitable for our purpose as it allows us to use multiple inde-

pendent variables and it does not make assumptions about data distribution. Other multi-variate non-parametric

methods could have been used. The values of the overall process risk time series TS OPRPi
are used as the val-

ues of independent variables, while the values of the aggregate process outcome time series TS APO are used

as the values of the dependent variable.
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4. Predict expected aggregate process outcome at time t. During the last step we use the values of the overall

process risk at time t for each process Pi, OPRPiptq, and the regression model fitted during Step 3 to predict the

expected aggregate process outcome at time t, EAPOpt, rvsq.

Figure 10 depicts the idea of our method for an example when the outcomes of process P1 are affected by risky

process behaviours in processes P1 and P2. For example, let APOpt, vq be the number of cases that were active at time

t and completed later with quality level “Low” (v = “Low”; such ‘failed’ cases are marked by shields with crosses

in Figure 10). We can see that at time t2 four cases were active in process P1 and one of the cases completed later

with a “Low” quality, hence APOpt2,“Low”q is 1. The expected aggregate process outcome for process P1 at time

tn is predicted based on the values of the overall process risk for processes P1 and P2 at time tn using the regression

model that was learned from past values of the overall process risk for processes P1 and P2 (independent variables)

and the past values of the aggregate process outcome for process P1 (the dependent variable). A manager may wish

to be alerted when a predicted aggregate process outcome exceeds some threshold, and he may take some mitigation

actions, e.g., prioritise tasks assigned to employees or outsource some process operations.

4. Validation

We implemented our approach as a plugin “Process Risk Evaluation”7 of the process mining framework ProM 68.

The plugin takes event logs in the XES format9 and process models in data-aware PNML format10 as input. It allows

us to evaluate overall process risk at different points in time, produce a chart illustrating the overall process risk time

series, and automatically detect change points [28], i.e., points in time when the overall process risk changed. The

plugin also allows us to extract overall process risk time series and aggregate process outcome time series from event

logs (for both training and test data sets), to learn a prediction model using time series extracted from a training data

set and to produce and visualise predictions for a test data set. The plug-in calculates R-squared [11], as this measure

is commonly used in statistics to evaluate the goodness of predictions. For change point detection and regression

analysis we use R11. Our plug-in accesses R’s functionality using the JRI Java/R Interface12. To detect change points

we use the CPM framework that allows us to detect changes in location, in scale or arbitrary distributional changes

and which is implemented as R package cpm13. For regression analysis we use R package np14. To evaluate logical

expressions we use the MVEL library15, and to visualise the results of the analysis we use the JFreeChart library16.

7http://yawlfoundation.org/risk/files/ProcessRiskEvaluation.7z
8www.promtools.org/prom6/
9http://www.xes-standard.org/

10http://www.pnml.org/
11http://www.r-project.org/
12http://rforge.net/JRI/
13http://cran.r-project.org/web/packages/cpm/vignettes/cpm.pdf
14http://cran.r-project.org/web/packages/np/index.html
15http://mvel.codehaus.org/
16http://www.jfree.org/jfreechart/
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Figure 10: Predicting aggregate process outcome by evaluating overall process risk
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We first validate our method for evaluation of the overall process risk using a synthetic event log created for the

process from Scenario 1 (Section 3.1). In the synthetic event log we introduce all risky process behaviours from

Scenario 1. We vary the probability of these risky process behaviours in different parts of the event log. We then

apply our method for evaluation of the overall process risk to the event log and check if the resulting charts reflect

the changes we introduced in the log. We then validate our method for prediction of aggregate process outcomes

using synthetic event logs created for the two processes from Scenario 2 (Section 3.1). We introduce all risky process

behaviours from Scenario 2 varying their probabilities in different parts of the event logs. The probability of negative

process outcomes depends on the value of overall process risk at a given time. We created three variants of the event

logs: the probability of negative process outcomes during risky periods is high in Variant 1, it is lower in Variant 2

and it does not depend on the overall process risk in Variant 3. For each variant we generated two sets of event logs

used as a training and a test data set. We then applied our method for predicting aggregate process outcomes to the

event logs. The regression model was learned using a training data set and it was applied to a test data set to generate

predictions. To evaluate the goodness of the predictions we check the values of R-squared and charts depicting real

and predicted values. Below we describe in details the simulation procedure used to create the synthetic event logs,

the setup of the experiments and discuss the results.

