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Abstract. In the area of process mining, conformance checking aims to find an
optimal alignment between an event log (which captures the activities that actu-
ally have happened) and a Petri net (which describes expected or normative be-
havior). Optimal alignments highlight discrepancies between observed and mod-
eled behavior. To find an optimal alignment, a potentially challenging optimiza-
tion problem needs to be solved based on a predefined cost function for misalign-
ments. Unfortunately, this may be very time consuming for larger logs and models
and often intractable. A solution is to decompose the problem of finding an opti-
mal alignment in many smaller problems that are easier to solve. Decomposition
can be used to detect conformance problems in less time and provides a lower
bound for the costs of an optimal alignment. Although the existing approach is
able to decide whether a trace fits or not, it does not provide an overall alignment.
In this paper, we provide an algorithm that is able to provide such an optimal
alignment from the decomposed alignments if this is possible. Otherwise, the al-
gorithm produces a so-called pseudo-alignment that can still be used to pinpoint
non-conforming parts of log and model. The approach has been implemented in
ProM and tested on various real-life event logs.

1 Introduction

The ultimate goal of process mining [2] is to gain process-related insights based on an
event log created by some system. Such an event log contains a sequence of events for
every case that was handled by the system. As an example, an event could be as follows:

On October 1st, 2011, the resource 112 has completed the activity a1.

A sequence of events contained in an event log is commonly referred to as a trace. From
the data associated with the trace, we can derive for which particular case the activity
a1 was completed.

Within process mining, the field of process conformance [2, 4, 5, 7–11, 13, 15, 17]
deals with checking to what extent a process model (like a Petri net) and an event log
conform to each other, that is, how well they match. For this sake, the event log is first
replayed on the Petri net as best as possible, which results in an optimal alignment
between both. Such an optimal alignment relates events in the event log to activities
(transition labels) in the Petri net in the best-possible way. Based on this optimal align-
ment, conclusions can then be drawn on important metrics like fitness (how well does



the event log conform to the Petri net?), precision (how well does the Petri net con-
form to the event log?), and generalization (how well does the Petri net conform to the
system?).

A cutting-edge algorithm to compute an alignment is the cost-based replayer [3],
which finds a cost-minimal alignment between the event log and the Petri net. Although
this algorithm is very efficient and effective for smaller logs and smaller nets, it has
problems when dealing with larger logs and larger nets. To speed up problematic re-
plays, a decomposition technique has been proposed in [1]. This decomposition tech-
nique decomposes an overall log and an overall Petri net into a collection of decom-
posed logs and a collection of matching decomposed Petri nets, and guarantees that the
decomposed costs (the costs of replaying the decomposed logs on the decomposed nets)
equal 0 if and only if the non-decomposed costs (the costs of replaying the overall log
on the overall net) equal 0. Hence, the approach is able to accurately identify deviating
and non-deviating traces, often in a fraction of the time. Furthermore, this technique
guarantees that the decomposed costs are a lower bound for the non-decomposed costs.

An open issue for the decomposition approach is that it does not prescribe how to
merge the decomposed alignments into an overall alignment, if possible. Whereas the
replay of the overall log on the overall net results in an overall alignment, replaying the
decomposed logs on the decomposed nets results in a collection of decomposed align-
ments. By merging these decomposed alignments into an overall alignment, which may
be much faster than computing the non-decomposed alignment, one can also obtain di-
agnostic information on where the event log and the Petri net do not match. This paper
introduces an algorithm to merge decomposed alignments into an overall alignment,
again if possible. If not possible, then the algorithm will result in a so-called pseudo-
alignment, which is a relaxation of the regular alignment. Such pseudo-alignments pro-
vide valuable diagnostic information and help to diagnose the misalignments.

The core of this algorithm consists of 3 alignment rules and 2 pseudo-alignment
rules. Only applying the alignment rules will result in an alignment, but might not be
feasible as in certain situations no alignment rule can be applied anymore. In such
situations, we can apply a pseudo-alignment rule, but then the result will be a pseudo-
alignment.

The approach has been implemented in ProM and has been applied to a large collec-
tion of logs and models showing that the constructed (pseudo-)alignments indeed help
to diagnose conformance problems.

The remainder of this paper is organized follows. First, Section 2 provides the pre-
liminaries, that is, logs, nets, alignments, and the decomposition. Second, Section 3 in-
troduces our alignment merge, that is, the 3 alignment rules and the 2 pseudo-alignment
rules. Third, Section 4 introduces the implementation of the merge. Fourth, Section 5
discusses the benefits of using the algorithm. Fifth, Section 6 concludes the paper.

