
Expert Systems With Applications 59 (2016) 101–118

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Building instance graphs for highly variable processes

Claudia Diamantini a , Laura Genga

a , ∗, Domenico Potena

a , Wil van der Aalst b

a Information Engineering Department, Universitá Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
b Faculty of Mathematics and Computer Science, Eindhoven University of Technology, NL-5600 MB, Eindhoven, The Netherlands

a r t i c l e i n f o

Article history:

Received 24 September 2015

Revised 16 April 2016

Accepted 17 April 2016

Available online 23 April 2016

Keywords:

Process mining

Highly variable processes

Building instance graphs

Process instances

a b s t r a c t

Organizations increasingly rely on business process analysis to improve operations performance. Process

Mining can be exploited to distill models from real process executions recorded in event logs, but exist-

ing techniques show some limitations when applied in complex domains, where human actors have high

degree of freedom in the execution of activities thus generating highly variable processes instances. This

paper contributes to the research on Process Mining in highly variable domains, focusing on the genera-

tion of process instance models (in the form of instance graphs) from simple event logs. The novelty of

the approach is in the exploitation of filtering Process Discovery (PD) techniques coupled with repairing,

which allows obtaining accurate models for any instance variant, even for rare ones. It is argued that this

provides the analyst with a more complete and faithful knowledge of a highly variable process, where no

process execution can be really targeted as “wrong” and hence overlooked. The approach can also find

application in more structured domains, in order to obtain accurate models of exceptional behaviors. The

quality of generated models will be assessed by suitable metrics and measured in empirical experiments

enlightening the advantage of the approach.

© 2016 Elsevier Ltd. All rights reserved.

1

s

p

fl

(

t

A

o

H

s

t

i

o

e

e

h

o

o

G

s

A

s

i

k

a

o

t

t

P

a

t

d

e

M

H

r

i

a

p

h

0

. Introduction

Information systems are widely adopted by organizations to

upport the execution of their business processes. Notable exam-

les are Business Process Management Systems (BPMS), Work-

ow Management Systems (WMS), Enterprise Resource Planning

ERP), and Customer Relationship Management (CRM). These sys-

ems typically record all past process executions in an event log .

 single execution of a business process is called process instance ,

r case , and it can include parallel execution of business activities.

owever, event logs typically store only the trace of a process in-

tance, i.e., the sequence of the activities stored according to their

emporal order of occurrence. Typically the start time of the activ-

ty is also recorded together with an instance identifier. Depending

n the system, other information can be found as well, like the ex-

cutor, input/output data, and the total duration of the activity (or,

quivalently, its end time).

Event logs store invaluable information about organization’s be-

avior that can be exploited by analysts to monitor and improve

perations performance. Simple analyses can be performed directly

n sequential traces. For instance, average instance lead time, re-
∗ Corresponding author.

E-mail addresses: c.diamantini@univpm.it (C. Diamantini), l.genga@univpm.it (L.

enga), d.potena@univpm.it (D. Potena), w.m.p.v.d.Aalst@tue.nl (W. van der Aalst).

f

p

B

a

d

ttp://dx.doi.org/10.1016/j.eswa.2016.04.021

957-4174/© 2016 Elsevier Ltd. All rights reserved.
ource usage, event interval analysis (Suriadi, Ouyang, van der

alst, & ter Hofstede, 2015) can be obtained. However, more in-

ights can be derived only when the control flow structure of the

nstance is known or, in other terms, when the instance model is

nown. An instance model explicitly represents parallelisms among

ctivities that are hidden in the sequential trace, e.g., in the form

f an Instance Graph . Fig. 1 shows a simple example of a set of

races and the corresponding Instance Graphs (IG).

In order to build instance models, causal relations among ac-

ivities must be known, or they can be inferred from event logs.

rocess Discovery is the discipline devoted to infer relations from

 log and build models. Process Discovery (PD) techniques belong

o the broader Process Mining discipline, whose goal consists in

iscovering, monitoring and improving a given process exploiting

vent log generated during process execution (van der Aalst, 2011).

ost of techniques aim to generate a complete process model.

owever, such a model is not always required, and a good rep-

esentation of each individual process instance can provide useful

nsights as well, and can be used in addressing several tasks. As

n example, (Lu, Fahland, & van der Aalst, 2015) proposes to ex-

loit instance models in conformance checking applications, i.e.,

or measuring the extent to which actual executions adhere to a

redefined normative process model. (van Beest, Dumas, García-

a nuelos, & La Rosa, 2015) uses instance models to implement

 log delta-analysis technique, which allows to identify relevant

ifferences between the executions recorded in two event logs.

http://dx.doi.org/10.1016/j.eswa.2016.04.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.04.021&domain=pdf
mailto:c.diamantini@univpm.it
mailto:l.genga@univpm.it
mailto:d.potena@univpm.it
mailto:w.m.p.v.d.Aalst@tue.nl
http://dx.doi.org/10.1016/j.eswa.2016.04.021

102 C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118

1 〈a, b, c, d, e, f, g 〉

2 〈a, b, c, e, d, f, g 〉

3 〈a, i, l,m, g 〉

ba

Fig. 1. A set of traces (a) and their corresponding instance graphs (b).

e

(

t

a

b

t

c

t

o

t

a

w

t

m

a

l

v

n

t

l

d

l

2

I

h
Another relevant application is described in our previous work

(Diamantini, Genga, & Potena, 2016; Diamantini, Genga, Potena, &

Storti, 2013; Diamantini, Potena, & Storti, 2012), where we intro-

duced a methodology aimed at extracting the most relevant com-

mon substructures in a set of instance models.

In the literature, some approaches to build instance models ex-

ploit information of richly annotated logs like I/O data (an activ-

ity that needs certain data in input causally depends from activi-

ties producing that data in output), or the overlap between execu-

tion intervals (if two intervals overlap then clearly the correspond-

ing activities has been executed in parallel). The applicability of

these approaches is thus limited. Others propose the exploitation

of some domain knowledge provided by experts (e.g., to publish

articles, they must undergo a review cycle) or by a reference pro-

cess model. In this paper, we deal with building IG from simple

event logs, i.e., logs providing the minimal set of information, and

without resorting to any domain knowledge. In this setting, to the

best of our knowledge, only two approaches have been proposed,

both based on the causal relations inference rules embedded in the

α-algorithm PD technique (van Beest et al., 2015; van Dongen &

van der Aalst, 2004).

It is noteworthy that the α-algorithm, and then the two above

mentioned approaches, perform fairly well with well structured

processes, but they show limitations when applied to unstructured,

highly variable processes. This kind of processes is typical of real-

world domains, where human actors have high degree of free-

dom in the execution of activities. This is the case, for instance,

of health care where, although clinical guidelines are given, there

may be good reasons to deviate from such guidelines (de Man,

2009; Rovani, Maggi, De Leoni, & Van Der Aalst, 2015). The lim-

its of the application of α-algorithm to highly variable processes

are well studied in the literature. They are related to the inference

of models affected by overgeneralization . In practice, being unable

to recognize existing causal relations among activities, the algo-

rithm generates models involving a high number of parallel activ-

ities, thus allowing for more instances than the real ones. Simi-

larly, the use of the algorithm to build IG produce poor results, in

terms of inaccurate, overgeneralizing IG, accounting for much more

traces than those actually recorded in the event log. We provide

a detailed discussion of overgeneralization issues and examples in

Section 4 .

In this paper we propose a novel methodology that elaborates

upon (van Beest et al., 2015; van Dongen & van der Aalst, 2004)

to improve the quality of generated IG in the presence of highly

variable processes. We propose to exploit causal relation inference

rules typical of filtering techniques, which model only the most

frequent process behaviors, thus being able to cut down overgen-

eralization. However, the application of a filtering technique also

presents some drawbacks. In particular, (causal relations of) sev-
 a
ral traces of the event log are now not represented in the model

i.e., they are irregular with respect to the model), impacting nega-

ively on the quality of the corresponding IG. While in loosely vari-

ble domains this can still be acceptable, since irregular traces can

e considered the result of “wrong” or outlier behaviors, and can

hen be discarded, this is not the case with highly variable pro-

esses, where no execution can be really targeted as wrong and

hen overlooked, or in the case we like to analyze exactly those

utlier behaviors. To address this issue, we also propose to couple

he exploitation of filtering techniques with an original technique

imed at repairing IG of irregular traces, thus providing the analyst

ith a more complete and faithful knowledge of the reality regis-

ered in the event log.

The quality of generated models will be assessed by suitable

etrics and measured in empirical experiments enlightening the

dvantage of the approach.

Summing up, the main contributions of this work are as fol-

ows:

• we throughly investigate and discuss the limitation of existing

PD techniques to build IG in highly variable domains;
• we consider two filtering techniques, the Heuristic Miner

(Weijters, van der Aalst, & De Medeiros, 2006) and infrequent

Inductive Miner (Leemans, Fahland, & van der Aalst, 2014) al-

gorithms, to induce causal relations between activities and we

discuss their features in the context of present work;
• we exploit conformance checking techniques to recognize irreg-

ular traces and then we introduce a novel algorithm aimed at

repairing irregular IG, discussing main challenges and showing

its behavior by means of several examples;
• we provide experimental evidences on both synthetic and real-

world logs, comparing the proposed methodology with exist-

ing approaches, and by enlightening the advantage of repairing

with respect to simple filtering techniques, using accuracy and

generalization capability as figures of merit.

The rest of the paper is organized as follows. Section 2 pro-

ides an overview of related work. Section 3 recalls some basic

otions and definitions. Section 4 introduces the issues related to

he building of IG in highly variable domains. In Section 5 we de-

ineate our methodology, and in Section 6 experimental results are

iscussed. Finally, in Section 7 we draw some conclusions and de-

ineate future work.

. Related work

Our work aims at building an instance model, in the form of

G, for each trace of a given event log. Moreover, since IGs built for

ighly variable processes are often of poor quality, we introduce

 repairing procedure aimed to enhance them. In the following

C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118 103

s

b

t

2

f

v

g

t

t

m

b

t

d

2

k

(

i

s

e

p

fl

C

f

b

c

d

b

a

i

s

i

s

h

2

g

a

i

l

i

fi

Y

p

t

t

s

t

a

e

c

p

e

w

a

o

I

t

M

o

s

i

a

b

l

t

a

a

m

e

a

t

E

f

q

p

G

p

T

s

e

c

t

n

s

a

v

l

i

n

b

b

t

e

T

d

(

d

a

v

t

a

s

s

t

g

b

t

i

e

w

t

h

I

o

i

d

stances.

1 http://www.softwareag.com/nl/products/aris _ platform/aris _ controlling/

aris _ process _ performance/overview/default.asp
ubsections first we review some approaches which deal with

uilding instance models; then we discuss some techniques aimed

o enhance process models.

.1. Building instance models

PD is the process mining branch aimed at extracting models

rom event logs. A plethora of different techniques has been de-

eloped during last years (see De Weerdt et al., 2012; van Don-

en, Alves de Medeiros, and Wen, 2009 , for an overview). Most of

hem, however, aim at deriving a process model able to describe

he entire process; our proposal, instead, is focused on deriving

odels describing single process instances. Few approaches have

een proposed to deal with this issue, which can be grouped in

wo categories, i.e., model-based and log-based approaches, intro-

uced in the following subsections.

.1.1. Model-based approaches

These approaches instantiate instance models from an a-priori

nown process model. This is the case, for example, of the VIP Tool

 Desel, Juhás, Lorenz, & Neumair, 2003), which, given a Petri net,

s able to derive the set of its runs , where each run represents a

ingle, complete execution of the net. The obtained set of runs is

xploited for analysis and validation of the Petri net. Other exam-

les of building of instance models can be found in some Work-

ow Management Systems. Among them, we can mention the In-

oncert tool (van der Aalst & van Hee, 2004), which is interesting

rom a historic point of view. InConcert aims at ensuring a flexi-

le management of the workflows, by supporting both the classi-

al workflows instantiation from the overall process model and the

efinition of ad-hoc workflow instances. The ad-hoc instances can

e obtained by modifying an instance of the model or by instanti-

ting an empty instance, allowing the user to create the workflow

nstance as she needs. Furthermore, the routing of completed in-

tances can be exploited to create new instances template. Clearly,

n these approaches the definition of the instances is more a de-

ign activity, rather than an automatic discovery; indeed, the user

as to specify the high level definition of the instance models.

.1.2. Log-based approaches

Log-based approaches derive instance models starting from a

iven event log. They first derive the causal relations existing

mong process activities, and then use these relations to build the

nstance models. Three kinds of approaches have been proposed in

iterature, namely i) approaches based on special attributes stored

n the event log, ii) approaches based on a-priori knowledge and,

nally, iii) approaches based on basic attributes of the event log.

