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Abstract: The widespread use of “Big Data” is heavily impacting organizations and individuals for which these data are

collected. Sophisticated data science techniques aim to extract as much value from data as possible. Powerful

mixtures of Big Data and analytics are rapidly changing the way we do business, socialize, conduct research,

and govern society. Big Data is considered as the “new oil” and data science aims to transform this into new

forms of “energy”: insights, diagnostics, predictions, and automated decisions. However, the process of trans-

forming “new oil” (data) into “new energy” (analytics) may negatively impact citizens, patients, customers,

and employees. Systematic discrimination based on data, invasions of privacy, non-transparent life-changing

decisions, and inaccurate conclusions illustrate that data science techniques may lead to new forms of “pollu-

tion”. We use the term “Green Data Science” for technological solutions that enable individuals, organizations

and society to reap the benefits from the widespread availability of data while ensuring fairness, confiden-

tiality, accuracy, and transparency. To illustrate the scientific challenges related to “Green Data Science”, we

focus on process mining as a concrete example. Recent breakthroughs in process mining resulted in powerful

techniques to discover the real processes, to detect deviations from normative process models, and to analyze

bottlenecks and waste. Therefore, this paper poses the question: How to benefit from process mining while

avoiding “pollutions” related to unfairness, undesired disclosures, inaccuracies, and non-transparency?

1 INTRODUCTION

In recent years, data science emerged as a new and

important discipline. It can be viewed as an amal-

gamation of classical disciplines like statistics, data

mining, databases, and distributed systems. We use

the following definition: “Data science is an inter-

disciplinary field aiming to turn data into real value.

Data may be structured or unstructured, big or small,

static or streaming. Value may be provided in the form

of predictions, models learned from data, or any type

of data visualization delivering insights. Data science

includes data extraction, data preparation, data ex-

ploration, data transformation, storage and retrieval,

computing infrastructures, various types of mining

and learning, presentation of explanations and pre-

dictions, and the exploitation of results taking into

account ethical, social, legal, and business aspects.”

(Aalst, 2016).

Related to data science is the overhyped term “Big

Data” that is used to refer to the massive amounts

of data collected. Organizations are heavily invest-

ing in Big Data technologies, but at the same time

citizens, patients, customers, and employees are con-

cerned about the use of their data. We live in an

era characterized by unprecedented opportunities to

sense, store, and analyze data related to human ac-

tivities in great detail and resolution. This introduces

new risks and intended or unintended abuse enabled

by powerful analysis techniques. Data may be sensi-

tive and personal, and should not be revealed or used

for proposes different from what was agreed upon.

Moreover, analysis techniques may discriminate mi-

norities even when attributes like gender and race are

removed. Using data science technology as a “black

box” making life-changing decisions (e.g., medical

prioritization or mortgage approvals) triggers a vari-

ety of ethical dilemmas.

Sustainable data science is only possible when

citizens, patients, customers, and employees are pro-

tected against irresponsible uses of data (big or

small). Therefore, we need to separate the “good”

and “bad” of data science. Compare this with envi-

ronmentally friendly forms of green energy (e.g. so-

lar power) that overcome problems related to tradi-

tional forms of energy. Data science may result in
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unfair decision making, undesired disclosures, inac-

curacies, and non-transparency. These irresponsible

uses of data can be viewed as “pollution”. Abandon-

ing the systematic use of data may help to overcome

these problems. However, this would be comparable

to abandoning the use of energy altogether. Data sci-

ence is used to make products and services more reli-

able, convenient, efficient, and cost effective. More-

over, most new products and services depend on the

collection and use of data. Therefore, we argue that

the “prohibition of data (science)” is not a viable so-

lution.

In this paper, we coin the term “Green Data Sci-

ence” (GDS) to refer to the collection of techniques

and approaches trying to reap the benefits of data sci-

ence and Big Data while ensuring fairness, confiden-

tiality, accuracy, and transparency. We believe that

technological solutions can be used to avoid pollution

and protect the environment in which data is collected

and used.

Section 2 elaborates on the following four chal-

lenges:

• Fairness – Data Science without prejudice: How

to avoid unfair conclusions even if they are true?

• Confidentiality – Data Science that ensures con-

fidentiality: How to answer questions without re-

vealing secrets?

• Accuracy – Data Science without guesswork:

How to answer questions with a guaranteed level

of accuracy?

• Transparency – Data Science that provides trans-

parency: How to clarify answers such that they

become indisputable?

Concerns related to privacy and personal data pro-

tection triggered legislation like the EU’s Data Protec-

tion Directive. Directive 95/46/EC (“on the protection

of individuals with regard to the processing of per-

sonal data and on the free movement of such data”) of

the European Parliament and the Council was adopted

on 24 October 1995 (European Commission, 1995).

The General Data Protection Regulation (GDPR) is

currently under development and aims to strengthen

and unify data protection for individuals within the

EU (European Commission, 2015). GDPR will re-

place Directive 95/46/EC and is expected to be final-

ized in Spring 2016 and will be much more restrictive

than earlier legislation. Sanctions include fines of up

to 4% of the annual worldwide turnover. GDPR and

other forms of legislation limiting the use of data, may

prevent the use of data science also in situations where

data is used in a positive manner. Prohibiting the col-

lection and systematic use of data is like turning back

the clock. Next to legislation, positive technological

solutions are needed to ensure fairness, confidential-

ity, accuracy, and transparency. By just imposing re-

strictions, individuals, organizations and society can-

not exploit data (science) in a positive way.