2 Preliminaries

2.1 Logs

In this paper, we consider activity logs, which are an abstraction of the event logs as
found in practice. An activity log is a collection of traces, where every trace is a se-



Table 1. An example activity log L1 in tabular form.

Trace Frequency

〈a1, a2, a4, a5, a6, a2, a4, a5, a6, a4, a2, a5, a7〉 1
〈a1, a2, a4, a5, a6, a3, a4, a5, a6, a4, a3, a5, a6, a2, a4, a5, a7〉 1
〈a1, a2, a4, a5, a6, a3, a4, a5, a7〉 1
〈a1, a2, a4, a5, a6, a3, a4, a5, a8〉 2
〈a1, a2, a4, a5, a6, a4, a3, a5, a7〉 1
〈a1, a2, a4, a5, a8〉 4
〈a1, a3, a4, a5, a6, a4, a3, a5, a7〉 1
〈a1, a3, a4, a5, a6, a4, a3, a5, a8〉 1
〈a1, a3, a4, a5, a8〉 1
〈a1, a4, a2, a5, a6, a4, a2, a5, a6, a3, a4, a5, a6, a2, a4, a5, a8〉 1
〈a1, a4, a2, a5, a7〉 3
〈a1, a4, a2, a5, a8〉 1
〈a1, a4, a3, a5, a7〉 1
〈a1, a4, a3, a5, a8〉 1
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Fig. 1. A Petri net..
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Fig. 2. An accepting Petri net N1.

quence of activities [2]. Table 1 shows the example activity log L1, which contains in-
formation about 20 cases, for example, 4 cases followed the trace 〈a1, a2, a4, a5, a8〉. In
total, the log contains 13+17+9+2×9+9+4×5+9+9+5+5+17+3×5+5+5 = 156
activities.

Definition 1 (Universe of activities). The set A denotes the universe of activities.

To capture an activity log, we use multi-sets. If S is a set of objects, then B(S) is a
multi-set of objects, that is, if B ∈ B(S) and o ∈ S, then object o occurs B(o) times in
multi-set B.

Definition 2 (Activity log). Let A ⊆ A be a set of activities. An activity log L over A
is a multi-set of activity traces over A, that is, L ∈ B(A∗).

2.2 Nets

A Petri net is a modelling formalism that contains three different types of elements:
places, transitions, and arcs [16]. Figure 1 shows an example Petri net containing 10
places (p1 through p10), 11 transitions (t1 through t11), and 24 arcs.
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Fig. 3. A trace alignment extended with costs for the trace 〈a1, . . . , a8〉 and net N1. Every column
corresponds to a move, where the top row contains the activity, the middle row the transitions,
and the bottom row the costs of this activity-transition pair.

Definition 3 (Petri net). A Petri net is a 3-tuple (P, T, F ) where P is a set of places,
T is a set of transitions such that P ∩ T = ∅, and F ⊆ (P × T ) ∪ (T × P ) is a set of
arcs.

For our purposes, we extend Petri nets with labels, an initial marking, and a set of
final markings, yielding an accepting Petri net. Figure 2 shows an accepting Petri net
based on the example Petri net, with labels (like a1 and a8), an initial marking ([p1]),
and one final marking ([p10]).

The labels are used to link transitions in the Petri net to activities in an activity log.
As an example, transition t1 is linked to activity a1. Transitions that are linked to log
activities are called visible transitions. Transitions that are not linked to a log activity,
like transition t2, are called invisible transitions. These invisible transitions are linked
to a dummy activity named τ . Note that τ 6∈ A.

Definition 4 (Accepting Petri net). Let A ⊆ A be a set of activities. An accepting
Petri net over the set of activities A is a 6-tuple (P, T, F, l, I, O) where (P, T, F ) is a
Petri net, l ∈ T → (A ∪ {τ}) is a labeling function that links every transition onto an
activity (possibly the dummy activity τ ), I ∈ B(P ) is an initial marking, andO ⊆ B(P )
is a set of final markings.

As a result of the labeling, we can obtain an activity sequence from a transition
sequence by removing all invisible transitions while replacing every visible transition
with its label. For example, the example transition sequence 〈t1, t2, t3〉 yields 〈a1, a2〉
as activity sequence.