4.1. Evaluation of the approach using synthetic event logs

We created synthetic event logs for both scenarios described in Section 3.117 using CPN Tools18. In CPN Tools

we can model processes using Coloured Petri Nets which allow us to specify data types for places and attach data

values to tokens [15].

4.1.1. Scenario 1: Evaluating overall process risk

We generated an event log for the process depicted in Figure 4. We introduced three risky process behaviours from

Scenario 1 described in Section 3.1: task Approve is skipped in some cases, task Check Form is completed later than

three hours after the completion of task Lodge Request in some urgent cases, and tasks Add on the Host and Approve

in some cases are performed by the same resource. For the purposes of this evaluation we assume that the occurrence

of a risky process behaviour follows the Bernoulli distribution with a given probability. The probability of these risky

process behaviours differs in different parts of the event log. It is 10% from time t0 to t1 (time points t0–t3 are depicted

in Figures 12 and 13), 20% from time t1 to t2, 50% from time t2 to t3, and 80% after time t3. Time between case

arrivals follows an exponential distribution19 with a mean value of three hours. Only events with transaction type

complete were recorded in the event log; we filtered out incomplete cases. The resulting event log contains 993 cases

with an average case duration of 35 hours.

17The synthetic event logs and the CPN models can be downloaded from http://yawlfoundation.org/risk/files/SyntheticData.7z
18http://cpntools.org/
19Exponential distributions describe the time between events in a Poisson process; Poisson distribution is often used to model arrival rates in

queueing theory.

18



We used the process model depicted in Figure 11a to replay the event log. The process model does not allow skip-

ping task Approve, hence in all cases in which the task was skipped the risky process behaviour is detected. In order to

identify the other two risky process behaviours we added the following annotations to the process model. Transition

(i.e., task) Add on the Host writes String variable AddOnTheHost Resource, transition Approve writes String variable

Approve Resource, transition Lodge Request writes String variable urgency and Float variable LodgeRequest Time,

and transition Check Form writes Float variable CheckForm Time.

The following guard was added to task Approve: Approve Resource1 ‰ AddOnTheHost Resource

Task Check Form was annotated with the guard:

ppurgency “ “High”q ^ pCheckForm Time1 ď pLodgeRequest Time` 3qqq _ purgency “ “Normal”q

The plugin pre-processes a log and adds an attribute (rTaskNames Time) to events that specifies the elapsed time

since the beginning of the case in a given time unit, e.g., in hours or days. We used an hour as the value of the time

unit in the experiments reported in this section. One day was used as the time series sampling rate and we evaluated

daily values of the overall process risk with respect to cases completed during the day. The total duration was 130

days. When replaying event logs on process models one needs to specify the costs of deviations used by the replay

algorithm to create optimal alignments. We used cost 1 for all deviations. We also need to specify the second type of

costs that are used to evaluate case risks, different costs can be used for different types of risky process behaviours.

We used cost 1 for all types of risky process behaviours as we do not consider that some behaviours are more risky

than others in this scenario.

The plugin generated an overall process risk time series with respect to the three risky process behaviours. Con-

sider an example when five cases are completed during a time slot. In one urgent case task Approve was not executed

and task Check Form was completed six hours after the completion of task Lodge Request, in two cases the same

resource executed tasks Add on the Host and Approve, and two other cases completed without any risky process be-

haviours. The cost of each risky process behaviour is 1, hence the total value of overall process risk for this time slot

is 4, while the mean value of overall process risk is 0.80.

Figure 12 depicts the mean values (OPRMptq) of the overall process risk and Figure 13 depicts the total values

(OPRT ptq) of the overall process risk. Red vertical lines mark the points in time when the changes in the risky process

behaviours were introduced and diamond shapes mark change points automatically detected by the plug-in. We can

observe that both charts reflect the changes in the probabilities of the three risky process behaviours we introduced in

the log. The plug-in precisely detected the change point at time t2, and the other two changes at times t1 and t3 were

pinpointed in the log a few days earlier or later.20 We demonstrated in this section that our first method presented in

this article can successfully evaluate overall process risk. The changes in probabilities of risky process behaviours that

were introduced in the synthetic event log can be clearly observed on the charts depicting overall process risk time