Examples of approaches of the first group are (Hwang, Wei, &

ang, 2004) and (Lu et al., 2015). In (Hwang et al., 2004) authors

ropose to take into account temporal relationships between ac-

ivities. For each pair of activities a and b of a trace two types of

emporal relationships are modeled, i.e., 1) the “followed” relation-

hip, which states that b is performed after a is terminated, and 2)

he “overlapped” relationship, which states that the execution of a

nd b is temporally overlapping. To this end, authors assume the

vent log to store for each activity both the starting time end the

ompletion time, using these attributes to derive the set of tem-

oral relationships. These relationships are then used to build for

ach process instance an instance model named “temporal graph”,

hich consists in a directed graph where each node corresponds to

n activity of the trace, and an edge is inserted between two nodes

nly if a followed relation exists between corresponding activities.

t should be noted that applicability of this approach is limited

o event logs storing the actual duration of activities executions.

oreover, temporal relationships are defined locally to each trace

f the log. (Lu et al., 2015) proposes an approaches that deals with
o-called Data Annotated Log (DAL), where each event has a set of

nput attributes, describing data that are read when executing an

ctivity, and of output attributes, describing data that are written

y the activity. As one clearly argue, in a DAL one can define re-

iable ordering relations, since if an activity a j has as input an at-

ribute x , which is generated as output by an activity a i , obviously

 j depends on the execution of a i and, hence, has to be executed

fter it. The generation of a DAL requires either a suitable event log

anagement system, or the preprocessing of the log by a domain

xpert. Many real life event logs do not include any information

bout data dependencies.

An example of knowledge-based approach is implemented in

he ARIS PPM tool 1 . It models each process instance as instance

PC (i.e., Event driven Process Chain), another process modeling

ormalism (see e.g., Forrester, 1999). The tool is able to build se-

uential instance EPCs and can acquire domain knowledge by ex-

erts in order to enrich an instance EPC with parallelisms.

Another example of knowledge-based approach is (Greco,

uzzo, Manco, & Saccà, 2007). Here authors assume to have at dis-

osal an a-priori model of the process, like those used in WMS.

hey derive for each trace of the log the corresponding process in-

tance by replaying the trace on the model, i.e., by identifying the

nacted subgraph in the overall model, that is the one whose nodes

orrespond to the activities of the trace. The work also introduces

he idea to exploit a model mined from event logs by PD tech-

iques, as in our proposal. However, they do not delve into the is-

ues related with building instances from mined models, assuming

 correct model can be generated, which is not the case for highly

ariable processes. As a further difference, we start from causal re-

ations, instead of using replay. The two approaches are equivalent

n the case all traces fully fit the model, which, however, is usually

ot the case when a filtering PD technique is adopted.

Approaches of group iii) address the most general case, i.e., the

uilding of instance models from a simple event log, storing only

asic information for each activity, i.e., its timestamp, its name and

he case it belongs to, without exploiting additional domain knowl-

dge. The approach proposed in this work belongs to this group.

o the best of our knowledge, the only approaches developed to

eal with this issue are (van Dongen & van der Aalst, 2004) and

 van Beest et al., 2015), which propose to apply the α-algorithm to

erive, respectively, the set of causal relations and the set of par-

llelisms existing among activities of the process. (van Dongen &

an der Aalst, 2004) uses causal relations to determine which ac-

ivities have to be linked in an IG, generating the graph in such

 way that each activity is linked to its closest causal predeces-

ors and to its closest causal successors. Therefore, an edge is in-

erted between two activities only if a causal relation exists among

hem. (van Beest et al., 2015) adopts the opposite idea. At the be-

inning, each activity is linked to all its successors; then, edges

etween parallel activities, as well as edges linking activities be-

ween which another path exists, are removed. Hence, an edge is

nserted between two activities only when no explicit parallelism

xists among them.

It is noteworthy that both approaches present severe limitations

hen addressing highly variable processes. Both of them exploit

he α-algorithm to derive the causal relations, that is known to

ave issues in dealing with event logs of highly variable processes.

ndeed, in these cases the α-algorithm usually returns imprecise,

vergeneralizing models, i.e., models allowing for too much behav-

ors, from which one obtains, in turn, overgeneralizing IG, which

o not provide any aid to the analysis of corresponding process in-

http://www.softwareag.com/nl/products/aris_platform/aris_controlling/aris_process_performance/overview/default.asp

104 C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118

t

e

i

a

ω

t

d

t

r

d

〈

i

o

d

D

q

a

3

a

w

u

D

r

b

o

D

p

c

2 e 1 ≺e 2 if and only if e 1 �e 2 and e 1 � = e 2 .
We use as starting point for the development of this work the

approach proposed by (van Dongen & van der Aalst, 2004) in that

we exploit causal relations for building IG, adopting a filtering PD

technique to infer causal relations instead of α rules. We point

out, anyway, that also the exploitation of the parallelisms could be

taken into account.

2.2. Model enhancement

The aim of Model Enhancement techniques consists in exploit-

ing information recorded in an event log to improve a process

model (van der Aalst, 2011). Among the possible kinds of enhance-

ment, our work is especially related to the the repairing of a model.

Given a process model and an event log which does not fit the

model, the goal of model repairing techniques consists in modify-

ing the original model to better represent the behaviors stored in

the event log. An example of model repairing is proposed in (Buijs,

La Rosa, Reijers, van Dongen, & van der Aalst, 2013). Here, authors

exploit a genetic PD technique (i.e., the ETM algorithm) to infer a

process model from the event log. In particular authors propose an

extension of the ETM algorithm to take into account the structural

similarity between the discovered process model and the reference

one, to obtain a model that represents the deviating behaviors re-

maining as close as possible to the reference model.

A different approach is proposed in (Fahland & van der Aalst,

2015). Here, authors exploit a conformance checking technique to

identify possible deviations between the event log and the process

model, represented by means of a Petri net. If irregularities exist,

they add one or more fragments representing the irregular behav-

iors to the original net, thus obtaining a new Petri net. More pre-

cisely, for each irregular behavior authors detect the corresponding

“location”, namely the set of places that are marked when the ir-

regularity occurs. Then, they group sequences of irregular activities

which are related to the same location. Finally, a new Petri net is

inferred from each group that is then integrated into the original

net. Our repairing procedure presents some similarities with the

idea proposed in (Fahland & van der Aalst, 2015), since we also ex-

ploit conformance checking to detect irregularities and repair the

model. However, our approach is tailored to analyze and repair di-

rectly single instance models. To the best of our knowledge, the

approach proposed in this work is the first attempt aimed to deal

with instance model enhancement.

3. Preliminaries

This section introduces important concepts used throughout the

paper, recalling common definitions of PM literature (e.g., van der

Aalst, 2011; 2013). In particular, the first two subsections are de-

voted to recall basic concepts, e.g., some basic definitions and con-

cepts like event, trace, Petri net and so on, while the remaining sub-

sections describe the main concepts related to conformance check-

ing, model evaluation measures and instance graphs , respectively.

3.1. Basic concepts

The concepts we introduce in this subsection will be used in

the definitions provided in the rest of the article.

Given a set A , B (A) is the set of all multiset s over A . Some ex-

amples: b 1 = [] , b 2 = [x, x, y] , b 3 = [x, y, z] , b 4 = [x, x, y, x, y, z] , b 5 =
[x 3 , y 2 , z] are multisets over A = { x, y, z} . b 1 is the empty multiset,

b 2 and b 3 both consist of three elements, and b 4 = b 5 , i.e., the or-

dering of elements is irrelevant and a more compact notation may

be used for repeating elements. Multisets are used to represent the

state of a Petri net and to describe event logs where the same trace

may appear multiple times. The standard set operators can be ex-
ended to multisets, e.g., x ∈ b 2 , b 2 � b 3 = b 4 , b 5 \ b 2 = b 3 , | b 5 | = 6 ,

tc.

A relation R ⊆X × Y is a set of pairs. π1 (R) = { x | (x, y) ∈ R }
s the domain of R , π2 (R) = { y | (x, y) ∈ R } is the range of R ,

nd ω(R) = π1 (R) ∪ π2 (R) are the elements of R . For example,

({ (a, b) , (b, c) }) = { a, b, c} . A relation (or function) is bijective if

here is a one-to-one correspondence between the elements of the

omain and range, i.e., it is total, functional, surjective, and injec-

ive.

f : X �→ Y is a partial function with domain dom (f) ⊆ X and

ange rng (f) = { f (x) | x ∈ X} ⊆ Y . f : X → Y is a total function , i.e.,

om (f) = X . A partial function f : X �→ Y is injective if f (x 1) =
f (x 2) implies x 1 = x 2 for all x 1 , x 2 ∈ dom (f).

σ = 〈 a 1 , a 2 , . . . , a n 〉 ∈ X ∗ denotes a sequence over X of length n .

 〉 is the empty sequence. Sequences are used to represent paths

n a graph and traces in an event log. σ 1 · σ 1 is the concatenation

f two sequences.

Functions can also be applied to sequences, such that: if

om (f) = { x, y } , then f (〈 y, z, y 〉) = 〈 f (y), f (y) 〉 .
efinition 1. (Applying functions to sequences)

Let f : X �→ Y be a partial function. f can be applied to se-

uences of X using the following recursive definition (1) f (〈 〉) = 〈 〉
nd (2) for σ ∈ X

∗ and x ∈ X :

f (〈 x 〉 · σ) =

{
f (σ) if x �∈ dom (f)
〈 f (x) 〉 · f (σ) if x ∈ dom (f)

.2. Events, traces, Petri nets

In this subsection, we introduce definitions related to event logs

nd their constituents, as well as to Petri nets. In the remainder,

e assume the following universes of names, identifiers, and val-

es:

• C is the set of all possible process instance identifiers, where

a process instance corresponds to a specific execution of a pro-

cess;
• A is the set of all possible activity names, where an activity is a

well-defined task that has to be performed within the process;
• E is the set of all possible event identifiers, where an event is

an instance of an activity.

An event log is defined as follows:

efinition 2. (Event log)

L = (E, C, act , pi , �) is an event log iff:

• E ⊆ E is a set of events identifiers,
• C ⊆ C is a set of identifiers of process instances (or cases),
• act : E → A maps events onto activities,
• pi : E → C maps events onto process instances, and

• �⊆E × E defines a total order on events (� is reflexive, anti-

symmetric, transitive, and total). 2

The goal of the PD is to elaborate upon a given event log to de-

ive a process model which describes the ordering relations existing

etween activities of the process. Process instances can be mapped

nto traces of a process model using the function trace .

efinition 3. (Trace)

Let L = (E, C, act , pi , �) be an event log. trace : C → A

∗ maps

rocess instances onto traces such that for any process instance

 ∈ C :

• trace (c) = 〈 a 1 , a 2 , . . . , a n 〉 ∈ A

∗ is a sequence of activities, each

corresponding to an event,

C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118 105

e

t

p

o

i

D

t

r

t

i

D

p

e

p

o

t

t

i

o

M

t

t

σ

M

t

m

M

D

q

i

M

1

fi

D

l

q

s

D

t

F

p

a

i

t

t

c

D

a

n

[

i

w

q

D

a

c

3

t

p

b

D

∀

c

t

a

c

q

〈

q

γ

t

i

s

i

t

t

o

f

t

b

t

t

a

t

e

a

c

p

i

l
• there exists a bijection f c ∈ { 1 , 2 , . . . , n } → { e ∈ E | pi (e) = c}
such that

– act (f c (i)) = a i for any i ∈ { 1 , 2 , . . . , n } , and

– f c (i) �f c (j) for any i, j ∈ { 1 , 2 , . . . , n } with i ≤ j .

Note that there is a one-to-one correspondence between the

vents of a process instance and positions on the trace. In the con-

ext of an event log and a process instance, f c provides the map-

ing. Hereafter, given an event log L , we will write that σ is a trace

f L if there exists a c ∈ C such that σ = trace (c) .

Several modeling formalisms exist to represent process models;

n this work, we refer to the Petri net , defined as follows:

efinition 4. (Petri net)

A Petri net is a tuple N = (P, T , F) with P the set of places, T

he set of transitions, P ∩ T = ∅ , and F ⊆ (P × T) ∪ (T × P) the flow

elation.

Places may contain a discrete number of marks called token s;

he distribution of tokens is a configuration of the Petri net, which

s called a marking .

efinition 5. (Marking)

Let N = (P, T , F) be a Petri net. A marking M is a multiset of

laces, i.e., M ∈ B(P) .

A Petri net defines a bipartite graph, with nodes P ∪ T and

gdes F . For every x ∈ P ∪ T ,
N • x = { y | (y, x) ∈ F } is the set of in-

ut nodes while, similarly, x
N • = { y | (x, y) ∈ F } denotes the set of

utput nodes ; we drop the superscript N if it is clear from the con-

ext. A transition t ∈ T is said enabled only if there is at least one

oken for each of its input nodes. An enabled transition t may fire ,

.e., one token is removed from each of the input places •t and

ne token is produced for each of the output places t• . Formally:

′ = (M \ •t) � t• is the marking resulting from firing enabled

ransition t in marking M of Petri net N . (N, M)[t 〉 (N, M

′) denotes

hat t is enabled in M and firing t results in marking M

′ . Let

= 〈 t 1 , t 2 , . . . , t n 〉 ∈ T ∗ be a sequence of transitions. (N, M)[σ 〉 (N,

′) denotes that there is a set of markings M 0 , M 1 , . . . , M n such

hat M 0 = M, M n = M

′ , and (N, M i)[t i +1 〉 (N, M i +1) for 0 ≤ i < n . A

arking M

′ is reachable from M if there exists a σ such that (N,

)[σ 〉 (N, M

′).

efinition 6. (Firing sequence)

Let (N, M) with N = (P, T , F) be a marked Petri net. A se-

uence σ ∈ T ∗ is called a firing sequence of (N, M) if and only

f, for some natural number n ∈ N , there exist markings M 1 , ...,

 n and transitions t 1 , . . . , t n ∈ T such that σ = 〈 t 1 , . . . , t n 〉 and ∀ i :

 ..n ((N, M i)[t i +1 〉 (N, M i +1)) .