The four challenges discussed in Section 2 are

quite general. Therefore, we focus on a concrete

subdiscipline in data science in Section 3: Process

Mining (Aalst, 2011). Process mining seeks the con-

frontation between event data (i.e., observed behav-

ior) and process models (hand-made or discovered au-

tomatically). Event data are related to explicit process

models, e.g., Petri nets or BPMN models. For exam-

ple, process models are discovered from event data or

event data are replayed on models to analyze com-

pliance and performance. Process mining provides

a bridge between data-driven approaches (data min-

ing, machine learning and business intelligence) and

process-centric approaches (business process model-

ing, model-based analysis, and business process man-

agement/reengineering). Process mining results may

drive redesigns, show the need for new controls, trig-

ger interventions, and enable automated decision sup-

port. Individuals inside (e.g., end-users and workers)

and outside (e.g., customers, citizens, or patients) the

organization may be impacted by process mining re-

sults. Therefore, Section 3 lists process mining chal-

lenges related to fairness, confidentiality, accuracy,

and transparency.

In the long run, data science is only sustainable

if we are willing to address the problems discussed

in this paper. Rather than abandoning the use of data

altogether, we should find positive technological ways

to protect individuals.

2 FOUR CHALLENGES

Figure 1 sketches the “data science pipeline”. Individ-

uals interact with a range of hardware/software sys-

tems (information systems, smartphones, websites,

wearables, etc.) ➊. Data related to machine and in-

teraction events are collected ➋ and preprocessed

for analysis ➌. During preprocessing data may be

transformed, cleaned, anonymized, de-identified, etc.

Models may be learned from data or made/modified

by hand ➍. For compliance checking, models are of-

ten normative and made by hand rather than discov-

ered from data. Analysis results based on data (and

possibly also models) are presented to analysts, man-

agers, etc. ➎ or used to influence the behavior of in-

formation systems and devices ➏. Based on the data,

decisions are made or recommendations are provided.

Analysis results may also be used to change systems,

laws, procedures, guidelines, responsibilities, etc. ➐.
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Figure 1: The “data science pipeline” facing four challenges.

Figure 1 also lists the four challenges discussed

in the remainder of this section. Each of the chal-

lenges requires an understanding of the whole data

pipeline. Flawed analysis results or bad decisions

may be caused by different factors such as a sampling

bias, careless preprocessing, inadequate analysis, or

an opinionated presentation.

2.1 Fairness - Data Science Without

Prejudice: How To Avoid Unfair

Conclusions Even If They Are True?

Data science techniques need to ensure fairness: Au-

tomated decisions and insights should not be used to

discriminate in ways that are unacceptable from a le-

gal or ethical point of view. Discrimination can be de-

fined as “the harmful treatment of an individual based

on their membership of a specific group or category

(race, gender, nationality, disability, marital status, or

age)”. However, most analysis techniques aim to dis-

criminate among groups. Banks handing out loans

and credit cards try to discriminate between groups

that will pay their debts and groups that will run into

financial problems. Insurance companies try to dis-

criminate between groups that are likely to claim and

groups that are less likely to claim insurance. Hos-

pitals try to discriminate between groups for which

a particular treatment is likely to be effective and

groups for which this is less likely. Hiring employ-

ees, providing scholarships, screening suspects, etc.

can all be seen as classification problems: The goal

is to explain a response variable (e.g., person will pay

back the loan) in terms of predictor variables (e.g.,

credit history, employment status, age, etc.). Ideally,

the learned model explains the response variable as

good as possible without discriminating on the basis

of sensitive attributes (race, gender, etc.).

To explain discrimination discovery and discrimi-

nation prevention, let us consider the set of all (poten-

tial) customers of some insurance company specializ-

ing in car insurance. For each customer we have the

following variables:

• name,

• birthdate,

• gender (male or female),

• nationality,

• car brand (Alfa, BMW, etc.),

• years of driving experience,

• number of claims in the last year,

• number of claims in the last five years, and

• status (insured, refused, or left).

The status field is used to distinguish current cus-

tomers (status=insured) from customers that were re-

fused (status=refused) or that left the insurance com-

pany during the last year (status=left). Customers that

were refused or that left more than a year ago are re-

moved from the data set.



Techniques for discrimination discovery aim to

identify groups that are discriminated based on sen-

sitive variables, i.e., variables that should not matter.

For example, we may find that “males have a higher

likelihood to be rejected than females” or that “for-

eigners driving a BMW have a higher likelihood to be

rejected than Dutch BMW drivers”. Discrimination

may be caused by human judgment or by automated

decision algorithms using a predictive model. The

decision algorithms may discriminate due to a sam-

pling bias, incomplete data, or incorrect labels. If ear-

lier rejections are used to learn new rejections, then

prejudices may be reinforced. Similar “self-fulfilling

prophecies” can be caused by sampling or missing

values.

Even when there is no intent to discriminate, dis-

crimination may still occur. Even when the auto-

mated decision algorithm does not use gender and

uses only non-sensitive variables, the actual decisions

may still be such that (fe)males or foreigners have a

much higher probability to be rejected. The decision

algorithm may also favor more frequent values for a

variable. As a result, minority groups may be treated

unfairly.
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Figure 2: Tradeoff between fairness and accuracy.