20Note, that the change point detection method uses complete time series to estimate the change points. As the method is not 100 % precise, the

change points can be detected earlier or later than the actual change was introduced. The precision also depends on the test used and the sensitivity

threshold (input parameters). We looked at changes in location, but other tests can be used, e.g., a test that detects changes in scale.
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Figure 11: Petri nets used to replay event logs: a) Scenario 1, process Add new terminal; b) Scenario 2, process Add new terminal; c) Scenario 2,

process Investigate incident.
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Figure 12: Evolution of overall process risk from Scenario 1 - mean risk (OPRMptq on the vertical axis)

Figure 13: Evolution of overall process risk from Scenario 1 - total risk (OPRT ptq on the vertical axis)

series produced by the plug-in. Furthermore, the plug-in can annotate such charts with change points to facilitate the

analysis for a user.

4.1.2. Scenario 2: Predicting aggregate process outcomes using overall process risk

In this experiment we generated a set of event logs representing the processes depicted in Figures 5a and 5b using

CPN Tools and following the procedure described below. To simulate the two processes we used the Petri net depicted

in Figure 1421. The net represents the two processes (process Investigate incident on the left and process Add new

terminal on the right) that share one dedicated place labeled as Total Risk. Place Total Risk contains one token (of type

Integer) that stores the current value of overall process risk. Whenever a risky process behaviour happens in process

Add new terminal (i.e., an urgent case arrives, an ATM terminal needs to be added on the host, task Correct Form is

executed, task Restart is executed or task Load Keys is performed by a “risky” resource) the value of the token in place

21The model depicted in Figure 14 is an abstraction (a number of data annotations have been removed), the complete specification of the model

used in the simulation can be downloaded from http://yawlfoundation.org/risk/files/SyntheticData.7z.
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Total Risk is increased by 1. When tasks Investigate Problem and Check Solution are repeated in process Investigate

incident the value of the token in place Total Risk is increased by 2. We also created two dedicated places for each

process, Case Risk and Incident Case Risk, that keep track of the risk values contributed by each case to place Total

Risk. When an instance of any of the processes is completed, we decrease the value of the token in place Total Risk

by the risk value added by the process instance. Hence, at any given point in time the value of the token in place

Total Risk represents the current value of the overall risk with respect to all running instances of the two processes.

Instances of process Add new terminal can be completed without any issues or delays (in which case the value of

attribute Outcome of task Complete Form is set to 0), or they can be completed with a negative outcome, e.g., the

terminal is not working or it was added on the host with a delay (in which case the value of attribute Outcome is set to

1). The probability of a negative case outcome depends on the value of the token in place Total Risk at the moment of

the case’s completion.

The time between case arrivals in both processes follows an exponential distribution with a mean value of three

hours. We set the probability of occurrence of the risky process behaviours as follows:

• It was set to 10% during the first 10000 steps (i.e., transition firings) of the simulation process (during this

period the value of the token in place Total Risk was below 15);

• It was set to 40% during the next 5000 steps of the simulation (the value of the token in place Total Risk varied

from 15 to 45 during most of this time); and

• It was set to 60% during the last 5000 steps of the simulation (the value of the token in place Total Risk exceeded

45 during most of this time).

We refer to these three different risk levels as Normal, Medium and High.

We generated three variants of event logs with different probabilities of negative case outcomes for each risk level

as described in Table 1. In the first variant during periods with Normal risk level (i.e., when the value of the token in

place Total Risk is less than 15) the probability of a negative case outcome is 5%, while during periods with a Medium

or High risk level it is 40% and 60% correspondingly. In the second variant the probability of negative case outcomes

during the period with Normal risk level is also 5%, while during periods with Medium and High risk levels it is 20%

and 30% respectively. In the third variant the probability of negative case outcomes does not depend on the risk level

and it is always 25%. For each variant we generated two event logs – one used to learn a regression model (a training

data set) and the other one used for getting the predictions (a test data set). As a result of the simulation we created 12

event logs (six for process Add new terminal and six for process Investigate incident). Table 2 specifies characteristics

of the event logs.

To evaluate the overall process risk in each process we used the process models depicted in Figures 11b and 11c.