For process modeling, typically labeled Petri net are used, de-

ned as:

efinition 7. (Labeled Petri net)

A labeled Petri net N = (P, T , F , l) is a Petri net (P, T, F) with

abeling function l : T �→ A . Let σv = 〈 a 1 , a 2 , . . . , a n 〉 ∈ A

∗ be a se-

uence of activities. (N, M)[σv � (N, M

′) if and only if there is a

equence σ ∈ T ∗ such that (N, M)[σ 〉 (N, M

′) and l(σ) = σv (cf.

efinition 1).

We use the τ label for a silent transition , namely a transi-

ion t �∈ dom (l) . An example of labeled Petri net is shown in

ig. 2 , which will be used as running example throughout the pa-

er. For such a net, P = { Start, p 1 , . . . , p 9 , End} , T = { t 1 , t 2 , . . . , t 13 }
nd F = { (Start, t 1) , (t 1 , p 1) , (p 1 , t 2) , . . . , (t 13 , End) } . Each transition

s labeled, e.g., l (t 1) = a, l (t 3) = b and so on. Note that t 2 is a silent

ransition.

For a given process, typically a specific initial state (i.e., the ini-

ial configuration of the net) and a specific final state (i.e., the final

onfiguration of the net) exist.
This can be modeled by referring to the concept of system net .

efinition 8. (System net)

A system net is a triplet SN = (N, M init , M final) where N =
(P, T , F , l) is a labeled Petri net, M init ∈ B(P) is the initial marking,

nd M final ∈ B(P) is the final marking. U SN is the universe of system

ets .

For the labeled Petri net in Fig. 2 , M init = [Start] and M final =
 End] . Each firing sequence which starts in M init and end in M final

s a complete firing sequence.

Given a system net, φ(SN) is the set of all possible visible traces

hich can be generated from the net, i.e., complete firing se-

uences projected onto the set of observable activities.

efinition 9. (Traces of a system net)

Let SN = (N, M init , M final) ∈ U SN be a system net. φ(SN) = { σv |
(N, M init)[σv � (N, M final) } is the set of visible traces starting in M init

nd ending in M final . φ f (SN) = { σ | (N, M init)[σ 〉 (N, M final) } is the

orresponding set of complete firing sequences.

.3. Conformance checking

Given an event log L and a Petri net N , conformance checking

echniques are aimed at checking whether or not N fits the log. N

erfectly fits L iff each trace can be replayed on the model from the

egin to the end.

efinition 10. (Perfectly fitting log)

Let L = (E, C, act , pi , �) be an event log and let SN =
(N, M init , M final) ∈ U SN . SN is perfectly fitting L if and only if

 c ∈ C (trace (c) ∈ φ(SN)).

One of the most common measures used for conformance

hecking is the fitness , which can be measured by aligning the

races of the event log with the firing sequences of the net. An

lignment , here indicated with the symbol γ , shows a possible

orrespondence between a trace of an event log and a firing se-

uence of a Petri net. For example, let us consider the trace σ =
 a, b, d, e, f, b, g〉 . A possible alignment between σ and a firing se-

uence of the Petri net in Fig. 2 is:

=

a � b � d e f b g
a τ b c d e f � g
t 1 t 2 t 3 t 6 t 7 t 8 t 9 t 13

The first row refers to the event log, while the other two refer

o the model. In particular, the sequence of activities in the trace

s shown in the first row. The second row shows activities corre-

ponding to transitions of the firing sequence, which are shown

n the last row. We need two rows for the model since multiple

ransactions corresponding to the same activity could exist.

When the Petri net perfectly fits with the log, each activity in

he first row occurs also in the second row, in the same position;

therwise, a “no-move” symbol � is inserted. For example, in the

ourth column we have a no-move in the trace, since according to

he firing sequence of the Petri net the transition t 6 should have

een fired, but the corresponding activity c is not displayed in the

race. Every pair (x , (y, t)), such that the first element belongs to

he first line (i.e., it refers to the log) and the second one involves

n element from the second and the third line (i.e., the label and

he id of a transition of the net, respectively) is called “move”. For

xample, (a , (a, t 1)) states that both the log and the model make

n “a” move. Note that the move in the model is caused by the oc-

urrence of the transition t 1 , whose label is a . There can be three

ossible kinds of moves: a) a synchronous move if x is an activity

n the trace and t is a transition in the model, b) a “move-in-the-

og”, if t is � and c) a “move-in-the-model”, if x is � . Note that

106 C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118

Fig. 2. A labeled Petri net.

t

c

(

a

u

i

D

t

i

D

r

a

〈
D

s

a

σ

a

(

m

(

c

t

3

r

c

t

S

a

c

s

p

e

o

t

g

f

p

b

o
a move-in-the-log means that an activity has occurred in a not al-

lowed position, while a move-in-the-model means that a certain

activity should have been occurred according to the model and it

did not occur in the reality. Such cases are usually indicated as

inserted and deleted activities, respectively. Moves a, b and c are

called “legal moves”.

Definition 11. (Legal moves)

Let L be an event log and let SN = (N, M init , M final) be a system

net, with N = (P, T , F , l) . A LM

= { (x, (x, t)) | x ∈ (A) ∧ t ∈ T ∧ l(t) =
x } ∪ { (�, (x, t)) | t ∈ T ∧ l(t) = x } ∪ { (x, �) | x ∈ (A) } is the set of

legal moves .

Formally, we define an alignment as follows.

Definition 12. (Alignment)

Let σ L be a trace of an event log L , let σ SN ∈ φf (SN) be a com-

plete firing sequence of the system net SN , and let A

∗
LM

be the set

of all sequences of legal moves. An alignment of σ L and σ SN is a

sequence γ ∈ A

∗
LM

such that the projection on the first element of

each pair (ignoring �) yields σ L and the projection on the last

element (ignoring �) yields σ SN .

It is noteworthy that for a given trace many possible alignments

typically exist (possibly, infinitely many). Nevertheless, it is pos-

sible to evaluate the quality of alignments, by introducing a cost

function:

Definition 13. (Cost of an alignment)

Let δ : A LM

→ N be a cost function, which assigns each legal

move to a specific cost. The cost of an alignment γ ∈ A

∗
LM

is the

sum of all costs: δ(γ) =

∑

(x,y) ∈ γ δ(x, y) .

The cost function can be defined in several ways; anyway, in

this work we refer to the standard cost function. This function as-

signs a zero cost to synchronous moves and to moves-in-the-model

corresponding to silent transitions, while the cost for each move-

in-the-log and each move-in-the-model corresponding to a non

silent transition are both equal to one. Hence, in our example we

have σ (a, (a, t 1)) = 0 , since the move-in-the-log is mimicked by

the move-in-the-model, and σ (�, (τ, t 2)) = 0 , being t 2 is a silent

transition. Instead, σ (�, (c, t 6)) = 1 , since activity c (caused by the

occurrence of the transition t 6) is not mimicked in the event log.

Given a trace σ , the alignment with the lowest cost (i.e., the one

which allows the most synchronous moves) is called optimal align-

ment . It is noteworthy that for a given trace more than one optimal

alignments can exist. To obtain for each trace in the log a unique

optimal alignment, a mapping function κ : A

∗ → A LM

is defined,

which deterministically assigns each trace σ to an alignment γ
such that γ is optimal. This function can be seen as an “oracle”,

which provides us with a unique complete firing sequence of the

model for each trace in the log (Adriansyah, Munoz-Gama, Car-

mona, van Dongen, & van der Aalst, 2013). Hereafter, we indicate

the optimal alignment provided by κ for a given trace σ as γ ∗
σ .

Several criteria can be used to define κ; however, the definition of
he mapping function is out of the scope of this paper. Here, for

omputing the alignments we refer to the technique proposed in

 Adriansyah, van Dongen, & van der Aalst, 2011), which introduces

 cost-based replay technique based on the A

∗ algorithm.

In order to introduce our technique in Section 5 we will make

se of the following definitions that formally specify the notions of

rregularity using the notion of alignment cost.

efinition 14. (Irregular traces)

Let SN = (N, M in , M f in) be a system net, and let σ be a trace of

he event log L . If δ(γ ∗
σ) > 0 , then σ is an irregular trace.

Since the cost of the best alignment is greater than zero, an

rregular trace involves one or more inserted/deleted activities.

efinition 15. (Inserted activity)

Let σ = trace (c) = 〈 a 1 , . . . , a i , . . . , a n 〉 be an irregular trace with

espect to the system nset SN , with δ(γ ∗
σ) = h, h ≥ 1 . The activity

 i is an inserted activity in the i th position of σ iff a trace σ ′ =
 a 1 , . . . , a i −1 , a i +1 , . . . , a n 〉 exists such that δ(γ ∗

σ ′) = h − 1 .

efinition 16. (Deleted activity)

Let σ = trace (c) = 〈 a 1 , . . . , a n 〉 be an irregular trace with re-

pect to the system net SN , with δ(γ ∗
σ) = h, h ≥ 1 . The activity

′ ∈ A is a deleted activity in the i th position of σ iff a trace
′ = 〈 a 1 , . . . , a i −1 , a

′ , a i , . . . , a n 〉 exists such that δ(γ ∗
σ ′) = h − 1 .

In other words, given a trace which does not fit with a model,

n activity is considered an insertion (deletion) if by removing

adding) such activity, a new trace is obtained whose cost of align-

ent is decreased by one. In general, when a set of inserted

deleted) activities are detected in the same position, conformance

hecking techniques return a sequence of inserted (deleted) activi-

ies.

.4. Model evaluation measures

Common measures exploited to evaluate a process model with

espect to an event log are fitness, simplicity, generalization , and pre-

ision . Fitness, as mentioned above, measures the extent to which

he model is able to describe behaviors stored in the event log.

implicity is used to evaluate to some extent the readability of

 process model, and can be measured in several ways (e.g., by

ounting the number of nodes and edges in the model). The as-

umption underlying this metric is that the best model is the sim-

lest one which is able to properly represent the behavior in the

vent log. As regards generalization and precision, both are based

n comparing the behaviors allowed by the process model, with

he behaviors actually stored in the event log. Generalization re-

ards the capability of the model to generate traces which differ

rom the ones in the event log, i.e, its capability to fit with future

rocess instances. Indeed, a model which can represent only the

ehaviors stored in the event log is an overfitting model, i.e., it can

nly describes past process executions, while a good model should

C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118 107

b

n

b

o

o

a

a

d

a

g

f

t

3

e

i

w

i

(

2

r

D

C

o

c

e

c

t

c

f

D

c

c

σ

s

v

D

e

.

k

W

E

p

Fig. 3. Instance graph IG 1 for the trace σ1 .

(

a

t

a

t

i

p

a

w

c

d

t

d

t

a

c

I

s

p

n

t

a

H

c

e

s

b

a

e

e

c

e

t

t

l

D

〈

j

t

w

E

i

g

i

(

h

a
e able to represent all process executions, also those which did

ot occur yet. At the same time, a good process model has also to

e precise, namely it does not have to allow for “too many” not

bserved behavior. Otherwise, the model allows for any order of

ccurrence of activities in the process, thus resulting useless in an-

lyzing the process. In this case, the model underfits , or overgener-

lizes (De Medeiros et al., 2008) the log. Note that, it is not easy to

efine which are good values for precision and generalization for

 generic process; intuitively, one should look for models with a

ood trade-off between these metrics. Clearly, the concrete value

or such a trade-off is usually not known a-priori, and depends on

he context.

.5. Instance graphs

Although a process usually involves some parallel activities,

vents that occur are recorded in a trace as a sequence, thus hid-

ng possible parallelism. Hence, in order to identify parallel events

ithin a trace, one needs to know which are the dependencies ex-

sting between the activities of the process. To face with such issue,

 van Dongen & van der Aalst, 2004), (van Dongen & van der Aalst,

005) introduce the concept of Instance Graph (IG), which is briefly

ecalled in the following.

efinition 17. (Causal Relation)

A Causal Relation (CR) is a relation on the set of activities, i.e.,

R ⊆ A × A . a 1 → CR a 2 denotes that (a 1 , a 2) ∈ CR .

Each element of CR represents the order of execution of a pair

f activities of a process. For example, a 1 → CR a 2 states that a 2
annot be executed until a 1 is terminated; in other words, the ex-

cution of a 2 depends on the execution of a 1 . a 1 is defined as the

ausal predecessor of a 2 , and a 2 is the causal successor of a 1 . Note

hat the above definition of CR involves also self-loops; indeed, one

an find a 1 → CR a 1 .