The initial marking and final markings are included because process mining consid-
ers complete traces and not a prefix-closed language. When replaying an activity log on
a Petri net, the Petri net needs to have an initial marking to start with, and final markings
to conclude whether the replay has reached a proper final marking. In the example, a
replay of some trace starts from marking [p1], and the replay will be successful if and
only if the marking [p10] is reached.

2.3 Alignments

A trace alignment [2, 3] links activities in a trace onto transitions in a Petri net. As an
example, Fig. 3 shows a possible trace alignment for the trace 〈a1, a2, a3, a4, a5, a6, a7,
a8〉 and the accepting Petri net N1. We use� to denote the lack of a visible transition
in an alignment. For example, the occurrence of activity a3 was not matched by a firing



of transition t4 in the net. In such a case, we use� to indicate that no corresponding
transition was fired. Likewise, although not present in this example, it is possible that
transition t4 was fired but that this was not matched by an occurrence of activity a3 in
the log. In such a case, we also use� but now to indicate that no corresponding activity
occurred.

The occurrence of a1 matches the firing of transition t1 (this is a so-called syn-
chronous move, as both the log and the net can advance), then we need to fire the
transition t2 in the net which has no counterpart in the log (a so-called invisible model
move), followed by another synchronous move for a2 and t3, after which we need to
skip the activity a3 (a so-called log move) as there is no transition enabled in the net
that matches this activity, etc. Note that we require the transition sequence in the middle
row of the alignment to lead from the initial marking of the net to some final marking.

Definition 5 (Legal moves). Let A ⊆ A be a set of activities, let σ ∈ A∗ be an activity
trace over A, and let N = (P, T, F, l, I, O) be an accepting Petri net over A. The set
of legal moves of A and N is the union of the sets {(a, t)|a ∈ A ∧ t ∈ T ∧ l(t) = a}
(synchronous moves), {(a,�)|a ∈ A} (log moves), {(�, t)|t ∈ T ∧ l(t) ∈ A} (visible
model moves), and {(τ, t)|t ∈ T ∧ l(t) = τ} (invisible model moves).

Definition 6 (Trace alignment). Let A ⊆ A be a set of activities, let σ ∈ A∗ be an
activity trace over A, and let N = (P, T, F, l, I, O) be an accepting Petri net over A. A
trace alignment h for trace σ on net N is a sequence of legal moves (a, t) ∈ ((A ∪ {τ,
�})× (T ∪ {�})) such that:

– σ = h�1A and
– For some o ∈ O it holds that I[h�2T 〉o,

where

h�1A=


〈〉 if h = 〈〉;
〈a〉 · h�1A if h = 〈(a, t)〉 · h and a ∈ A;
h�1A if h = 〈(a, t)〉 · h and a 6∈ A;

and

h�2T=


〈〉 if h = 〈〉;
〈t〉 · h�2T if h = 〈(a, t)〉 · h and t ∈ T ;
h�2T if h = 〈(a, t)〉 · h and t 6∈ T ;

The bottom row in Fig. 3 shows the possible costs of every move. In this example, a
synchronous move costs 0, a visible model move costs 4, an invisible model move costs
0, and a log move costs 10. The total costs for the example alignment is 30.

Definition 7 (Costs structure). LetA ⊆ A be a set of activities, and letN = (P, T, F,
l, I, O) be an accepting Petri net over A. A cost structure $ for A and N is a function
that maps every legal move of A and N onto a (non-negative) natural number.

Typically, the costs of all synchronous moves and all invisible model moves are set
to 0, as then a perfect match has costs 0. The user then only needs to set the costs for
the log moves and the visible model moves. If these costs would be set to 10 and 4 for
all transitions and activities, then we would have that $(�, t3) = 4, $(a2,�) = 10,
and $(a2, t3) = 0.
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Fig. 4. Another optimal trace alignment for the trace 〈a1, a2, a3, a4, a5, a6, a7, a8〉 and Petri net
N1 (now t4 and t11 fire rather than t3 and t10).

Definition 8 (Costs of trace alignment). Let A ⊆ A be a set of activities, let σ ∈ A∗
be an activity trace over A, let N = (P, T, F, l, I, O) be an accepting Petri net over A,
let h = 〈(a1, t1), . . . , (an, tn)〉 be a trace alignment (of length n) for σ andN , and let $
be a cost structure forA andN . The costs of trace alignment h, denoted $h, is defined as
the sum of the costs of all legal moves in the alignment, that is, $h =

∑
i∈{1,...,n} $(ai,

ti).