Discrimination prevention aims to create auto-

mated decision algorithms that do not discriminate us-

ing sensitive variables. It is not sufficient to remove

these sensitive variables: Due to correlations and the

handling of outliers, unintentional discrimination may

still take place. One can add constraints to the deci-

sion algorithm to ensure fairness using a predefined

criterion. For example, the constraint “males and fe-

males should have approximately the same probabil-

ity to be rejected” can be added to a decision-tree

learning algorithm. Next to adding algorithm-specific

constraints used during analysis one can also use pre-

processing (modify the input data by resampling or

relabeling) or postprocessing (modify models, e.g.,

relabel mixed leaf nodes in a decision tree). In gen-

eral there is often a trade-off between maximizing ac-

curacy and minimizing discrimination (see Figure 2).

By rejecting fewer males (better fairness), the insur-

ance company may need to pay more claims.

Discrimination prevention often needs to use sen-

sitive variables (gender, age, nationality, etc.) to en-

sure fairness. This creates a paradox, e.g., informa-

tion on gender needs to be used to avoid discrimina-

tion based on gender.

The first paper on discrimination-aware data min-

ing appeared in 2008 (Pedreshi et al., 2008). Since

then, several papers mostly focusing on fair classifica-

tion appeared: (Calders and Verwer, 2010; Kamiran

et al., 2010; Ruggieri et al., 2010). These examples

show that unfairness during analysis can be actively

prevented. However, unfairness is not limited to clas-

sification and more advanced forms of analytics also

need to ensure fairness.

2.2 Confidentiality - Data Science That

Ensures Confidentiality: How To

Answer Questions Without

Revealing Secrets?

The application of data science techniques should not
reveal certain types of personal or otherwise sensi-
tive information. Often personal data need to be kept
confidential. The General Data Protection Regula-
tion (GDPR) currently under development (European
Commission, 2015) focuses on personal information:
“The principles of data protection should apply to any in-
formation concerning an identified or identifiable natural
person. Data including pseudonymized data, which could
be attributed to a natural person by the use of additional in-
formation, should be considered as information on an iden-
tifiable natural person. To determine whether a person is
identifiable, account should be taken of all the means rea-
sonably likely to be used either by the controller or by any
other person to identify the individual directly or indirectly.
To ascertain whether means are reasonably likely to be used
to identify the individual, account should be taken of all ob-
jective factors, such as the costs of and the amount of time
required for identification, taking into consideration both
available technology at the time of the processing and tech-
nological development. The principles of data protection
should therefore not apply to anonymous information, that
is information which does not relate to an identified or iden-
tifiable natural person or to data rendered anonymous in
such a way that the data subject is not or no longer identifi-
able.”

Confidentiality is not limited to personal data. Compa-
nies may want to hide sales volumes or production times
when presenting results to certain stakeholders. One also
needs to bear in mind that few information systems hold
information that can be shared or analyzed without limits
(e.g., the existence of personal data cannot be avoided). The
“data science pipeline” depicted in Figure 1 shows that there
are different types of data having different audiences. Here
we focus on: (1) the “raw data” stored in the information
system ➋, (2) the data used as input for analysis ➌, and



(3) the analysis results interpreted by analysts and managers
➎. Whereas the raw data may refer to individuals, the data
used for analysis is often (partly) de-identified, and analysis
results may refer to aggregate data only. It is important to
note that confidentiality may be endangered along the whole
pipeline and includes analysis results.

Consider a data set that contains sensitive information.
Records in such a data set may have three types of variables:

• Direct identifiers: Variables that uniquely identify a
person, house, car, company, or other entity. For ex-
ample, a social security number identifies a person.

• Key variables: Subsets of variables that together can be
used to identify some entity. For example, it may be
possible to identify a person based on gender, age, and
employer. A car may be uniquely identified based on
registration date, model, and color. Key variables are
also referred to as implicit identifiers or quasi identi-
fiers.

• Non-identifying variables: Variables that cannot be
used to identify some entity (direct or indirect).

Confidentiality is impaired by unintended or malicious
disclosures. We consider three types of such disclosures:

• Identity disclosure: Information about an entity (per-
son, house, etc.) is revealed. This can be done through
direct or implicit identifiers. For example, the salaries
of employees are disclosed unintentionally or an in-
truder is able to retrieve patient data.

• Attribute disclosure: Information about an entity can be
derived indirectly. If there is only one male surgeon in
the age group 40-45, then aggregate data for this cate-
gory reveals information about this person.

• Partial disclosure: Information about a group of entities
can be inferred. Aggregate information on male sur-
geons in the age group 40-45 may disclose an unusual
number of medical errors. These cannot be linked to
a particular surgeon. Nevertheless, one may conclude
that surgeons in this group are more likely to make er-
rors.

De-identification of data refers to the process of remov-
ing or obscuring variables with the goal to minimize unin-
tended disclosures. In many cases re-identification is pos-
sible by linking different data sources. For example, the
combination of wedding date and birth date may allow for
the re-identification of a particular person. Anonymization
of data refers to de-identification that is irreversible: re-
identification is impossible. A range of de-identification
methods is available: removing variables, randomization,
hashing, shuffling, sub-sampling, aggregation, truncation,
generalization, adding noise, etc. Adding some noise to a
continuous variable or the coarsening of values may have a
limited impact on the quality of analysis results while en-
suring confidentiality.