Given a trace σ , we can build its Instance Graph (IG), defined as

ollows:

efinition 18. (Instance graph)

Let L = (E, C, act , pi , �) be an event log and let c ∈ C be a pro-

ess instance. The instance graph of c is IG c = (V, W, η) with

• V = { e ∈ E | pi (e) = c} is the set of nodes corresponding to

events of c ,
• W = { (e 1 , e 2) ∈ V × V | e 1 � e 2 ∧ act (e 1) → CR act (e 2) ∧ (∀ e ′ ∈

V (e 1 ≺ e ′ ≺ e 2 ⇒ act (e 1) �→ CR act (e ′)) ∨ ∀ e ′′ ∈ V (e 1 ≺ e ′′ ≺
e 2 ⇒ act (e ′′) �→ CR act (e 2))) } orders the events,

• η : V → A with η(e) = act (e) for e ∈ V , labels a node with the

corresponding activity.

e 1 → W

e 2 denotes that (e 1 , e 2) ∈ W .

IG c is a graph representing the flow of the activities for the pro-

ess instance c . The nodes set V contains a node for each event in

= trace (c) ; each node is labeled, by means of η, with the corre-

ponding activity. W is a set of directed edges between nodes v i ,

 j .

Two nodes are connected in IG c by means of a path , defined as:

efinition 19. (Path)

Let IG c = (V, W, η) be an instance graph. Given two nodes e ′ ,

′ ′ ∈ V , a path from e ′ to e ′ ′ V is defined as a sequence 〈 e 1 , e 2 ,

.. e k 〉 ∈ V

∗ with k ≥ 2 such that e 1 = e ′ and e k = e ′′ and ∀ 1 < i ≤
 ((e i −1 , e i) ∈ W)

We would like to note that, from the Definition 18 , if (e ′ , e ′ ′) ∈
 , then 〈 e ′ , e ′ ′ 〉 is the only path between e ′ and e ′ ′ .

xample 1. Let us consider the trace σ1 = 〈 a, b, c, d, e, f, g〉 of the

rocess instance c , for which we assume CR = { (a, b) , (b, c), (c, d),
 c, e), (d, f), (d, g), (e, f), (f, g)}. To build the corresponding IG c , first

 node is created for each event; then, each pair of events in the

race is analyzed. The first pair is characterized by the activities

 and b ; since a → CR b and there are no other events between

hem in the trace (i.e., b is a direct follower of a), the correspond-

ng nodes are linked by means of an edge in the graph. All other

airs starting from the first event, (i.e., (a, c) , (a, d) , . . . , and (a, g))

re not part of CR , so we move to the second event. For this event,

e have only b → CR c , and since c is a direct follower of b , the

orresponding nodes are linked. The third event is the causal pre-

ecessor of two events, characterized by activities d and e respec-

ively. The former is a direct follower of c , and hence the edge is

rawn. The latter does not directly follow c , but we have d in the

race between c and e . Since c → CR d but d �→ CR e, these nodes are

lso linked. The procedure is repeated until all events have been

onsidered. Fig. 3 shows the instance graph corresponding to σ 1 .

t should be noted that the set of edges W of an IG represents a

ubset of CR . The constraints defined for W are aimed to avoid the

resence of redundant edges in the graph, namely edges linking

odes that are already linked by a path. In this example, the rela-

ion d → CR g does not produce any edge, since the path 〈 d, f, g 〉
lready exists.

Definition 18 allows to represent only split/join AND constructs.

ence, when an IG has parallel branches, it means that in the

orresponding process instance, events of the branches have been

xecuted in parallel. In the case a process has split/join OR con-

tructs, in the process instance (and hence, in the trace) only the

ranches actually executed will be reported. Furthermore, IGs are

lways acyclic; in fact, if a loop exists in the process, in the trace

ach execution of the loop is represented by a sequence of differ-

nt events, which correspond to different nodes in the IG.

From the above definitions, it turns out that a process instance

 generates the trace σ = trace (c) and the instance graph IG c ; how-

ver, the same Instance Graph could be obtained also from other

races in the event log. Sequences of activities that could generate

he same instance graph are called occurrence sequences, as fol-

ows:

efinition 20. (Occurrence sequence)

Let IG c = (V, W, η) be an instance graph. The sequence σ =
 a 1 , a 2 , . . . , a n 〉 is an occurrence sequence of IG c if there exists a bi-

ection g ∈ { 1 , 2 , . . . , n } → V such that:

• η(g(i)) = a i for any i ∈ { 1 , 2 , . . . , n } ,
• �e ∈ V | (e, g (1)) ∈ W ,
• �e ∈ V | (g (n), e) ∈ W ,
• g (i) → W

g (j) implies that i < j ∀ i, j ∈ { 1 , 2 , . . . , n } .
In other words, in an occurrence sequence of an instance graph

he first and the last events correspond to nodes of the graph for

hich no input and no output edges are defined.

xample 2. Let us consider again the IG shown in Fig. 3 . Since it

nvolves a parallelism, two different occurrence sequences can be

enerated, i.e., σ1 = 〈 a, b, c, d, e, f, g〉 and σ2 = 〈 a, b, c, e, d, f, g〉 . It

s interesting to note that only one of these occurrence sequences

i.e., σ 1) actually corresponds to the trace from which the graph

as been built.

By analyzing the occurrence sequences, it is possible to

pply the quality measures regarding the precision and the

108 C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118

(a) (b)

Fig. 4. Examples of overgeneralizing models.

a

(

H

fi

t

s

u

i

n

o

t

t

v

i

F

f

p

F

a

I

v

F

i

w

c

4

t

o

e

H

T

i

t

o

s

a

a

p

o
generalization of a process model introduced in the previous sub-

section also to an IG. We will discuss their use in Section 6 , when

describing the experiments.

4. Causal relation discovery for highly variable processes

The aim of this section is to provide an in depth analysis of

the issues encountered by existing techniques in inferring causal

relations and hence IG for highly variable domains. We hasten to

note that the problem of inferring causal relations is strictly re-

lated to the problem addressed by PD. As a matter of fact, CR rep-

resents the basic information PD techniques elaborate upon to gen-

erate the model, and every PD technique has its own CR inference

rules. Therefore, to simplify the reading, hereafter, we refer to PD

approaches to indicate the corresponding rules to extract the CR .

A relevant aspect of a PD technique is its filtering capability.

Especially in highly variable contexts, very different results can be

obtained when choosing either a non-filtering approach, which tries

to represent all the behaviors stored in the event log, or a filtering

approach, which considers only more frequent behaviors. We ad-

dress both cases in the following subsections, showing the effects

on building IGs.

4.1. Non filtering approaches

Non-filtering PD techniques try to build a model able to rep-

resent all the behaviors stored in the event log. When applied

to event logs involving heterogenous behaviors, non-filtering tech-

niques tend to build models which overgeneralizes the process

(De Medeiros et al., 2008), i.e., which allow for practically every

execution order among activities. Fig. 4 shows two examples of

overgeneralizing models.

Fig 4 a shows a model where almost all of the activities, ex-

cept a and g , are represented in parallel, while Fig. 4 b represents a

dual situation, where all activities are linked among each other. A

well-known approach which can easily lead to model represented

in Fig. 4 a when applied to highly variable processes is the α-

algorithm, which is the technique used in (van Dongen & van der

Aalst, 2004) and in (van Beest et al., 2015). It recognizes a causal

relation between two activities a and b only if b directly follows

a in at least one trace and the opposite never occurs; otherwise,

they are considered parallel 3 . Hence, it is apparent that also with

just one exception in the log, two activities will be modeled as par-

allel. The kind of model depicted in Fig. 4 b, known in literature as
3 In (van Dongen & van der Aalst, 2004) the improved version of the α-algorithm

is used, which takes into account also possible two-length loops when determining

causal relations.

H

b

p

t
 “Flower Model”, can be obtained by applying the Heuristic Miner

HM) (Weijters et al., 2006) in a non-filtering configuration. The

M can be viewed as an extension of the α-algorithm. It rede-

nes and extends the original rules of the α-algorithm, in order

o take into account the frequency of follows relations, applying

ome heuristics to determine causality and parallelisms. In partic-

lar, given two activities a and b , HM returns in output a → CR b

f the difference between the number of times b follows a and the

umber of times a follows b is above an user-defined threshold;

therwise it is filtered out. Similarly for b → CR a . When very low

hresholds are used for filtering (or no filtering is exploited at all),

hen both the relations are displayed in the outcome; for highly

ariable processes, this easily leads to a model where all the activ-

ties are connected to each other.

IGs generated by using the CR corresponding to models in

ig. 4 cannot properly represent process instances. Let us consider,

or example, the trace σ = 〈 a, b, c, d, e, f, h, g〉 corresponding to a

rocess instance k . The IG k built by using the CR of the model in

ig. 4 a results identical to the model, i.e., all the activities except

 and g will be in parallel. Hence, several occurrence sequences of

G c are allowed and the instance graph overgeneralizes, providing a

ery poor representation of k . Instead, from the CR of the model in

ig. 4 b, we can obtain only sequential IGs. Indeed, since each event

s linked to its direct follower in the trace, IG k will be a sequence

hich mimics the order of the events in the trace; such a graph is

learly a trivial model for k .

.2. Filtering approaches

Filtering techniques use only the most relevant dependencies

o build the model, where a dependency is usually relevant if it

ccurs more frequently than a given threshold. Two well-known

xamples of filtering PD algorithms are the already mentioned

euristic Miner (HM) and the infrequent Inductive Miner (iIM).

he iIM algorithm adopts an iterative procedure. At the beginning,

t generates a directed graph representing the direct follows rela-

ions between activities of the event log. Then, it defines a “cut”

f the graph, i.e., a partition between the nodes in disjoint sets

uch that all the activities in a subset have the same relation with

ctivities in the other subsets. Relations like sequences, loops, par-

llelism are taken into account. The log is then split to reflect the

artitioning of the activities and the procedure is then repeated

n each sublog, until sublogs contain only one activity. Similarly to

M, iIM introduces a set of heuristics aimed at filtering infrequent

ehaviors.

By considering the most common process behavior, filtering ap-

roaches usually cut down overgeneralization, at the expenses of

he completeness, since some of the traces will not fit the model.

C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118 109

Fig. 5. IG for the trace σin 1 .

Fig. 6. IG for the trace σdel 1 .

Fig. 7. IG of the trace σdel 2 .

A

a

t

i

i

E

〈

a

f

o

i

o

p

s

E

c

3

w

c

p

g

σ

v

c

a

a

g

i

r

n

a

E

a

a

i

e

t

I

t

t

s

n

a

m

i

a

e

I

i

t

5

G

t

c

C

D

t

d

w

(

t

i

e

F

t

i

a

A

s

h

t

D

t

Algorithm 1 Building Instance Graphs Algorithm.

Let L = (E, C, act , pi , �) be an event log

1: [M, CR] =ApplyProcessDiscovery(L , P D);

2: for k = 1 to | C| do

3: IG k =ExtractInstanceGraph(σk , CR);

4: [D, I] =CheckTraceConformance(σk , M);

5: if D ∪ I � = ∅ then

6: I G k =IrregularGraphRepairing(I G k , σk , D, I, CR);

Algorithm 2 The Irregular Graph Repairing Algorithm.

Let IG k = (V, W, η) be the irregular instance graph for the trace σk

Let D be the set of deleted activities of σk

Let I be the set of inserted activities of σk

Let CR be the causal relation

1: W

′ = W

2: for all a ∈ D do

3: W

′ = DR (W

′ , a, CR)

4: for all a ∈ I do

5: W

′ = IR (W

′ , a, CR, σ ′
k
)

6: IG

′ = (V, W

′ , η)
ccording to Definition 14 they are called irregular traces. When

pplied to an irregular trace Definition 18 leads to the genera-

ion of an IG (hereafter irregular Instance Graph, or iIG) provid-

ng a very imprecise representation of the corresponding process

nstance, as shown in the following examples.

xample 3. Let us consider the trace σin 1
= trace (in 1) =

 a, b, c, i , d, e, f, g〉 . According to the model of Fig. 2 , there is

n inserted activity i at the 4th position. Fig. 5 shows the IG built

rom σin 1
, i.e., IG in 1

. The node i has only one input edge, and no

utput edges. In such a way, the only execution constraint for

 is to be performed after a ; hence, IG in 1
can generate several

ccurrence sequences, where the activity i occurs in very different

ositions, e.g., σ1 = 〈 a, i, b, c, d, e, f, g〉 , σ2 = 〈 a, b, c, d, e, f, g, i 〉 , and

o on.

xample 4. Let us consider the trace σdel 1
= 〈 a, b, d, e, f, g〉 . Ac-

ording to the model of Fig. 2 , there is a deleted activity c at the

rd position. Fig. 6 shows the IG built from such trace, i.e., IG del 1
,

hich consists of two disconnected graphs. This representation is

learly too imprecise; the two components are not linked, thus im-

lying that no ordering relations exist between them. Hence, the

raph can generate occurrence sequences like σ1 = 〈 a, d, e, f, g, b〉 ,
2 = 〈 d, e, f, g, a, b〉 and so on.