Skipping of task Approve is not considered as a risky process behaviour in Scenario 2, hence the model in Figure 11b

allows to skip the task (a silent transition). In the model of process Add new terminal transition (i.e., task) Lodge
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Figure 14: Simulation model for the two processes from Scenario 2
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Table 1: Probability of negative case outcomes for different risk levels

Normal risk Medium risk High risk

Variant 1 5% 40% 60%

Variant 2 5% 20% 30%

Variant 3 25% 25% 25%

Table 2: Characteristics of simulated event logs for Scenario 2

Event log Number of cases Mean case duration

Add new terminal, Variant 1, training set 1171 49.7 hours

Add new terminal, Variant 1, test set 1172 49.7 hours

Investigate incident, Variant 1, training set 1095 22.6 hours

Investigate incident, Variant 1, test set 1124 22.5 hours

Add new terminal, Variant 2, training set 1162 45.9 hours

Add new terminal, Variant 2, test set 1136 46.3 hours

Investigate incident, Variant 2, training set 1154 22.2 hours

Investigate incident, Variant 2, test set 1203 22.2 hours

Add new terminal, Variant 3, training set 1164 48.8 hours

Add new terminal, Variant 3, test set 1168 48.3 hours

Investigate incident, Variant 3, training set 1106 22.9 hours

Investigate incident, Variant 3, test set 1127 22.4 hours
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Figure 15: Example of total process risk (OPRT ptq on the vertical axis) in process Investigate incident, variant 1, training set

Request writes String variables urgency and terminal, and transition Load Keys writes String variable resource. To

transition Lodge Request we added the guard: urgency1 ‰ “Urgent” ^ terminal1 ‰ “ATM”; to transition Load Keys

we added the guard: resource1 ‰ “Risky”22. When an urgent case arrives or an ATM has to be added on the host the

guard of task Lodge Request will evaluate to false. When task Load Keys is executed by resource Risky the task’s

guard evaluates to false. The model of process Add new terminal (Figure 11b) does not specify tasks Correct Form

and Restart, hence executions of these tasks are deviations from the model and are treated as risky process behaviours.

The model of process Investigate incident (Figure 11c) does not allow repetitions of tasks Investigate Problem and

Check Solution, hence their repetitions in cases will be considered as deviations.

When replaying event logs on process models we need to specify the costs of deviations used by the replay

algorithm to create optimal alignments and the costs that are used to evaluate case risks. We used cost 1 for all

deviations and for all types of risky process behaviours as we do not consider that some behaviours are more risky

than others in this particular scenario. The guard of task Lodge Request is a conjunction of two constraints: we check

if a terminal is not ATM and if urgency is not High. We assign cost 1 to each constraint, hence if both constraints are

not satisfied the value of that case’s risk is increased by 2, if only one constraint is not satisfied, the value of the case’s

risk is increased by 1.

We looked at the daily values of the overall process risk (total risk measure) during 120 days. The overall process

risk at each point in time was evaluated considering only those parts of cases that were completed before this point in

time. Hence, when replaying the event logs we did not penalise improper case completions. We used the number of

cases completed with a negative outcome (i.e., those cases in which the value of attribute Outcome is set to 1) as the

measure of aggregate process outcome and we considered only completed cases when creating the aggregate process

outcome time series. We used training data sets to learn regression models for each variant of event log and we then

used test event logs to generate predictions. The plugin generated charts depicting overall process risk time series and

a chart that depicts real and predicted values of aggregate process outcomes. As an example, Figure 15 depicts the

evolution of total process risk for process Investigate incident in the training set of Variant 1.

Figures 16, 17 and 18 depict real and predicted aggregate process outcomes (i.e., the number of cases completed

with a negative case outcome) for Variants 1, 2 and 3 respectively. We can observe that predicted values of aggregate

22We used name Risky to label the resource who often makes mistakes or causes delays when executing task Load Keys.
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Figure 16: Predicted and real aggregate process outcome (the number of cases completed with a negative outcome, on the vertical axis), Variant 1

Figure 17: Predicted and real aggregate process outcome (the number of cases completed with a negative outcome, on the vertical axis), Variant 2

Figure 18: Predicted and real aggregate process outcome (the number of cases completed with a negative outcome, on the vertical axis), Variant 3
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Table 3: Coefficient of determination (R-squared) for training and test data sets