There is a trade-off between minimizing the disclosure
of sensitive information and the usefulness of analysis re-
sults (see Figure 3). Removing variables, aggregation, and
adding noise can make it hard to produce any meaningful
analysis results. Emphasis on confidentiality (like security)
may also reduce convenience. Note that personalization of-
ten conflicts with fairness and confidentiality. Disclosing all
data, supports analysis, but jeopardizes confidentiality.
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Figure 3: Tradeoff between confidentiality and utility.

Access rights to the different types of data and analy-
sis results in the “data science pipeline” (Figure 1) vary per
group. For example, very few people will have access to
the “raw data” stored in the information system ➋. More
people will have access to the data used for analysis and
the actual analysis results. Poor cybersecurity may endan-
ger confidentiality. Good policies ensuring proper authen-
tication (Are you who you say you are?) and authorization
(What are you allowed to do?) are needed to protect access
to the pipeline in Figure 1. Cybersecurity measures should
not complicate access, data preparation, and analysis; oth-
erwise people may start using illegal copies and replicate
data.

See (Monreale et al., 2014; Nelson, 2015; President’s
Council, 2014) for approaches to ensure confidentiality.

2.3 Accuracy - Data Science Without

Guesswork: How To Answer

Questions With A Guaranteed Level

Of Accuracy?

Increasingly decisions are made using a combination of al-
gorithms and data rather than human judgement. Hence,
analysis results need to be accurate and should not deceive
end-users and decision makers. Yet, there are several fac-
tors endangering accuracy.

First of all, there is the problem of overfitting the data
leading to “bogus conclusions”. There are numerous exam-
ples of so-called spurious correlations illustrating the prob-
lem. Some examples (taken from (Vigen, 2015)):

• The per capita cheese consumption strongly correlates
with the number of people who died by becoming tan-
gled in their bedsheets.

• The number of Japanese passenger cars sold in the
US strongly correlates with the number of suicides by
crashing of motor vehicle.

• US spending on science, space and technology strongly
correlates with suicides by hanging, strangulation and
suffocation.

• The total revenue generated by arcades strongly corre-
lates with the number of computer science doctorates
awarded in the US.



According to Bonferroni’s principle we need to avoid treating random observations as if they are real and sig-

nificant (Rajaraman and Ullman, 2011). The following example, inspired by a similar example in (Rajaraman

and Ullman, 2011), illustrates the risk of treating completely random events as patterns.

A Dutch government agency is searching for terrorists by examining hotel visits of all of its 18 million citizens

(18× 106). The hypothesis is that terrorists meet multiple times at some hotel to plan an attack. Hence, the

agency looks for suspicious “events” {p1, p2} † {d1,d2} where persons p1 and p2 meet on days d1 and d2.

How many of such suspicious events will the agency find if the behavior of people is completely random? To

estimate this number we need to make some additional assumptions. On average, Dutch people go to a hotel

every 100 days and a hotel can accommodate 100 people at the same time. We further assume that there are
18×106

100×100
= 1800 Dutch hotels where potential terrorists can meet.

The probability that two persons (p1 and p2) visit a hotel on a given day d is 1
100

× 1
100

= 10−4. The probability

that p1 and p2 visit the same hotel on day d is 10−4 × 1
1800

= 5.55×10−8. The probability that p1 and p2 visit

the same hotel on two different days d1 and d2 is (5.55× 10−8)2 = 3.086× 10−15. Note that different hotels

may be used on both days. Hence, the probability of suspicious event {p1, p2}†{d1,d2} is 3.086×10−15.

How many candidate events are there? Assume an observation period of 1000 days. Hence, there are 1000×
(1000−1)/2 = 499,500 combinations of days d1 and d2. Note that the order of days does not matter, but the

days need to be different. There are (18×106)× (18×106 −1)/2 = 1.62×1014 combinations of persons p1

and p2. Again the ordering of p1 and p2 does not matter, but p1 6= p2. Hence, there are 499,500×1.62×1014 =
8.09×1019 candidate events {p1, p2}†{d1,d2}.

The expected number of suspicious events is equal to the product of the number of candidate events {p1, p2}†

{d1,d2} and the probability of such events (assuming independence): 8.09×1019 ×3.086×10−15 = 249,749.

Hence, there will be around a quarter million observed suspicious events {p1, p2} † {d1,d2} in a 1000 day

period!

Suppose that there are only a handful of terrorists and related meetings in hotels. The Dutch government agency

will need to investigate around a quarter million suspicious events involving hundreds of thousands innocent

citizens. Using Bonferroni’s principle, we know beforehand that this is not wise: there will be too many false

positives.

Example: Bonferroni’s principle explained using an example taken from (Aalst, 2016). To apply the principle, compute the
number of observations of some phenomena one is interested in under the assumption that things occur at random. If this
number is significantly larger than the real number of instances one expects, then most of the findings will be false positives.