From the previous examples, it turns out that an iIG may pro-

ide an overgeneralized representation of the corresponding pro-

ess instance, which is clearly not desired. Examples 3 and 4 show

lso that the overgeneralization can be, in many cases, detected

lso by means of some structural anomalies which affect the

raph, e.g., disconnected nodes, presence of more than one start-

ng/ending nodes. It is also possible, however, to obtain graphs cor-

ected from a structural point of view, but which anyway allow for

ot desired occurrence sequences, as shown by the following ex-

mple.

xample 5. Let us consider the trace σdel 2
= 〈 a, b, j, r, j, r, b, c, d,

e, f, g 〉 , where each activity a i in the i th position corresponds to

n event e i | act(e i) = a i . According to the model of Fig. 2 , there is

 deletion of the activity b in the 5th position. The resulting graph

s shown in Fig. 7 . Note that for this example we also report the

vent identifiers, in order to avoid possible misunderstandings due

o the multiple occurrences of some activities. As we can see, this
G has no structural anomalies; however, there is a parallelism be-

ween the two occurrences of the activities j and r , which is due

o the deletion of b but is not allowed by the model. Again, the in-

tance graph overgeneralizes returning four occurrence sequences.

While in structured processes the number of irregular traces is

ot significant and these traces could be discarded, in higly vari-

ble processes irregular traces have to be properly handled. As a

atter of fact, these kind of processes usually represent human-

ntensive processes, where irregular behaviors are intentional vari-

tions of regular behaviors, hence their analysis turns to be inter-

sting. Hence, rather than removing iIGs, our goal is to repair them.

n next section we detail the proposed algorithms for graph repair-

ng that, starting from models generated by filtering techniques,

ransform an iIG in order to reduce overgeneralization.

. Building instance graphs

Algorithm 1 provides an overview of the Building Instance

raphs (BIG) algorithm. Given an event log L , first the filtering

echnique PD is applied to obtain the process model M , with its

orresponding CR (step 1). Then, for each trace σk = trace (k) , k ∈
the corresponding instance graph IG k is built by referring to

efinition 18 (step 3). Step 4 checks whether σ k is an irregular

race, by checking the conformance with the model. This check is

one by evaluating the fitness of the trace to the model. In this

ork, we refer to the conformance checking approach proposed by

 Adriansyah et al., 2011), which minimizes the standard cost func-

ion defined in Section 3 . If a trace is irregular, then the lists of

nserted (I) and deleted (D) activities are returned. Indeed, each el-

ment of D and I is a consecutive sequence of irregular activities.

or instance, if at the i th position there is only one inserted ac-

ivity and from j th to h th position there are h − j + 1 consecutive

nserted activities, we have I = {〈 a i 〉 , 〈 a j , . . . , a h 〉} . Irregular traces

re repaired in step 6, by using the repairing algorithm reported in

lgorithm 2 .

Given a trace, its instance graph IG k and the lists of its in-

erted/deleted activities, Algorithm 2 returns a repaired graph IG

′
k

aving same nodes and a few difference in the set of edges. Note

hat varying edges returns a graph that is not fully compliant with

efinition 18 ; nevertheless, since the graph is still the flow of ac-

ivities of the trace, for the sake of simplicity we call it IG as well.

110 C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118

Algorithm 3 The Deletion Repairing Algorithm.

Let σdel = 〈 a 1 , a 2 , . . . , a i −1 , a i , a i +1 , . . . , a n 〉 be an irregular trace

Let 〈 a d 1 , . . . , a d n 〉 be the sequence of deleted activities in the ith

position of σdel

Let IG σdel
= (V, W, η) be the iIG for the trace σdel , with a i = η(e i)

Let CR be the causal relation

1: W r 1 = { (e k , e i) | k < i ∧ ((e k , e i) ∈ W) ∧

(∃ e h , k ≤ h < i | η(e h) → CR a d 1) ∧ (a d n → CR η(e i)) }
2: W r 2 = { (e k , e j) | k < i ∧ j > i ∧ ((e k , e j) ∈ W) ∧ (η(e k) → CR

a d 1) ∧ (a d n → CR η(e i)) ∧ ∃ e l , i < l < j | (e l , e j) ∈ W }
3: W

′ = W \ (W r 1 ∪ W r 2)

4: for k = i − 1 to 1 do

5: for j = i to n do

6: if (η(e k) → CR a d 1) ∧ (a d n → CR η(e j)) ∧ (〈 e k , . . . , e j 〉 / ∈ W

′) ∧

((� e l , k < l < j | (e k , e l) ∈ W

′) ∨ (� e m

, k < m < i | (e m

, e j) ∈

W

′))) then

7: W

′ = W

′ ∪ { (e k , e j) }

W

Fig. 8. Repaired graph for σdel 1 .

Fig. 9. Repaired graph for σdel 2 .

t

s

5

s

t

t

(

u
3

Algorithm 4 The Insertion Repairing Algorithm.

Let σins = 〈 a 1 , a 2 , . . . , a i −1 , a i , . . . , a j , . . . , a n 〉 be an irregular trace

Let 〈 a i , . . . , a j 〉 be the sequence of inserted activities from position

i to j of σins

Let I be the set of inserted activities of σins

Let IG σins
= (V, W, η) be the iIG for the trace σins , with a i = η(e i)

Let CR be the causal relation

1: W r 1 = { (e k , e l) | k < i ∧ i ≤ l ≤ j ∧ ((e k , e l) ∈ W) }
2: W r 2 = { (e k , e l) | i ≤ k ≤ j ∧ l > j ∧ ((e k , e l) ∈ W) }
3: W r 3 = { (e k , e l) | i ≤ k ≤ j ∧ i ≤ l ≤ j ∧ (e k , e l) ∈ W) }
4: W

′ = W \ (W r 1 ∪ W r 2 ∪ W r 3)

5: for k = j + 1 to n do

6: if η(e k) / ∈ I ∧ ((η(e i −1) → CR η(e k)) ∨ ((e i −1 , e k) ∈ W)) ∧ (〈 e j ,
. . . , e k 〉 / ∈ W

′) then

7: W

′ = W

′ ∪ { (e j , e k) } ∧ W a 1 = W a 1 ∪ { (e j , e k) }
8: if η(e i −1) � CR η(e i +1) then

9: W

′ = W

′ ∪ { (e i −1 , e i) } ∧ W a 2 = W a 2 ∪ { (e i −1 , e i) }
10: else

11: for k = i − 1 to 1 do

12: if η(e k) / ∈ I ∧ ((η(e k) → CR η(e j+1)) ∨ ((e k , e j+1) ∈ W)) ∧

(〈 e k , . . . , e i 〉 / ∈ W

′) then

13: W

′ = W

′ ∪ { (e k , e i) } ∧ W a 2 = W a 2 ∪ { (e k , e i) }
14: W a 3 = { (e k , e k +1) : i ≤ k ≤ (j − 1) }
15: W

′ = W

′ ∪ W a 3

16: W r 4 = { (e k , e l) | (e k , e h) ∈ W a 2 ∧ i ≤ h ≤ j ∧ (e p , e l) ∈ W a 1 ∧ i ≤
p ≤ j}

17: W

′ = W

′ \ W r 4
The algorithm repairs first all the deleted activities, and then all

the inserted activities, calling the Deletion Repairing Algorithm (DR)

and the Insertion Repairing Algorithm (IR) respectively.

5.1. Deletion repairing algorithm

The idea underlying the DR algorithm consists in connecting ac-

tivities occurred before and after the deleted activities, and in re-

moving those edges which should not have been created accord-

ing to the model. Algorithm 3 describes the general case when

a sequence of deleted activities is detected in the same position

of the trace. The algorithm starts by identifying the sets W r 1 , W r 2 ,

which contain edges generated by the deleted activities. Indeed,

the deletion of one or more activities could lead to an irregular IG

where some events are linked although they should not be linked

according to the model (e.g., see Example 5). These edges have to

be recognized and deleted. In particular, W r 1 contains edges be-

tween events occurring before the position of the deletion and the

i th event. Edges in W r 2 link events before and after the i th posi-

tion. Then, a set of edges to be added to the graph is computed

(steps 4–7). These edges link those events occurring before and af-

ter the deleted sequence, such that a dependency exists between

them and the first and the last events in the sequence respectively.

Note that only direct edges are considered, namely edges between

events which are no linked by other paths in the new graph. As

output we obtain the transformed set W

′ , which is needed to de-

fine the repaired graph.

Example 6. Let us consider the trace σdel 1
= 〈 a, b, d, e, f, g〉 of

the Example 4 . We have only one deleted activity c in the

3rd position. At the beginning of the procedure, we have W =
{ (a, b) , (d, f) , (e, f) , (f, g) } 4 . In this case, both the sets W r 1 , W r 2

are empty; while from steps 4–7 it results that the edges

(b, d) and (b, e) have to be added. At the end, we obtain

′ = { (a, b) , (d, f) , (e, f) , (f, g) , (b, d) , (b, e) } ; the resulting graph

is shown in Fig. 8 .

Example 7. Let us consider the trace σdel 2
= 〈 a, b, j, r, j, r, b, c, d,

e, f, g 〉 , defined in Example 5 . The deleted activity is b in

the fifth position. In the original instance graph we have W =
{ (e 1 , e 2) , (e 2 , e 3) , (e 2 , e 5) , (e 3 , e 4) , (e 5 , e 6) , (e 4 , e 7) , (e 6 , e 7), (e 7 , e 8),

(e 8 , e 9), (e 8 , e 10), (e 9 , e 11), (e 10 , e 11), (e 11 , e 12)}. It is straightforward

to verify that W r = { (e 2 , e 5) } and W r = { (e 4 , e 7) } . Then, we derive

1 2

4 We use activities instead events identifiers with an abuse of notation in case

this creates no misunderstandings.
2

hat the edge (e 4 , e 5) has to be added to W

′ . The repaired graph is

hown in Fig. 9 .

.2. The insertion repairing algorithm

Algorithm 4 describes the IR algorithm, which is aimed at re-

tructuring an iIG when a sequence of inserted activities is de-

ected.

The algorithm starts by detecting sets W r 1 , W r 2 and W r 3 of edges

o be deleted. W r 1 (W r 2) involves edges which link events before

after) the inserted sequence to activities belonging to the irreg-

lar trace. W r contains edges connecting inserted activities. After
18: if η(e i −1) � CR η(e i +1) then

19: W r 5 = { (e i −1 , e k) ∈ W

′ | k > i }
0: W

′ = W

′ \ W r 5

C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118 111

Fig. 10. Repaired graph for σin 1 .

t

W

a

o

i

t

r

m

s

a

p

c

w

i

a

i

t

n

a

t

a

F

c

E

E ,

W

W

F

a

l

b

b

E

x

{

F

n

r

a

g

a

a

t

o

I

i

W

a

d

a

k

(a)

(b)

Fig. 11. iIG (a) and the partially repaired graph (b) for σin 2 .

Fig. 12. Repaired IG for l in 2 .

p

d

t

a

E

h

e

(

u

r

a

W

i

b

c

w

r

(

(

e

L

fi

t

f

p

W

i

e

6

I

a

p

n
he removal of edges, the algorithm extracts the sets W a 1 , W a 2 and

 a 3 of edges to be added. W a 1 has edges linking the last inserted

ctivity to subsequent events. The building of the set W a 2 depends

n the presence of inserted activities between two parallel events

n the graph. Note that in both cases we don’t insert an edge be-

ween two inserted activities, i.e., edges of the sets W a 1 , W a 2 link a

egular activity and an inserted one. The case in which the state-

ent (in step 8) is true will be detailed at the end of the sub-

ection. Otherwise, in the case of insertion between non-parallel

ctivities, W a 2 contains edges linking the first inserted activity to

revious events. Note that the iIG on which the algorithm works

ould be already transformed to repair previous irregularities, so

e might have edges between events which correspond to activ-

ties for which CR is not defined. For this reason in W a 1 as well

s W a 2 we need to specify that an edge is built if either the CR

s defined between corresponding activities, or an edge exists in

he graph. Note that an edge can be added to W a 1 or W a 2 only if

o paths, connecting events in the edge, already exist. In fact, if

n edge between e i and e j exists, then 〈 e i , e j 〉 is the only path be-

ween the two events (see Definition 18). Then W a 3 simply adds

n edge between each consecutive activities within the sequence.

inally, the set W r 4 is defined to remove edges which link nodes

onnected to the inserted activities in previous steps.

xample 8. Let us consider σin 1
= 〈 a, b, c, i , d, e, f, g〉 , of

xample 3 , where W = { (a, i) , (a, b) , (b, c) , (c, d) , (c, e) , (d, f) , (e, f)

(f, g) } . In this case, the algorithm returns W r 1 = { (a, i) } ;

 r 2 = W r 3 = ∅ ; W a 1 = { (i, d) , (i, e) } ; W a 2 = { (c, i) } ; W a 3 = ∅ ;
 r 4 = { (c, d) , (c, e) } . The repaired graph is the one shown in

ig. 10 .

The statements in steps 8-9 and 18–20 of the algorithm define

 variant for the set W a 2 and introduce the set W r 5 . These steps al-

ow to handle a special case of insertion, namely activities inserted

etween parallel activities. In the remaining of this subsection, we

riefly show the motivations for the definition of this variant.

xample 9. Let us consider σin 2
= 〈 a, b, c, d, x , e, f, g〉 , where

 is the inserted activity. The initial edges set is W =
 (a, b) , (b, c) , (c, d) , (c, e) , (d, f) , (e, f), (f, g)}. The iIG is reported in

ig. 11 (a). Since x is not in the model, the graph has a disconnected

ode for x . If we do not consider statements in steps 8 and 18, the

emoving edges sets are W r 1 = W r 2 = W r 3 = ∅ , while the other sets

re W a 1 = { (x, f) } , W a 2 = { (c, x) } , W a 3 = ∅ . The resulting repaired

raph is shown in Fig. 11 (b).