Training data set Test data set

Variant 1 0.89 0.81

Variant 2 0.80 0.66

Variant 3 0.26 0.05

process outcomes are close to the real values for Variant 1, i.e., for the event log with higher probabilities of negative

case outcomes (40% and 60%) during risky periods (starting after March 15, e.g., depicted in Figure 15). Predicted

and real values of aggregate process outcomes differ more for Variant 2 for which the probability of negative case

outcomes during risky periods was 20% and 30%. For Variant 3 we can observe that predictions are not close to the

real values which is the expected outcome, as process outcomes and risks do not correlate in this event log. This

is also reflected by the R-squared statistics provided in Table 3 for different variants for both training and test data

sets. As expected, R-squared values are the highest for Variant 1 (0.81 for the test set), they are lower for Variant 2

(0.66 for the test set), and they are very low for Variant 3 (0.05 for the test set). The experiment outcomes depicted

in Figures 16, 17 and 18 and confirmed by R-squared values in Table 3, show that our method can precisely predict

aggregate process outcomes if risky process behaviours specified by business analysts affect process outcomes (e.g.,

in Variants 1 and 2).

Through these experiments we showed how to use our approach to evaluate overall process risk and to predict

aggregate process outcomes. We demonstrated different types of risky process behaviours that relate to the control-

flow, resource, data and time process perspectives which can be considered by the approach. We showed that the plugin

can evaluate overall process risk and identify changes that we introduced in synthetic event logs and we showed that

the approach can be used to predict aggregate process outcomes. As expected, we could observe that the quality of

predictions depends on the “predictive power” of risky process behaviours specified by process analysts. If the risky

process behaviours affect process outcomes, we can get precise predictions (as in Variant 1 in Scenario 2). If they do

not actually affect process outcomes (as in Variant 3 in Scenario 2), we learn from data a regression model with a poor

ability to predict process outcomes.

4.2. Case study based on a real event log

In addition to the evaluation experiments conducted with synthetic logs, we evaluated our proposed approach

using an event log from an Australian company. The work is presented in an anonymised manner in accordance with

the confidentially agreement signed between the parties.

The business context of the organisation is as follows. The company provided an event log of a process for one

of their core businesses. The process is system-driven but employees are given flexibility to do their work. The log

covers all cases for a period of two years. The data was collected from different information systems, anonymised and
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Figure 19: a) A simplified process model created to detect the risky behaviour of skipping task C for cases of type a (RPB 1), b) A simplified

process model created to detect the risky behaviour of not completing task D within 24 hours (RPB 2).

cleaned up based on input from process experts. It was an iterative process that involved a few meetings with company

representatives during which we discussed the data requirements and agreed on the data attributes used in the analysis.

After this initial data pre-processing the resulting event log contained 17,750 cases and more than 700,000 events. In

addition to the information contained in the log, the company also provided its risk register. As expected, some of

the risks identified in the risk register are not process-related. The researchers also had discussions with the domain

expert to identify a set of process-related risks that could potentially be detected using our approach. Two different

types of risky process behaviours captured in the company’s risk register were then selected for our experiments. We

refer to them here as risky process behaviour 1 (RPB 1) and risky process behaviour 2 (RPB 2).

We applied our method for overall process risk evaluation described in Section 3.3 to the event log and extracted

overall process risk time series, TS OPR, considering these two risky process behaviours separately. For both risky

process behaviours we evaluated weekly values of overall process risk (both total risk and mean risk measures) con-

sidering cases that were completed during the week. Below we describe the two risky process behaviours, process

modeling and further data pre-processing that was conducted, and discuss the evaluation procedure and the results.

RPB 1 manifests itself when a specific task, referred to here as task C, is not executed in a case of a specific type,

referred to here as type a (case type is recorded in the event log as a case attribute, similar to case urgency in the

example in Section 3.1). We filtered out events that are not required to evaluate overall process risk with respect to

RPB 1 and only used events related to the beginning and the end of a case, and task C. We pre-processed the log to

create two different case start events – task A is recorded as the start event for cases of type a, and task B is recorded

as the start event for cases of other types. We created a process model depicted in Figure 19a that was used to evaluate
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Figure 20: Overall process risk with respect to RPB 1: a) total risk, OPRT ptq, on the vertical axis; b) mean risk, OPRMptq, on the vertical axis.

overall process risk with respect to RPB 1. The process model does not allow skipping task C in cases that start with

task A, hence RPB 1 is detected in all cases in which task A was executed but task C was skipped. Figure 20 depicts

weekly values of overall process risk corresponding to RPB 1. We can observe that the values of overall process risk

with respect to RPB 1 are typically very low which means that task C is not often skipped in cases of type a.