When using many variables relative to the number of in-
stances, classification may result in complex rules overfit-
ting the data. This is often referred to as the curse of di-
mensionality: As dimensionality increases, the number of
combinations grows so fast that the available data become
sparse. With a fixed number of instances, the predictive
power reduces as the dimensionality increases. Using cross-
validation most findings (e.g., classification rules) will get
rejected. However, if there are many findings, some may
survive cross-validation by sheer luck.

In statistics, Bonferroni’s correction is a method (named
after the Italian mathematician Carlo Emilio Bonferroni) to
compensate for the problem of multiple comparisons. Nor-
mally, one rejects the null hypothesis if the likelihood of
the observed data under the null hypothesis is low (Casella
and Berger, 2002). If we test many hypotheses, we also in-
crease the likelihood of a rare event. Hence, the likelihood
of incorrectly rejecting a null hypothesis increases (Miller,
1981). If the desired significance level for the whole col-
lection of null hypotheses is α, then the Bonferroni correc-
tion suggests that one should test each individual hypoth-
esis at a significance level of α

k where k is the number of
null hypotheses. For example, if α = 0.05 and k = 20, then
α

k = 0.0025 is the required significance level for testing the
individual hypotheses.

Next to overfitting the data and testing multiple hy-
potheses, there is the problem of uncertainty in the input
data and the problem of not showing uncertainty in the re-
sults.

Uncertainty in the input data is related to the fourth “V”
in the four “V’s of Big Data” (Volume, Velocity, Variety,
and Veracity). Veracity refers to the trustworthiness of the
input data. Sensor data may be uncertain, multiple users
may use the same account, tweets may be generated by soft-
ware rather than people, etc. These uncertainties are often
not taken into account during analysis assuming that things
“even out” in larger data sets. This does not need to be the
case and the reliability of analysis results is affected by un-
reliable or probabilistic input data.

When we say, “we are 95% confident that the true value
of parameter x is in our confidence interval [a,b]”, we mean
that 95% of the hypothetically observed confidence inter-
vals will hold the true value of parameter x. Averages, sums,
standard deviations, etc. are often based on sample data.
Therefore, it is important to provide a confidence interval.
For example, given a mean of 35.4 the 95% confidence in-
terval may be [35.3,35.6], but the 95% confidence interval
may also be [15.3,55.6]. In the latter case, we will inter-
pret the mean of 35.4 as a “wild guess” rather than a rep-
resentative value for true average value. Although we are



used to confidence intervals for numerical values, decision
makers have problems interpreting the expected accuracy
of more complex analysis results like decision trees, asso-
ciation rules, process models, etc. Cross-validation tech-
niques like k-fold checking and confusion matrices give
some insights. However, models and decisions tend to be
too “crisp” (hiding uncertainties). Explicit vagueness or
more explicit confidence diagnostics may help to better in-
terpret analysis results. Parts of models should be kept de-
liberately “vague” if analysis is not conclusive.

2.4 Transparency - Data Science That

Provides Transparency: How To

Clarify Answers Such That They

Become Indisputable?

Data science techniques are used to make a variety of de-
cisions. Some of these decisions are made automatically
based on rules learned from historic data. For example, a
mortgage application may be rejected automatically based
on a decision tree. Other decisions are based on analysis re-
sults (e.g., process models or frequent patterns). For exam-
ple, when analysis reveals previously unknown bottlenecks,
then this may have consequences for the organization of
work and changes in staffing (or even layoffs). Automated
decision rules (➏ in Figure 1) need to be as accurate as pos-
sible (e.g., to reduce costs and delays). Analysis results (➎
in Figure 1) also need to be accurate. However, accuracy
is not sufficient to ensure acceptance and proper use of data
science techniques. Both decisions ➏ and analysis results
➎ also need to be transparent.
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Figure 4: Different levels of transparency.

Figure 4 illustrates the notion of transparency. Consider
an application submitted by John evaluated using three data-
driven decision systems. The first system is a black box: It
is unclear why John’s application is rejected. The second
system reveals it’s decision logic in the form of a decision
tree. Applications from females and younger males are al-
ways accepted. Only applications from older males get re-
jected. The third system uses the same decision tree, but
also explains the rejection (“because male and above 50”).

Clearly, the third system is most transparent. When govern-
ments make decisions for citizens it is often mandatory to
explain the basis for such decisions.

Deep learning techniques (like many-layered neural
networks) use multiple processing layers with complex
structures or multiple non-linear transformations. These
techniques have been successfully applied to automatic
speech recognition, image recognition, and various other
complex decision tasks. Deep learning methods are often
looked at as a “black box”, with performance measured
empirically and no formal guarantees or explanations. A
many-layered neural network is not as transparent as for ex-
ample a decision tree. Such a neural network may make
good decisions, but it cannot explain a rule or criterion.
Therefore, such black box approaches are non-transparent
and may be unacceptable in some domains.

Transparency is not restricted to automated decision
making and explaining individual decisions, it also involves
the intelligibility, clearness, and comprehensibility of anal-
ysis results (e.g., a process model, decision tree, regression
formula). For example, a model may reveal bottlenecks in a
process, possible fraudulent behavior, deviations by a small
group of individuals, etc. It needs to be clear for the user of
such models (e.g., a manager) how these findings where ob-
tained. The link to the data and the analysis technique used
should be clear. For example, filtering the input data (e.g.,
removing outliers) or adjusting parameters of the algorithm
may have a dramatic effect on the model returned.