It is noteworthy that the inserted activity x has been considered

s parallel to d and e ; indeed, since CR is not defined for these two

ctivities, x is linked to the predecessor and the follower of both of

hem. The adding of another parallel branch increases the number

f occurrence sequences, hence the overgeneralization of the IG.

n order to reduce this phenomenon, we add the inserted activ-

ty in one of the already existing parallel branches. To this end, in

 r 5 the new parallel branch is removed, and in W a 2 the inserted

ctivity is moved to an existing path originates from its direct pre-

ecessor in the trace. Fig. 12 shows the effect of the variant of the

lgorithm.

It is important to note that when a trace involves different

inds of irregular behavior, first all the deleted activities are re-
aired, then the inserted ones (see Algorithm 2). This repairing or-

er depends on the fact that when one or more deletions occur,

he IR algorithm could be not able to correctly connect the inserted

ctivities. This issue is discussed through the following example.

xample 10. Let us consider the trace σin −del = 〈 a, b, i, d, e, f, g〉 ;
ere we have an inserted event i in the 3rd position and a deleted

vent c in the 4th position. The initial edges set is W = { (a, b) ,

 a, i), (d, f), (e, f), (f, g)}; the graph is shown in Fig. 13 a. First, let

s repair the graph by following only the order in which the ir-

egular behaviors have occurred, i.e., first we repair the insertion

nd then the deletion. The removing edges set are W r 1 = { (a, i) } ,
 r 2 = ∅ , W r 3 = ∅ . As regards adding edges, W a 1 = ∅ and W a 2 = ∅ ;

n fact, both the activities occurred before and after i should have

een linked to c , which however has been skipped. As a result, i

annot be linked to anything. At the end of the insertion repairing,

e have W

′ = { (a, b) , (d, f) , (e, f) , (f, g) } . As regards the deletion

epairing, we have: W r 1 = W r 2 = ∅ . The edges to add are (b, d) and

 b, e). Hence, the final edge set is W

′ = { (a, b) , (b, d), (b, e), (d, f),

 e, f), (f, g)}. The resulting graph is shown in Fig. 13 b. The pres-

nce of a disconnected node leads to undesired overgeneralization.

et us now perform the repairing by following the Algorithm 2 ;

rst we consider the deletion and then the insertion. Now, after

he deletion repairing we have W

′ = { (a, b) , (a, i), (b, d), (b, e), (d,

), (e, f) (f, g)}. With respect to the previous case, the insertion re-

airing now returns W a 1 = { (i, d) , (i, e) } and W a 2 = { (b, i) } . Hence,

′ = { (a, b) , (b, i), (i, d), (i, e), (d, f), (e, f), (f, g)}; the repaired graph

s shown in Fig. 13 c, which shows a considerably reduced overgen-

ralization.

. Experiments

In this section we evaluate the IGs obtained by our Building

nstance Graph methodology adopting the Heuristic Miner (HM)

nd the infrequent Inductive Miner (iIM) to derive CR . We com-

are the obtained IGs with (1) IGs obtained by adopting the tech-

iques proposed in (van Dongen & van der Aalst, 2004) and in

112 C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118

(a) (b)

(c)

Fig. 13. (a) iIG for σin −del ; (b) repaired graph when insertion repairing is executed before deletion repairing; (c) repaired graph following the execution order of Algorithm 2 .

f

e

6

g

t

t

q

t

t

1

a

a

i

s

a

T

a

b

t

(

f

t

i

b

g

s

i

b

s

i

a

d

g

t

i

b

I

o

f

t
(van Beest et al., 2015), and (2) IGs obtained by using the HM and

iIM without repairing. Experiments are performed both on syn-

thetic (Subsection 6.1) and real-world (Subsection 6.2) event logs.

In order to evaluate IGs, the following metrics are introduced:

• The accuracy (Acc), i.e., the number of graphs correctly recon-

structed. We report both the numbers of correct IGs, and the

percentage of correct IGs with respect to the overall IGs set.

Note that, we evaluate accuracy only for the synthetic experi-

ments, since the set of true IGs is unknown in real-world sce-

narios;
• The matching cost (MC), i.e., the distance between repaired and

true IGs, which allows to evaluate the error made in building

the IG. In order to compute MC, we refer to typical measures

exploited to compare graphs. In particular, given an instance

graph IG σ , the execution of which has generated the trace σ ,

the difference between IG σ and the reconstructed IG

′
σ is evalu-

ated as the number of transformations that are needed to make

them isomorphic. Such transformations include a) adding or

deleting an edge, b) adding or deleting a node, c) changing a

label of an edge or a node and d) reversing the direction of an

edge. In our case, all of these transformations are considered as

having cost 1. When MC is 0 the IG has been correctly gener-

ated; the greater the MC the greater the error made in building

the IG. Note that, like accuracy, MC can be measured only in

the case of synthetic experiments;
• The average generalization (AG) of the IG set, which evaluates

the number of occurrence sequences which can be generated

on average by each IG. On the one hand, if AG is 1 then IGs

are tailored to represent only the corresponding traces; on the

other hand high values means overgeneralizing graphs, allow-

ing for several different occurrence sequences. We compute the

average generalization over the whole IG set (AG all), the set of

IGs obtained from regular traces (AG reg) and the set of IGs ob-

tained from irregular traces (AG irr). When a non-filtering ap-

proach is adopted (e.g., for vD and vB) all traces fit the model,

thus AG reg = AG all and AG irr can not be computed.

A metric commonly used in PM literature to evaluate the qual-

ity of mined models is the fitness, which evaluates to what extent

the model is able to represent the set traces from which it was

derived (see Section 3.3). Although in principle it is possible to

compute the fitness also for an IG, by checking whether its cor-

responding trace is among its occurrence sequences, this metric

turns out to be not useful to evaluate the IG quality. Indeed, the

algorithms for building IGs always return an IG capable of repre-

senting its original trace. We have anyway computed the fitness
or each IGs, to test the correctness of the algorithm; as expected,

ach trace fits its corresponding built IG.

.1. Synthetic experiments

The first set of experiments have been performed on event logs

enerated by simulating the Petri net shown in Fig. 14 . In this net,

here are some “regular” (i.e., frequent) behaviors, represented by

he paths involving solid edges; but several “irregular” (i.e., not fre-

uent) behaviors can occur, whose paths are characterized by dot-

ed edges. As an example, the activity a is usually followed by ei-

her b or i , but in rare cases c is executed immediately after a .

The adopted experimental procedure involves three main steps:

) generating a set of process instances from the given Petri net

nd, hence, their true IGs and the event log; 2) building the IGs

dopting different approaches; 3) evaluating the built IGs, compar-

ng them with the true ones.

As regards the event log generation, we consider process in-

tances with at most one irregular path; hence, irregular behaviors

re variants of regular ones and differ only for the irregular path.

his constraint limits the variability of the experiments, without

ffecting the goal.

From the model, it turns out that there are thirteen irregular

ehaviors. As regards the regular behaviors, instead, there are only

wo possible paths: I 1 , that moves from the event a to the event b

i.e., the upper path in Fig. 14) and I 2 , that follows the lower path

rom a to g through i . Note that I 2 can generate only one kind of

race, while I 1 can generate four possible kinds of traces, depend-

ng on the order in which activities d and e are performed and

y the execution of the cycle. We grouped traces from I 1 into two

roups: G1 involves traces having d performed before e , while the

econd one, G2 having e performed before d ; each group can be

nstantiated with or without cycle execution (whatever the num-

er of executed cycle instances is). The groups of traces of I 1 are

hown in Fig. 15 . Note that, same considerations hold also for any

rregular behaviors which are variants of I 1 ; also in this case there

re four irregular traces.

We performed several experiments, varying the event log in or-

er to increase the number of regular traces. First, we randomly

enerated one trace for each irregular behavior, thus obtaining

hirteen irregular traces; then, at each step we added an increas-

ng number of regular traces, randomly generated by the regular

ehaviors. Since I 2 corresponds only to one kind of trace, while

 1 corresponds to two different groups of traces, we added 1/3

f the regular traces from the instance I 2 , and the remaining 2/3

rom I 1 . We started with a log involving 16 traces (i.e., 13 irregular

races plus 2 traces from I and 1 from I), until obtaining a log
1 2

C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118 113

Fig. 14. The Petri net used for synthetic experiments.

(a)

G1 abcdefg
abjrbcdefg

G2 abcdfeg
abjrbcedfg

Fig. 15. Group of traces corresponding to I 1 .

Table 1

Accuracy (number and percentage of correctly reconstructed IGs) obtained by vary-

ing the percentage of irregular traces (IrT) in the synthetic log. Results of 6 experi-

ments: vD, vB, BIG −HM , BIG HM , BIG −iIM , and BIG iIM .

Trace IrT(%) Acc vD vB BIG −
HM

BIG HM BIG −
iIM

BIG iIM

16 81.3% #IG 2 3 3 12 5 12

%IG 12.5% 18.8% 18.8% 75.0% 31.3% 75.0%

19 68.4% #IG 2 3 5 14 7 14

%IG 10.5% 15.8% 26.3% 73.7% 36.8% 73.7%

22 59.1% #IG 2 3 10 22 9 16

%IG 9.1% 13.6% 45.5% 100% 40.9% 72.7%

27 48.2% #IG 2 3 15 27 12 20

%IG 7.4% 11.1% 55.6% 100% 44.4% 74.1%

34 38.2% #IG 2 3 21 34 16 24

%IG 5.9% 8.8% 61.8% 100% 47.1% 70.6%

49 26.5% #IG 2 3 36 49 26 34

%IG 4.1% 6.1% 73.5% 100% 53.1% 69.4%

99 13.1% #IG 2 3 86 99 60 68

%IG 2.0% 3.0% 86.9% 100% 60.6% 68.7%

199 6.5% #IG 2 3 186 199 126 134

%IG 1.0% 1.5% 93.5% 100% 63.3% 67.3%

298 4.4% #IG 2 3 285 298 191 199

%IG 0.7% 1.0% 95.6% 100% 64.1% 66.8%

w

C

t

f

a

f

B

d

t

p

n

α

n

e

r

i

e

c

Table 2

Matching Cost (Total and Average) obtained by varying the percentage of irregular

traces (IrT) in the synthetic log. Results of 6 experiments: vD, vB, BIG −HM , BIG HM ,

BIG −iIM , and BIG iIM .

Trace IrT(%) MC vD vB BIG −
HM

BIG HM BIG −
iIM

BIG iIM

16 81.3% Tot 105 88 63 20 62 20

Avg 7.5 6.8 4.8 5.0 5.6 5.0

19 68.4% Tot 118 103 68 25 67 25

Avg 6.9 6.4 4.9 5.0 5.6 5.0

22 59.1% Tot 131 118 50 0 72 30

Avg 6.6 6.2 4.2 0.0 5.5 5.0

27 48.2% Tot 152 143 50 0 80 35

Avg 6.1 6.0 4.2 0.0 5.3 5.0

34 38.2% Tot 183 187 51 0 95 50

Avg 5.7 6.0 3.9 0.0 5.3 5.0

49 26.5% Tot 248 354 51 0 120 75

Avg 5.3 7.7 3.9 0.0 5.2 5.0

99 13.1% Tot 464 604 51 0 200 155

Avg 4.8 6.3 3.9 0.0 5.1 5.0

199 6.5% Tot 898 1308 51 0 370 325

Avg 4.6 6.7 3.9 0.0 5.1 5.0

298 4.4% Tot 1327 1814 51 0 540 495

Avg 4.5 6.1 3.9 0.0 5.0 5.0

Fig. 16. Accuracy Vs. percentage of irregular traces.

t

e

t
ith 298 traces (i.e., 13 irregular plus 190 from I 1 and 95 from I 2).

learly, as the number of the regular traces in the log increases,

he percentage of irregular traces (IrT) decreases. Hence, we move

rom IrT = 81.25%, to IrT = 4.36%. Details are reported in Tables 1

nd 2 .

Tables also report accuracy and matching cost for the 6 dif-

erent approaches analyzed: van Dongen (vD), van Beest (vB), the

IG algorithm using Heuristic Miner (BIG HM

) and infrequent In-

uctive Miner (BIG iIM

) and the BIG

− algorithm, which corresponds

o the BIG algorithm without applying the repairing (i.e., without

erforming steps 4–6 in Algorithm 1), using the same PD tech-

iques (BIG

−
HM

, BIG

−
iIM

). Note that, since both vD and vB adopt the

-algorithm, that is a non-filtering PD technique (see Section 4),

o repairing strategy is needed. Table 1 reports the accuracy of

ach set of built IGs, in terms of number and percentage of cor-

ectly reconstructed IGs; while Table 2 reports both the total MC,

.e., the sum of the MC computed on the whole log, and the av-

rage MC, which is computed only on the wrong graphs, since for

orrect graphs the value is zero.
Fig. 16 provides a graphical representation of the accuracy

rends with respect to the percentage of irregular traces in the

vent log.