If no other alignment results in lower costs, the alignment is called optimal. There
may exist multiple optimal alignments for a single trace. For example, the alignment as
shown in Fig. 3 is optimal, but the alignment as shown in Fig. 4 is also optimal.

Definition 9 (Optimal trace alignment). Let A ⊆ A be a set of activities, let σ ∈ A∗
be an activity trace over A, let N = (P, T, F, l, I, O) be an accepting Petri net over A,
let h be a trace alignment for σ and N , and let $ be a cost structure for A and N . The
trace alignment h is called optimal if there exists no other trace alignment h′ such that
$h′ < $h.

A log alignment is a trace alignment for every trace in the activity log, an optimal
log alignment is an optimal trace alignment for every trace in the activity log. As a result
of a log alignment, any trace in the log can be mapped to the transition sequence that
best matches this trace. As an example, an optimal trace alignment for the trace 〈a1,
a2, a4, a5, a6, a2, a4, a5, a6, a4, a2, a5, a7〉 from log L1 could include the transition se-
quence 〈t1, t2, t3, t5, t6, t7, t8, t2, t3, t5, t6, t7, t8, t5, t2, t3, t6, t7, t9, t10〉 in netN1, and
the costs of this alignment would be 0.

Definition 10 ((Optimal) log alignment). Let A ⊆ A be a set of activities, let L ∈
B(A∗) be an activity log over A, and let N = (P, T, F, l, I, O) be an accepting Petri
net over A. A log alignment H for log L and net N is a function that maps every
possible trace σ ∈ L to a trace alignment. A log alignment is called optimal if and only
if all its trace alignments are optimal.

Clearly, log L1 can be perfectly aligned to net N1, as there exists an alignment
where all trace alignments have costs 0. Using such a log alignment, it is possible to
project the date and information that is present in a log onto the net, and obtain average
durations between activities, an animation with the token replay, etc.

2.4 Decomposition

The overall net and the overall log can be decomposed in a number of decomposed nets
and decomposed logs, in such a way that (1) the costs of the optimal overall alignment
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Fig. 5. Decomposed nets obtained by decomposing the net N1. Nets N1b, N1c, N1d , and N1e

have the empty marking as initial marking, while the nets N1a, N1b, N1c , and N1d have the
empty marking as the only final marking.

Table 2. Decomposed log for activities {a1, a2, a3, a4, a6} in tabular form. This is the log that
would be replayed on the decomposed net N1b as shown in Fig. 5.

Trace Frequency

〈a1, a2, a4, a6, a2, a4, a6, a4, a2〉 1
〈a1, a2, a4, a6, a3, a4, a6, a4, a3, a6, a2, a4〉 1
〈a1, a2, a4, a6, a3, a4〉 3
〈a1, a2, a4, a6, a4, a3〉 1
〈a1, a2, a4〉 4
〈a1, a3, a4, a6, a4, a3〉 2
〈a1, a3, a4〉 1
〈a1, a4, a2, a6, a4, a2, a6, a3, a4, a6, a2, a4〉 1
〈a1, a4, a2〉 4
〈a1, a4, a3〉 2

is 0 if and only if the costs of every optimal decomposed alignment is 0, and (2) the
accumulated costs of the decomposed alignments are a lower bound for the costs of the
overall alignment [1]. This allows us to decompose an overall alignment problem into a
number of decomposed alignment problems, which can possibly be solved much faster,
while still providing certain guarantees.

Figure 5 shows the five decomposed nets that result from decomposing the net N1.
For an in-depth description of such decompositions, we refer to [1]. For this paper, it is
sufficient to know that (1) every visible transition occurs in one or more decomposed
nets, (2) for every label all different transitions sharing that label occur in a single de-
composed net, and (3) that every place, invisible transition, and arc occurs in only a
single decomposed net. As such, a token can only flow from one decomposed net to an-
other decomposed net through firing some visible transition, which is hence observable
in the log.

Based on the activity sets as present in these decomposed nets, five decomposed
logs will be created. Every decomposed log contains as many traces as the overall log,
but every trace in a decomposed log contains only those activities that are present in the
corresponding net. As an example, Table 2 shows the decomposed log resulting from
filtering log L1 using the decomposed net N1b, that is, the net that corresponds to the
set of activities {a1, a2, a3, a4, a6}.
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Fig. 6. Computation times and numbers of activities for the replay on some data sets. The non-
decomposed replay did not finish in 10 minutes for some cases, typically the cases with many
different activities.