Storytelling is sometimes referred to as “the last mile
in data science”. The key question is: How to communi-
cate analysis results with end-users? Storytelling is about
communicating actionable insights to the right person, at
the right time, in the right way. One needs to know the gist
of the story one wants to tell to successfully communicate
analysis results (rather than presenting the whole model and
all data). One can use natural language generation to trans-
form selected analysis results into concise, easy-to-read, in-
dividualized reports.

To provide transparency there should be a clear link be-
tween data and analysis results/stories. One needs to be able
to drill-down and inspect the data from the model’s perspec-
tive. Given a bottleneck one needs to be able to drill down
to the instances that are delayed due to the bottleneck. This
related to data provenance: it should always be possible to
reproduce analysis results from the original data.

The four challenges depicted in Figure 1 are clearly in-
terrelated. There may be trade-offs between fairness, confi-
dentiality, accuracy and transparency. For example, to en-
sure confidentiality we may add noise and de-identify data
thus possibly compromising accuracy and transparency.

3 EXAMPLE: GREEN PROCESS

MINING

The goal of process mining is to turn event data into in-
sights and actions (Aalst, 2016). Process mining is an inte-
gral part of data science, fueled by the availability of data
and the desire to improve processes. Process mining can
be seen as a means to bridge the gap between data science
and process science. Data science approaches tend to be
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Figure 5: The “process mining pipeline” relates observed and modeled behavior.

process agonistic whereas process science approaches tend
to be model-driven without considering the “evidence” hid-
den in the data. This section discusses challenges related to
fairness, confidentiality, accuracy, and transparency in the
context of process mining. The goal is not to provide so-
lutions, but to illustrate that the more general challenges
discussed before trigger concrete research questions when
considering processes and event data.

3.1 What Is Process Mining?

Figure 5 shows the “process mining pipeline” and can be
viewed as a specialization of the Figure 1. Process mining
focuses on the analysis of event data and analysis results
are often related to process models. Process mining is a
rapidly growing subdiscipline within both Business Process
Management (BPM) (Aalst, 2013a) and data science (Aalst,
2014). Mainstream Business Intelligence (BI), data min-
ing and machine learning tools are not tailored towards the
analysis of event data and the improvement of processes.
Fortunately, there are dedicated process mining tools able
to transform event data into actionable process-related in-
sights. For example, ProM (www.processmining.org) is
an open-source process mining tool supporting process dis-
covery, conformance checking, social network analysis, or-
ganizational mining, clustering, decision mining, predic-
tion, and recommendation (see Figure 6). Moreover, in
recent years, several vendors released commercial process
mining tools. Examples include: Celonis Process Mining
by Celonis GmbH (www.celonis.de), Disco by Fluxicon
(www.fluxicon.com), Interstage Business Process Man-
ager Analytics by Fujitsu Ltd (www.fujitsu.com), Minit
by Gradient ECM (www.minitlabs.com), myInvenio by
Cognitive Technology (www.my-invenio.com), Perceptive
Process Mining by Lexmark (www.lexmark.com), QPR
ProcessAnalyzer by QPR (www.qpr.com), Rialto Process
by Exeura (www.exeura.eu), SNP Business Process Anal-
ysis by SNP Schneider-Neureither & Partner AG (www.

snp-bpa.com), and PPM webMethods Process Perfor-
mance Manager by Software AG (www.softwareag.com).

3.1.1 Creating and Managing Event Data

Process mining is impossible without proper event logs
(Aalst, 2011). An event log contains event data related to
a particular process. Each event in an event log refers to
one process instance, called case. Events related to a case
are ordered. Events can have attributes. Examples of typ-
ical attribute names are activity, time, costs, and resource.
Not all events need to have the same set of attributes. How-
ever, typically, events referring to the same activity have the
same set of attributes. Figure 6(a) shows the conversion of
an CSV file with four columns (case, activity, resource, and
timestamp) into an event log.

Most process mining tools support XES (eXtensible
Event Stream) (IEEE Task Force on Process Mining, 2013).
In September 2010, the format was adopted by the IEEE
Task Force on Process Mining and became the de facto ex-
change format for process mining. The IEEE Standards Or-
ganization is currently evaluating XES with the aim to turn
XES into an official IEEE standard.

To create event logs we need to extract, load, trans-
form, anonymize, and de-identify data in a variety of sys-
tems (see ➌ in Figure 5). Consider for example the hun-
dreds of tables in a typical HIS (Hospital Information Sys-
tem) like ChipSoft, McKesson and EPIC or in an ERP (En-
terprise Resource Planning) system like SAP, Oracle, and
Microsoft Dynamics. Non-trivial mappings are needed to
extract events and to relate events to cases. Event data needs
to be scoped to focus on a particular process. Moreover, the
data also needs to be scoped with respect to confidentiality
issues.

3.1.2 Process Discovery

Process discovery is one of the most challenging process
mining tasks (Aalst, 2011). Based on an event log, a process
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Table 1: Relating the four challenges to process mining specific tasks.

creating and

managing

event data
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operational
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fairness

Data Science with-

out prejudice: How to

avoid unfair conclusions

even if they are true?

The input data may

be biased, incomplete

or incorrect such

that the analysis

reconfirms prejudices.