First, we can note that the worst results are provided by vD,

hat is able to correctly build only two IGs of the entire set. vB

114 C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118

Table 3

Average Generalization over the whole IG set (AG all), the set of regular IGs (AG reg)

and the set of irregular IGs (AG irr) obtained by varying the percentage of irregular

traces (IrT) in the synthetic log. Results of 6 experiments: vD, vB, BIG −HM , BIG HM ,

BIG −iIM , and BIG iIM .

Trace IrT(%) AG vD vB BIG −
HM

BIG HM BIG −
iIM

BIG iIM

16 81.3% AG all 7.8 3.6 23.7 1.9 19.4 1.9

AG reg 7.8 3.6 2.0 2.0 2.0 2.0

AG irr – – 28.7 1.9 23.5 1.9

19 68.4% AG all 7.2 3.5 20.3 1.9 16.7 2.0

AG reg 7.2 3.5 2.0 2.0 2.0 2.0

AG irr – – 28.7 1.9 23.5 1.9

22 59.1% AG all 6.7 3.5 16.5 1.7 14.7 2.0

AG reg 6.7 3.5 1.7 1.7 2.0 2.0

AG irr – – 26.8 1.7 23.5 1.9

27 48.2% AG all 6.3 3.5 13.8 1.7 13.2 2.0

AG reg 6.3 3.5 1.7 1.7 2.0 2.0

AG irr – – 26.7 1.7 25.2 1.9

34 38.2% AG all 5.8 3.4 11.6 1.7 10.9 2.0

AG reg 5.8 3.4 1.7 1.7 2.0 2.0

AG irr – – 27.7 1.7 25.2 1.9

49 26.5% AG all 5.2 3.4 8.6 1.7 8.2 2.0

AG reg 5.2 3.4 1.7 1.7 2.0 2.0

AG irr – – 27.7 1.7 25.2 1.9

99 13.1% AG all 4.6 3.4 5.1 1.7 5.1 2.0

AG reg 4.6 3.4 1.7 1.7 2.0 2.0

AG irr – – 27.7 1.7 25.2 1.9

199 6.5% AG all 4.3 3.4 3.4 1.7 3.5 2.0

AG reg 4.3 3.4 1.7 1.7 2.0 2.0

AG irr – – 27.7 1.7 25.2 1.9

298 4.4% AG all 4.2 3.3 2.8 1.7 3.0 2.0

AG reg 4.2 3.3 1.7 1.7 2.0 2.0

AG irr – – 27.7 1.7 25.2 1.9

Fig. 17. Average generalization Vs. percentage of irregular traces. Synthetic event

log.

a

i

t

i

e

f

s

t

s

w

h

a

t

w

p

r

r
obtains only slightly better results, being able to correctly build

three IGs of the set. These values do not change by reducing the

percentage of irregular traces, resulting in a decay of the accu-

racy for both the approaches; indeed, the corresponding lines in

Fig. 16 tend to an accuracy of 0%. This trend is due to the pres-

ence of swaps in the irregular traces. The α-algorithm considers

the pairs b and c , and l and m as parallels; hence, it is not able to

properly build the IGs corresponding to regular traces. Indeed, the

only graphs that are properly reconstructed by vD are those which

correspond to traces involving the deletion of l and the deletion of

b , respectively; while vB was able to reconstruct also the IG cor-

responding to the trace involving the deletion of c . This is due to

the fact that vB connects the activity b to both the activities d and

e , since no explicit parallelism is detected between them, while vD

cannot connect b and d , since no causal relation exists between

them. As regards BIG

−
HM

, it provides better results than vD and vB,

as expected. However, for the first event log it shows the same per-

formance of vB, since it is able to reconstruct three IGs. As a mat-

ter of facts, the model mined by HM describes almost all regular

behavior of Fig. 14 , but the activities l and m are considered as par-

allel, with the result that the IGs involving these activities cannot

be properly reconstructed. As IrT reduces, HM is able to correctly

represent regular traces, thus the BIG

−
HM

error tends to decrease

(see Fig. 16); in particular, from 70% to 60% there is an improve-

ment in accuracy of the 20%. Then, as the number of regular traces

increases, the outcome of the algorithm stabilizes and the accuracy

trends becomes linear.

Similar considerations hold for BIG

−
iIM

. At the beginning it ob-

tains poor results, because of the high percentage of noise, which

leads to induce incorrect parallelisms; by reducing the noise in the

log, accuracy increases. However, it is noteworthy that for IrT less

than 60%, BIG

−
HM

obtains better results than BIG

−
iIM

. The accuracy of

BIG

−
HM

tends to 100%, while for BIG

−
iIM

the accuracy tends to 65%.

This depends again on the identification of a wrong parallelism be-

tween the activities l and m , which is kept also for low percentage

of irregular traces; the result is that the IGs built from traces in-

volving these activities turn out to be incorrect.

When the repairing procedure is applied, the accuracy increases

significantly. Both BIG HM

and BIG iIM

outperform results obtained

with same models without repairing. For the first log the improve-

ment is 43.75% using the iIM and 56.25% using the HM. Decreasing

IrT, the accuracy of BIG iIM

shows a linear trend with a little slope

(from 73% to 67%); while BIG HM

moves to 100%, namely it is able

to reconstruct all IGs. When IrT is very low, irregular traces are

very rare and the scenario moves from unstructured to structured

one. In this scenario, the effect of repairing is almost negligible.

As regards the MC, results are consistent with the consider-

ations done for accuracy. Indeed, both vD and vB obtain for all

the event logs the highest values of total MC. This was expected,

since they turned out to be able to correctly build only two IGs

in all the cases, respectively. , BIG

−
HM

and , BIG

−
iIM

obtain similar

values at the beginning, but , BIG

−
HM

improves significantly its val-

ues by decreasing the percentage of irregular traces. The repaired

approaches are the best ones; in particular BIG HM

obtains a cost

equal to zero when the IrT decreases under 68%, and BIG iIM

ob-

tains a total MC much lower than BIG

−
iIM

. Let us now consider the

average MC, which provides an indication about the magnitude of

the error, i.e., how many errors each approach has done on aver-

age when building a graph. Note that this value has to be evalu-

ated with respect to the average number of elements (i.e., nodes

and edges) per graph, which results in [15; 17] for all event log.

Again, vD and vB are the approaches that return the highest num-

ber of errors per graph, ranging from 4.48 to 7.5, and from 5.9 to

7.69 respectively. BIG

−
iIM

and BIG iIM

return for all the event logs an

average MC around 5; it depends on errors in the model mined by

the iIM, as we discussed before. Finally, approaches based on HM
lgorithm show the best values (BIG

−
HM

in [3.92; 4.84], while BIG HM

s 5 for IrT > 60%, 0 otherwise), demonstrating that the model ob-

ained by using the HM algorithm is the best one.

Table 3 shows the AG values obtained by the performed exper-

ments.

In order to evaluate the values of the AG, we need a refer-

nce value for IGs with “good” generalization. To this end, we re-

er to AG reg obtained by filtering approaches. As a matter of fact,

ince in these experiments irregular traces are variants of regular

races they differ each other for few changes; hence AG reg and AG irr

hould assume similar values. We emphasize that to compute AG

e do not use a-priori knowledge about the true process model;

ence, regular and irregular traces are the ones which perfectly fit

nd not fit the model respectively. From Table 3 , it turns out that

he AG reg for BIG HM

is 1.7 on average, while for BIG iIM

is 2; hence,

e consider the interval [1.7; 2] as reference.

Fig. 17 shows the AG all obtained by the six experimented ap-

roaches with respect to IrT; the interval of reference values is

epresented by dotted lines. Both BIG

−
HM

and BIG

−
iIM

show worse

esults than vD and vB. This is due to the presence of deleted

C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118 115

Fig. 18. Petri Net mined by the iIM from the WABO4 event log.

a

h

p

t

I

t

e

t

i

r

c

e

p

6

o

r

D

t

u

a

i

(

m

c

a

a

o

w

w

s

l

6

(

9

t

i

t

a

r

W

t

Table 4

AG results obtained on WABO4 event log.

Trace IrT(%) AG vD vB BIG −
iIM

BIG iIM

787 61.3% AG all � 99.14 � 92.82 15.4 9.5

AG reg � 99.14 � 92.82 3.8 3.8

AG irr – – 22.7 9.5

o

c

t

T

e

I

h

b

b

f

s

I

c

A

i

A

t

i

r

p

B

e

I

r

i

F

t

0

c

I

s

t

r

s

t
ctivities, which leads to disconnected graphs and in turn to

igh overgeneralization (see Example 4). This statement is sup-

orted by results in Table 3 , where AG irr is significantly higher

han AG reg . We can note that vB obtains better results than vD.

ndeed, the latter is also affected by a relevant overgeneraliza-

ion ranging in [4.2; 7.75], that is more than double of the ref-

rence values; while vB obtains quite stable results, around 3

races per graph, that is closer, but still outside the reference

nterval.

Finally, by applying the repairing procedure we obtain the best

esults, both for BIG HM

and for BIG iIM

; their lines overlap almost

ompletely in Fig. 17 . The resulting AG all and AG irr are in the ref-

rence interval, hence showing the capability of the proposed re-

airing procedure of preventing overgeneralization.

.2. Real-world event log

This subsection shows the results obtained on WABO4 , which is

ne of the real-world event logs of the CoSeLoG project 5 . WABO4

efers to the process of environmental permit application of a

utch municipality. The log involves 332 different activities in 787

races. Fig. 18 , which shows the Petri net mined by the iIM, allows

s to perceive the highly variable nature of the process.

We preprocessed the event log by adding artificial start and end

ctivities to all traces.

For this experiment we could not use the HM. It is worth not-

ng that HM does not guarantee to obtain a sound process model

i.e., a model where all process steps can be executed and the final

arking is always reachable), leading to problems in conformance

hecking (Leemans et al., 2014). In particular, using HM to mine

 model for WABO4, the conformance checker is able to define

n alignment only for 5 of 787 traces; in other words, for most

f traces we cannot know if they are regular or irregular, hence,

e cannot apply the proposed repairing procedure. For this reason,

e used only iIM as filtering PD technique, that always returns a

ound process model. It is worth noting that there are 485 irregu-

ar traces with respect to the model mined by iIM, that is around

2% of the whole log. Nevertheless, the model has a high fitness

i.e., the ability to reproduce traces in the log), which is around

8%. This can be explained by considering that the ratio between

he number of inserted/deleted activities and the number of activ-

ties per trace is low (we have around two inserted/deleted activi-

ies for trace on average, and each trace is formed by 46 events on

verage); hence, a relevant portion of each trace can be actually

eplied by the model. Table 4 shows the AG values obtained on the

ABO4 event log by vD, vB, BIG

−
iIM

and BIG iIM

approaches. Note

hat the values reported for vD and vB represent lower bounds
5 http://data.3tu.nl/repository/collection:event _ logs _ real

p

p

h
f actual AG values. Indeed, applying vD and vB we obtained very

omplex IGs, with a high number of edges, which made generating

he entire occurrence sequences set for each IG time-consuming.

herefore, for vB and vD we limited the occurrence sequences gen-

ration to the first 100. Noteworthily, in both cases we found few

Gs generating less than 100 occurrence sequences; therefore, we

ad that most of the IGs (691 for vB, 776 for vD) generated a num-

er of occurrence sequences at least equal (but very likely much

igger) than 100, thus motivating the high AG all values computed

or these algorithms.

Applying iIM, we obtain significantly better generalization re-

ults. In particular, it turns out that BIG iIM

outperforms the BIG

−
iIM

.

ndeed, BIG

−
iIM

shows still a quite high AG all value (i.e., 15.4 oc-

urrence sequences per graph); while applying the repairing the

G all decreases to 9.5. The improvement achieved by the repairing

s especially evident for the irregular traces, where we move from

G irr = 22 . 7 of BIG

−
iIM

to AG irr = 13 when the repairing is applied.

The results achieved in terms of generalization values prove

hat the proposed approach was actually able to obtain IGs signif-

cantly more accurate than other techniques, especially when the

epairing is applied.

In order to better appreciate the effect of the proposed ap-

roach, in Fig. 19 we show an example of iIG built by BIG

−
iIM

and

IG iIM

for a trace σ 1 extracted from the WABO log, involving 78

vents; for the sake of space, in the Figure only the portions of

Gs including irregularities are shown, black dots represent the

emaining parts of the process. The trace has a deleted activity,

.e., 01_HOOFD_510_2a , and an inserted activity, i.e., 16_LGSD_010 .

ig. 19 a shows an evident structural problem: besides START node

he process has two other nodes without predecessors, namely

1_HOOFD_510_3 and 01_HOOFD_515 , and two nodes without suc-

essors, namely END and 16_LGSD_010 . Hence, BIG

−
iIM

returns an

G having a very high number of occurrence sequences. Fig. 19 b

hows the IG obtained by BIG iIM

; the repairing procedure corrects

he structural problems and provides a clear and not ambiguous

epresentation of the execution order of corresponding process in-

tance. Moreover, in the dotted box of Fig. 20 a and b we show

he same portion of IGs as returned by applying vD and vB ap-

roaches. Differing from IGs obtained by BIG iIM

, vB and vD ap-

roaches return IGs with a high number of parallel behaviors;

ence revealing a significant overgeneralization; the number of

http://data.3tu.nl/repository/collection:event_logs_real

116 C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118

(a)

(b)

Fig. 19. Instance Graph obtained by BIG −iIM (a) and BIG iIM (b) for σ 1 .