RPB 2 manifests itself when the time difference between request and complete events related to a specific task,

referred to here as task D, exceeds 24 hours. We filtered the event log and only used events that correspond to the

beginning and the end of a case, and complete events for task D (it can be performed multiple times in a case). We

pre-processed the log, adding to each instance of task D data attribute delayed whose value is 1 if the time difference

between the request and complete events of task D is higher than 24 hours, and 0 otherwise. Figure 19b shows the

process model that was used to evaluate overall process risk with respect to RPB 2. Task D was annotated with a

guard (not shown in Figure 19b) that checks whether the value of data attribute delayed of task D is equal to 0, hence

violations are detected in all cases in which the value of the attribute is 1.

Figure 21 depicts weekly values of overall process risk corresponding to RPB 2. The values of overall process

risk with respect to RPB 2 (Figure 21) are typically higher than overall process risk values for RPB 1 (Figure 20) and

they also change over time. The increase in overall process risk with respect to RPB 2 starting from February 2014

(Figure 21a) may be related to changes in the company’s process that were implemented at that time, while the causes

for the earlier variations of the risk require further investigation.

We also investigated which resources might be contributing to the task delays (RPB 2). In order to be able to

do this we created five separate event logs each only containing cases in which a given resource completed task D.

This was done for five resources, referred to here as R1–R5, that most frequently executed task D. As an example,
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Figure 21: Overall process risk with respect to RPB 2: a) total risk, OPRT ptq, on the vertical axis; b) mean risk, OPRMptq, on the vertical axis.

Figure 22 shows total process risk values associated with resources R1, R2 and R3. We can observe that total risk

values increase for resource R1 till December 2013 and that they decrease afterwards, the values of the overall process

risk associated with resource R3 increase during the first part of 2013 and they decrease afterwards, while the total

process risk associated with resource R2 follows a relatively stable pattern starting from December 2012.

Figure 23a and Figure 23b show total and mean values of the overall process risk associated with resource R4.

While the total risk values are increasing, the mean risk values are decreasing. This means that the increase in the

number of instances of task D that are completed by resource R4 with a delay is related to an increase in the total

number of instances of task D completed by R4. While the total number of delayed tasks completed by resource R4

increases, the fraction of delayed tasks among those completed by resource R4 decreases.

As the real-life event log used does not contain information that is necessary to identify other risks from the

company’s risk register, we did not evaluate overall process risk with respect to all risky process behaviours. The

log also does not contain information about organisational outcomes that can be affected by the risks, hence we did

not apply our method for predicting aggregate process outcomes based on the current value of overall process risk.

Evaluation of our method for predicting aggregate process outcomes with a real data set is a direction for future work.

The case study findings support the practical application of our approach in an organisational setting. By using

our approach, we are able to observe trends and detect the differences in the overall process risk. We showed that

the approach can help us to track the amount of overall process risk associated with different resources (this is only

possible if a risky process behaviour can be linked to a resource, as was the case with RPB 2). We demonstrated how

considering different measures of overall process risk (total risk and mean risk) can help us to investigate causes of

risk variations over time (e.g., the change in overall process risk associated with resource R4).
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Figure 22: Overall process risk (total risk, OPRT ptq, on the vertical axis) with respect to RPB 2 associated with resources R1, R2 and R3

Figure 23: Overall process risk with respect to RPB 2 associated with resource R4 a) total risk, OPRT ptq, on the vertical axis b) mean risk, OPRMptq,

on the vertical axis.
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5. Assumptions, limitations and future work

We assume that companies know risks which threaten their business processes. Factors that can cause negative

process outcomes are often known by domain experts and process analysts. Some companies keep risk registries that

specify such risks [22, 38].