By resampling or

relabeling the data,

undesirable forms of

discrimination can

be avoided. Note

that both cases and

resources (used to

execute activities)

may refer to individ-

uals having sensitive

attributes such as

race, gender, age, etc.

The discovered model

may abstract from

paths followed by cer-

tain under-represented

groups of cases.

Discrimination-aware

process-discovery

algorithms can be

used to avoid this. For

example, if cases are

handled differently

based on gender, we

may want to ensure

that both are equally

represented in the

model.

Conformance

checking can be

used to “blame”

individuals, groups,

or organizations for

deviating from some

normative model.

Discrimination-aware

conformance check-

ing (e.g., alignments)

needs to separate

(1) likelihood, (2)

severity and (3)

blame. Deviations

may need to be

interpreted differently

for different groups of

cases and resources.

Straightforward

performance measure-

ments may be unfair

for certain classes of

cases and resources

(e.g., not taking into

account the context).

Discrimination-aware

performance analysis

detects unfairness

and supports process

improvements taking

into account trade-

offs between internal

fairness (worker’s

perspective) and

external fairness (citi-

zen/patient/customer’s

perspective).

Process-related

predictions, rec-

ommendations

and decisions

may discriminate

(un)intentionally.

This problem can

be tackled using

techniques from

discrimination-aware

data mining.

confidentiality

Data Science that

ensures confidentiality:

How to answer questions

without revealing secrets?

Event data (e.g., XES

files) may reveal

sensitive information.

Anonymization and

de-identification can

be used to avoid

disclosure. Note

that timestamps and

paths may be unique

and a source for

re-identification (e.g.,

all paths are unique).

The discovered model

may reveal sensitive

information, espe-

cially with respect

to infrequent paths

or small event logs.

Drilling-down from

the model may need

to be blocked when

numbers get too small

(cf. k-anonymity).

Conformance check-

ing shows diagnostics

for deviating cases

and resources.

Access-control

is important and

diagnostics need to be

aggregated to avoid

revealing compliance

problems at the level

of individuals.

Performance analysis

shows bottlenecks and

other problems. Link-

ing these problems to

cases and resources

may disclose sensitive

information.

Process-related

predictions, rec-

ommendations

and decisions may

disclose sensitive

information, e.g.,

based on a rejection

other properties can

be derived.

accuracy

Data Science with-

out guesswork: How to

answer questions with

a guaranteed level of

accuracy?

Event data (e.g.,

XES files) may

have all kinds of

quality problems.

Attributes may be

incorrect, imprecise,

or uncertain. For

example, timestamps

may be too coarse

(just the date) or

reflect the time of

recording rather than

the time of the event’s

occurrence.

Process discovery de-

pends on many pa-

rameters and charac-

teristics of the event

log. Process mod-

els should better show

the confidence level

of the different parts.

Moreover, additional

information needs to

be used better (do-

main knowledge, un-

certainty in event data,

etc.).

Often multiple

explanations are

possible to interpret

non-conformance.

Just providing one

alignment based

on a particular cost

function may be mis-

leading. How robust

are the findings?

In case of fitness

problems (process

model and event log

disagree), perfor-

mance analysis is

based on assumptions

and needs to deal

with missing values

(making results less

accurate).

Inaccurate process

models may lead to

flawed predictions,

recommendations and

decisions. Moreover,

not communicating

the (un)certainty

of predictions,

recommendations

and decisions, may

negatively impact

processes.

transparency

Data Science that

provides transparency:

How to clarify answers

such that they become

indisputable?

Provenance of event

data is key. Ide-

ally, process mining

insights can be related

to the event data they

are based on. How-

ever, this may con-

flict with confidential-

ity concerns.

Discovered process

models depend on

the event data used

as input and the

parameter settings and

choice of discovery

algorithm. How to en-

sure that the process

model is interpreted

correctly? End-users

need to understand

the relation between

data and model to

trust analysis.

When modeled and

observed behavior

disagree there may be

multiple explanations.

How to ensure that

conformance diagnos-

tics are interpreted

correctly?

When detecting per-

formance problems, it

should be clear how

these were detected

and what the possi-

ble causes are. Ani-

mating event logs on

models helps to make

problems more trans-

parent.

Predictions, rec-

ommendations and

decisions are based

on process models. If

possible, these models

should be transparent.

Moreover, expla-

nations should be

added to predictions,

recommendations

and decisions (“We

predict that this case

be late, because ...”).



model is constructed thus capturing the behavior seen in the
log. Dozens of process discovery algorithms are available.
Figure 6(c) shows a process model discovered using ProM’s
inductive visual miner (Leemans et al., 2015). Techniques
use Petri nets, WF-nets, C-nets, process trees, or transition
systems as a representational bias (Aalst, 2016). These re-
sults can always be converted to the desired notation, for
example BPMN (Business Process Model and Notation),
YAWL, or UML activity diagrams.

3.1.3 Conformance Checking

Using conformance checking discrepancies between the log
and the model can be detected and quantified by replaying
the log (Aalst et al., 2012). For example, Figure 6(c) shows
an activity that was skipped 16 times. Some of the discrep-
ancies found may expose undesirable deviations, i.e., con-
formance checking signals the need for a better control of
the process. Other discrepancies may reveal desirable de-
viations and can be used for better process support. Input
for conformance checking is a process model having exe-
cutable semantics and an event log.