(a)

(b)

Fig. 20. Instance Graph obtained by vD (a), vB (b) for σ 1 .

o

t

t

p

o

e

m

a

r

s

p

r

t

t

h

r

a

m

t

t

t

p

s

a

u

g

t

m

t

a

t

v

t

g

t

w

c

s

m

R

A

A

occurrence sequences is four for BIG iIM

and more than 100 for

other approaches.

Figs. 19 and 20 clearly show the advantage of using our ap-

proach with respect to other ones; indeed, it is apparent that over-

generalizing IGs do not provide useful insights on the execution of

the process.

7. Conclusions

This work introduced a methodology for building Instance

Graphs for highly variable processes starting from a simple event

log. IGs offer a different perspective on the process, focusing on

the analysis of individual process instances. The proposed approach

bases the generation of IGs on casual relations among activities,

which are inferred from the log by resorting to PD techniques.

In particular filtering PD techniques are adopted, which represent

only the most relevant casual relations, thus cutting down over-

generalization. However, filtering leads to irregular traces; hence,

Instance Graphs built for irregular traces are not accurate. To ad-

dress this issue, we couple the exploitation of filtering techniques

with an original technique aimed at repairing graphs.

We performed several experiments, both on synthetic and real-

world event logs, to assess the advantages of the approach. It turns

out that our proposal outperforms other approaches both in terms

of accuracy and average generalization. In particular, in the syn-

thetic experiments we were able to evaluate the the correctness
f the methods with respect to reference IGs. Results show that

echniques based on the α-algorithm were not able to generate

he correct IGs in most cases even on event logs with a very low

ercentage of irregularities, since also few irregular traces led to

vergeneralizing models. Adopting filtering approaches instead, the

ffects of the irregularities were significantly reduced, resulting in

ore IGs correctly reconstructed. However, from experiments it is

lso apparent that filtering approaches without repairing perform

eally bad in terms of average generalization, obtaining worse re-

ults than van Dongen’s and van Beest’s approaches. Such a result

ointed out the importance of the repairing procedure, which cor-

ects structural anomalies and improves accuracy and generaliza-

ion. The results obtained in the synthetic case were confirmed in

he real-world case. Here, the α-based approaches obtained really

igh values of average generalization, thus meaning that the cor-

esponding IGs involved many parallelisms, as also shown in ex-

mples from which it was apparent that these IGs do not provide

uch aid to the analysis of process instances. Similar considera-

ions also hold for filtering approaches without repairing; while

he introduction of repairing allowed to obtained significantly bet-

er performance.

Experiments also enlightened that the feasibility of the pro-

osed repairing technique is constrained to the availability of

ound models, due to the conformance checking technique

dopted. This in turn put a constraint on the PD technique to be

sed to mine the model. Nevertheless, we like to note that iIM

uarantees to always return a sound model, so that we can state

hat our approach can be applied to any event log, although the

odel mined by iIM could not be the best in terms of generaliza-

ion performance. Hence the possibility to detect irregular traces

lso on unsound models could provide more flexibility in selecting

he most accurate technique for the data at hand. We plan to in-

estigate the usage of different conformance checking techniques

o detect irregular traces in future work. We plan also to investi-

ate the effects of the usage of Process Discovery techniques other

han Heuristic Miner and infrequent Inductive Miner. Furthermore,

e intend to further develop the repairing algorithm for special

ases. For example, we intend to analyze and evaluate alternative

trategies to deal with the insertion of activities occurring in the

iddle of parallel branches.

eferences

driansyah, A. , van Dongen, B. F. , & van der Aalst, W. (2011). Conformance checking
using cost-based fitness analysis. In Proceedings of the 15th IEEE international

enterprise distributed object computing conference (pp. 55–64). Helsinki, Finland:

IEEE .
driansyah, A. , Munoz-Gama, J. , Carmona, J. , van Dongen, B. F. , & van der

Aalst, W. M. (2013). Alignment based precision checking. In M. La Rosa, & P. Sof-
fer (Eds.), Business process management workshops . In Lecture notes in business

information processing.: Vol. 132 (pp. 137–149). Berlin Heidelberg: Springer .

http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0002

C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118 117

B

D

D

D

D

D

D

F

F

G

H

L

L

d

R

S

v

v

v

v

v

v

v

W

uijs, J. C. A. M. , La Rosa, M. , Reijers, H. A. , van Dongen, B. F. , & van der
Aalst, W. M. P. (2013). Improving business process models using observed be-

havior. In P. Cudre-Mauroux, P. Ceravolo, & D. Gaševi ́c (Eds.), Data-driven process
discovery and analysis . In Lecture notes in business information processing: Vol. 162

(pp. 44–59). Berlin Heidelberg: Springer .
e Medeiros, A. K. A. , Guzzo, A. , Greco, G. , van der Aalst, W. , Weijters, A. J. M. M. ,

van Dongen, B. F. , & Saccà, D. (2008). Process mining based on clustering: A
quest for precision. In A. ter Hofstede, B. Benatallah, & H.-Y. Paik (Eds.), Business

process management workshops . In Lecture notes in computer science: Vol. 4928

(pp. 17–29). Berlin Heidelberg: Springer .
e Weerdt, D. , De Backer, M. , Vanthienen, J. , & Baesens, B. (2012). A multi-dimen-

sional quality assessment of state-of-the-art process discovery algorithms using
real-life event logs. Information Syst, 37 , 654–676 .

esel, J. , Juhás, G. , Lorenz, R. , & Neumair, C. (2003). Modelling and validation with
viptool. In W. Van der Aalst, & M. Weske (Eds.), Business process management.

Lecture notes in computer science: Vol. 2678 (pp. 380–389). Berlin Heidelberg:

Springer .
iamantini, C. , Genga, L. , & Potena, D. (2016). Behavioral process mining for un-

structured processes. Journal of Intelligent Information System .
iamantini, C. , Genga, L. , Potena, D. , & Storti, E. (2013). Pattern discovery from in-

novation processes. In Collaboration technologies and systems (CTS), 2013 interna-
tional conference on (pp. 457–464). San Diego, California, USA: IEEE .

iamantini, C. , Potena, D. , & Storti, E. (2012). Mining usage patterns from a repos-

itory of scientific workflows. In Proceedings of the 27th annual ACM symposium
on applied computing (pp. 152–157). ACM .

ahland, D. , & van der Aalst, W. (2015). Model repair—aligning process models to
reality. Information System, 47 , 220–243 .

orrester, P. (1999). Business process engineering: Reference models for industrial
enterprises. Integrated Manufacturing System, 10 . 57–57

reco, G. , Guzzo, A. , Manco, G. , & Saccà, D. (2007). Mining unconnected patterns in

workflows. Information System, 32 , 685–712 .
wang, S. , Wei, C. , & Yang, W. (2004). Discovery of temporal patterns from process

instances. Computers in Industry, 53 , 345–364 .
eemans, S. J. , Fahland, D. , & van der Aalst, W. (2014). Discovering block-struc-

tured process models from event logs containing infrequent behaviour. In
N. Lohmann, M. Song, & P. Wohed (Eds.), Business process management work-

shops . In Lecture notes in business information processing: Vol. 171 (pp. 66–78).

Springer International Publishing .
u, X. , Fahland, D. , & van der Aalst, W. (2015). Conformance checking based on par-
tially ordered event data. In F. Fournier, & J. Mendling (Eds.), Business process

management workshops . In Lecture notes in business information processing: Vol.
202 (pp. 75–88). Springer International Publishing .

e Man, H. (2009). Case management: A review of modeling approaches.
BPTrends, January, 2009 . http://www.ww.bptrends.com/publicationfiles/

01- 09- ART- %20Case%20Management- 1- DeMan.1165%20doc- - final.pdf . Last
Access: 16/09/2015.

ovani, M. , Maggi, F. M. , De Leoni, M. , & Van Der Aalst, W. M. (2015). Declarative

process mining in healthcare. Expert System with Applications, 42 , 9236–9251 .
uriadi, S. , Ouyang, C. , van der Aalst, W. M. , & ter Hofstede, A. H. (2015). Event inter-

val analysis: Why do processes take time? Decision Support System, 79 , 77–98 .
an Beest, N. , Dumas, M. , García-Ba nuelos, L. , & La Rosa, M. (2015). Log delta anal-

ysis: Interpretable differencing of business process event logs. In H. R. Motahar-
i-Nezhad, J. Recker, & M. Weidlich (Eds.), Business process management . In Lec-

ture notes in computer science: Vol. 9253 (pp. 386–405). Springer International

Publishing .
an der Aalst, W. (2011). Process mining: Discovery, conformance and enhancement of

business processes . Springer-Verlag Berlin Heidelberg .
an der Aalst, W. (2013). Decomposing petri nets for process mining: A generic ap-

proach. Distributed and Parallel Databases, 31 , 471–507 .
an der Aalst, W. , & van Hee, K. M. (2004). Workflow management: Models, methods,

and systems . Cambridge, MA, USA: MIT press .

an Dongen, B. , & van der Aalst, W. (2004). Multi-phase process mining: Build-
ing instance graphs. In P. Atzeni, W. Chu, H. Lu, S. Zhou, & T.-W. Ling (Eds.),

Conceptual modeling- ER 2004 . In Lecture notes in computer science: Vol. 3288
(pp. 362–376). Berlin Heidelberg: Springer .

an Dongen, B. , Alves de Medeiros, A. , & Wen, L. (2009). Process mining: Overview
and outlook of petri net discovery algorithms. In K. Jensen, & W. van der Aalst

(Eds.), Transactions on petri nets and other models of concurrency II . In Lecture

notes in computer science: Vol. 5460 (pp. 225–242). Berlin Heidelberg: Springer .
an Dongen, B. F. , & van der Aalst, W. (2005). Multi-phase process mining: Aggre-

gating instance graphs into EPCs and petri nets. In D. Marinescu (Ed.), Proceed-
ings of the second international workshop on applications of petri nets to coordina-

tion, workflow and business process management (pp. 35–58). Miami, Florida,USA:
Florida International University .

eijters, A. , van der Aalst, W. , & De Medeiros, A. A. (2006). Process mining with

the heuristics miner-algorithm. Technische Universiteit Eindhoven, Technical Re-
port WP, 166 . 1–34

http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0015
http://www.ww.bptrends.com/publicationfiles/01-09-ART-%20Case%20Management-1-DeMan.1165%20doc�final.pdf
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30187-7/sbref0026

118 C. Diamantini et al. / Expert Systems With Applications 59 (2016) 101–118

eering, Università Politecnica delle Marche, where she coordinates the degree courses in
ement research group. She received the PhD degree in artificial intelligent systems from

usiness analytics and data mining, and in semantic models for integrated interoperable
within national and international projects. She is author of about 100 technical papers in

r

e Università Politecnica delle Marche, where she graduated in computer and automation
wledge discovery, process mining and innovation support.

iversità Politecnica delle Marche, Italy, in 2004. From 2005 to 2008, he was post-doctoral

tà Politecnica delle Marche, Department of Information Engineering. His research interests
ation management systems.

iversiteit Eindhoven (TU/e). He is also an adjunct professor at Queensland University of

ining, Petri nets, business process management, process modeling, and process analysis.
(Koninklijke Hollandsche Maatschappij der Wetenschappen) and the Academy of Europe
Claudia Diamantini is associate professor at the Department of Information Engin
computer and automation engineering and leads the Knowledge Discovery & Manag

the University of Ancona in 1995. At present her main research interests are in b
analytics and mining in distributed settings. She has been working on these topics

efereed journals and conferences. She is a member of the IEEE and ACM.

Laura Genga is a PhD student of the Department of Information Engineering of th
engineering in 2012. Her research interests are in the areas of data mining and kno

Domenico Potena received the PhD in information systems engineering from the Un

fellow at the same university. At present, he is an assistant professor at the Universi
include knowledge discovery in databases, data warehousing, data semantics, innov

Wil van der Aalst is a full professor of information systems at the Technische Un

Technology (QUT). His research interests include workflow management, process m
He is an elected member of the Royal Holland Society of Sciences and Humanities

(Academia Europaea).

	Building instance graphs for highly variable processes
	1 Introduction
	2 Related work
	2.1 Building instance models
	2.1.1 Model-based approaches
	2.1.2 Log-based approaches

	2.2 Model enhancement

	3 Preliminaries
	3.1 Basic concepts
	3.2 Events, traces, Petri nets
	3.3 Conformance checking
	3.4 Model evaluation measures
	3.5 Instance graphs

	4 Causal relation discovery for highly variable processes
	4.1 Non filtering approaches
	4.2 Filtering approaches

	5 Building instance graphs
	5.1 Deletion repairing algorithm
	5.2 The insertion repairing algorithm

	6 Experiments
	6.1 Synthetic experiments
	6.2 Real-world event log

	7 Conclusions
	 References