Our approach is based on the analysis of process execution data recorded in event logs. Corporate information

systems record various information about process executions which can be transformed into event log format23[33].

We assume that event log data is up-to-date and accurately captures process execution history. Types of information

required for the analysis depend on the types of process risks. For example, if we would like to consider as a risky

process behaviour an activity delay, we would need to use a log which contains the following event attributes: case

identifier, activity name, time stamp and transaction type (both start and complete). Other risky process behaviours

may require richer event logs, e.g., logs that contain information about resources and different data attributes. Our

method for the prediction of aggregate process outcomes requires information about case outcomes to be recorded in

an event log. We assume that an activity can be completed by one resource24.

A limitation of our approach is that skipping of an activity cannot be used as a risky process behaviour if the

user wishes to evaluate overall process risk in real time, in which case we can only analyse events up to the present,

which inevitably means that the algorithm cannot distinguish between an incomplete case and a skipped activity.

Compensating for this unavoidable limitation is a direction for future research. Another limitation of our approach is

that it can only consider one process outcome. To consider multiple process outcomes using our approach it would be

necessary to pre-process an event log and annotate cases with values resulting from a combination of different process

outcomes, e.g., a combination of time and quality. The possibility to consider multiple process outcomes is another

direction for future work.

We evaluated our method for predicting aggregate process outcomes using synthetic event logs. Evaluation of

the method with a real data set is a direction for future work. Another direction for future work is evaluation of

the prediction method for processes whose behaviour and outcomes are affected by seasonal fluctuations. We showed

examples of risky process behaviours related to different process perspectives which can be identified by our approach,

e.g., the execution of a specific activity, repetition of an activity, execution of an activity by a specific resource,

completion of an activity with a delay, or execution of an activity with a specific data attribute. A systematic study of

different types of risky process behaviours which can and cannot be identified by our approach could be a direction for

future research. We devised two measures of overall process risk, total risk and mean risk. Definition and evaluation

of other measures of overall process risk, e.g., median risk or risk variation, could be another direction for future work.

23We use the XES standard for event log data (http://www.xes-standard.org/).
24This limitation is imposed by the XES standard for event log data which only allows one resource per event (current version 2.0).
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6. Conclusions

Managing risks in business processes is a key concern for most companies. Existing approaches to process risk

identification typically focus on risks in individual process instances. However, processes often run in complex en-

vironments and outcomes of one process instance can be affected by events that are external to the process instance.

Moreover, managing risks in individual process instances can be too costly. Insufficient attention has been paid to the

problem of evaluation of overall process risk based on the analysis of event logs.

In this paper we presented a novel approach that allows us to 1) evaluate overall process risk at a given point in

time considering different risk factors across all running process instances; and 2) predict aggregate process outcomes

based on the current value of overall process risk. The approach is based on the analysis of information about process

executions recorded in event logs. An input to our approach is a process model that models the desired process be-

haviour (a Petri net with data) and deviations from such a process model are considered as risky process behaviours.

To identify such risky process behaviours we use a technique for replaying event logs on a process model [6]. We

presented two measures of overall process risk based on the identified risky process behaviours. To track the evolution

of overall process risk and facilitate the analysis for a user, we extract overall process risk time series and annotate it

with detected change points. To predict aggregate process outcomes, we apply multivariate non-parametric regression

to the overall process risk time series (independent variables) and aggregate process outcome time series (the depen-

dent variable) extracted from an event log. We evaluated our approach using synthetic event logs. We showed that the

approach can evaluate overall process risk and predict aggregate process outcomes (provided that the risky process

behaviours considered affect the outcomes of the process). We also conducted a case study using a real event log from

an Australian company. In the case study we showed how our approach can help to track evolution of overall process

risk, identify changes, and investigate causes of risk variations by using different measures of overall process risk.

In summary, while it may not be possible to eliminate all process risks during the process design stage, and it is

impossible to predict changes to processes imposed by the external environment, it is important to monitor the level

of overall process risk and its effect on process outcomes. The approach presented in this paper allows for such an

analysis. When a significant change in overall process risk is identified or an adverse aggregate process outcome

is predicted, a manager may wish to be alerted and may take mitigation actions, e.g., adding resources from other

processes, prioritising tasks assigned to employees or outsourcing some tasks to partners.
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