3.1.4 Performance Analysis

By replaying event logs on process model, we can com-
pute frequencies and waiting/service times. Using align-
ments (Aalst et al., 2012) we can relate cases to paths in
the model. Since events have timestamps, we can associate
the times in-between events along such a path to delays in
the process model. If the event log records both start and
complete events for activities, we can also monitor activity
durations. Figure 6(d) shows an activity that has an aver-
age waiting time of 18 days and 16 hours. Note that such
bottlenecks are discovered without any modeling.

3.1.5 Operational Support

Figure 6(e) shows the queue length at a particular point in
time. This illustrates that process mining can be used in an
online setting to provide operational support. Process min-
ing techniques exist to predict the remaining flow time for
a case or the outcome of a process. This requires the com-
bination of a discovered process model, historic event data,
and information about running cases. There are also tech-
niques to recommend the next step in a process, to check
conformance at run-time, and to provide alerts when cer-
tain Service Level Agreements (SLAs) are violated.

3.2 Challenges in Process Mining

Table 1 maps the four generic challenges identified in Sec-
tion 2 onto the six key ingredients of process mining briefly
introduced in Section 3.1. Note that both cases (i.e., process
instances) and the resources used to execute activities may
refer to individuals (customers, citizens, patients, workers,
etc.). Event data are difficult to fully anonymize. In larger
processes, most cases follow a unique path. In the event log
used in Figure 6, 198 of the 208 cases follow a unique path
(focusing only on the order of activities). Hence, knowing

the order of a few selected activities may be used to de-
anonymize or re-identify cases. The same holds for (pre-
cise) timestamps. For the event log in Figure 6, several
cases can be uniquely identified based on the day the reg-
istration activity (first activity in process) was executed. If
one knows the timestamps of these initial activities with the
precision of an hour, then almost all cases can be uniquely
identified. This shows that the ordering and timestamp data
in event logs may reveal confidential information uninten-
tionally. Therefore, it is interesting to investigate what can
be done by adding noise (or other transformations) to event
data such that the analysis results do not change too much.
For example, we can shift all timestamps such that all cases
start in “week 0”. Most process discovery techniques will
still return the same process model. Moreover, the average
flow/waiting/service times are not affected by this.

Conformance checking (Aalst et al., 2012) can be
viewed as a classification problem. What kind of cases de-
viate at a particular point? Bottleneck analysis can also be
formulated as a classification problem. Which cases get de-
layed more than 5 days? We may find out that conformance
or performance problems are caused by characteristics of
the case itself or the people that worked on it. This allows
us to discover patterns such as:

• Doctor Jones often performs an operation without mak-
ing a scan and this results in more incidents later in the
process.

• Insurance claims from older customers often get re-
jected because they are incomplete.

• Citizens that submit their tax declaration too late often
get rejected by teams having a higher workload.

Techniques for discrimination discovery can be used to find
distinctions that are not desirable/acceptable. Subsequently,
techniques for discrimination prevention can be used to
avoid such situations. It is important to note that discrimi-
nation is not just related to static variables, but also relates
to the way cases are handled.

It is also interesting to use techniques from decomposed
process mining or streaming process mining (see Chap-
ter 12 in (Aalst, 2016)) to make process mining “greener”.

For streaming process mining one cannot keep track of
all events and all cases due to memory constraints and the
need to provide answers in real-time (Burattin et al., 2014;
Aalst, 2016; Zelst et al., 2015). Hence, event data need to
be stored in aggregated form. Aging data structures, queues,
time windows, sampling, hashing, etc. can be used to keep
only the information necessary to instantly provide answers
to selected questions. Such approaches can also be used
to ensure confidentiality, often without a significant loss of
accuracy.

For decomposed/distributed process mining event data
need to be split based on a grouping activities in the pro-
cess (Aalst, 2013b; Aalst, 2016). After splitting the event
log, it is still possible to discover process models and to
check conformance. Interestingly, the sublogs can be ana-
lyzed separately. This may be used to break potential harm-
ful correlations. Rather than storing complete cases, one
can also store shorter episodes of anonymized case frag-
ments. Sometimes it may even be sufficient to store only di-
rect successions, i.e., facts of the form “for some unknown
case activity a was followed by activity b with a delay of 8



hours”. Some discovery algorithms only use data on direct
successions and do not require additional, possibly sensi-
tive, information. Of course certain questions can no longer
be answered in a reliable manner (e.g., flow times of cases).

The above examples illustrate that Table 1 identifies a
range of novel research challenges in process mining. In
today’s society, event data are collected about anything, at
any time, and at any place. Today’s process mining tools
are able to analyze such data and can handle event logs with
billions of events. These amazing capabilities also imply a
great responsibility. Fairness, confidentiality, accuracy and
transparency should be key concerns for any process miner.

4 CONCLUSION

This paper introduced the notion of “Green Data Science”
(GDS) from four angles: fairness, confidentiality, accuracy,
and transparency. The possible “pollution” caused by data
science should not be addressed (only) by legislation. We
should aim for positive, technological solutions to protect
individuals, organizations and society against the negative
side-effects of data. As an example, we discussed “green
challenges” in process mining. Table 1 can be viewed as a
research agenda listing interesting open problems.
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