By replaying every decomposed log on the corresponding decomposed net, we ob-
tain optimal decomposed alignments, say h1 to hn. From [1] we know that the costs of
these optimal decomposed alignments are guaranteed to be 0 if and only if the costs of
an optimal overall alignment (of the overall log on the overall net) is 0. Furthermore, we
know from [1] that we can use these decomposed alignments to obtain a lower bound
for the costs of the overall alignment.

Figure 6 shows the usefulness of the decomposition approach. It shows the required
computation times1 and numbers of activities for the DMKD 2006, BPM 2013, and
IS 2014 data sets [12, 14, 15]. These data sets contain in total 59 cases of varying size,
ranging from 12 to 429 activities, from 500 to 2000 traces, with varying numbers of mis-
matching traces (from 0% to 50%). Obviously, the decomposed replay is more robust
when it comes to computation times, while it provides the same guarantee as mentioned
earlier. For larger events logs and models, computing optimal alignments can take days
and is often intractable. For example, for some of the cases that did not finish in 10
minutes it is known that they also do not finish within 12 hours [15], or that they do not
finish because they run out of memory. If the net has a suitable decomposition, replay
time may thus be reduced from more than 12 hours or infeasible to 10 seconds.

As a result of this replay, we will have a collection of decomposed alignments and
a lower bound for the costs. To be able to diagnose the mismatches between the log
and the net, we want to be able to merge the decomposed alignments into an overall
alignment, and project that overall alignment onto the log or the net. Note that as a result
of the guarantees of the decomposition, a trace has no costs in the overall alignment if
and only if it has costs in the decomposed alignments.

1 All tests are performed on a desktop computer with an Intel Core-i7-4770 CPU at 3.40 GHz,
16 GB of RAM, running Windows 7 Enterprise (64-bit), and using a 64-bit version of Java 7
where 4 GB of RAM was allocated to the Java VM.
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Fig. 7. Possible optimal decomposed alignments. h1b is an optimal alignment for the decomposed
log shown in Table 2 and the decomposed net N1b, etc.

3 Merging Alignments

This section introduces an algorithm to merge a coherent set of decomposed alignments,
that is, a set of alignments that result from replaying decomposed logs on corresponding
decomposed nets. Please note that the costs of the merged alignment are simply the
accumulation of the costs of the decomposed alignments [1]. As a result, when merging
the alignments we do not need to take the costs into account. Instead, we can focus on
the diagnostic value of the merged alignment.

To explain issues at hand for this step, we assume that we need to replay the trace
〈a1, a2, a3, a4, a5, a6, a7, a8〉 on the net N1 (see Fig. 2). Figure 3 shows an optimal
overall alignment for this trace, which shows that the optimal costs for replaying this
trace are 30. Figure 7 shows a set of possible optimal decomposed alignments, obtained
by replaying the decomposed logs on the decomposed nets (see Fig. 5). Accumulating
the costs from these decomposed alignments yields costs 27, which is caused by the fact
that net h1d can do the model move (�, t7) instead of the more expensive log move
(a6,�).

The algorithm needs to merge these five decomposed alignments into one overall
alignment, if possible. To do so, the algorithm takes the trace, an empty alignment, and
the five decomposed alignments, and works its way through the trace and the decom-
posed alignment while building up the overall alignment:

– The algorithm first encounters the activity a1 in the trace, which is covered by two
decomposed alignments (h1a and h1b). Fortunately, both decomposed alignments
agree on a synchronous move on a1 and transition t1, so the algorithm adds the
legal move (a1, t1) to the overall alignment and advances both the trace and the
decomposed alignments.

– The algorithm then encounters the activity a2, which is also covered by two decom-
posed fragments (h1b and h1c). However, h1b is not yet ready to accept a2 as it first
needs to do an invisible model move on the transition t2. Therefore, the algorithm
first adds the invisible model move (�, t2) to the overall alignment and advances
the state of h1b. Then, unfortunately, the algorithm notices that h1b and h1c dis-
agree on the move on a2, as h1b suggests a synchronous move (on transition t3)
while h1c suggests a log move. In case of such a conflict, we can either take an op-
timistic approach (by selecting the least expensive move) or a pessimistic approach
(by selecting the most expensive move). In the remainder of this paper, we will
use the pessimistic approach, as the optimistic approach tends to mask mismatches



by selecting, in case of a conflict, moves without costs. Clearly, when diagnosis is
the goal, one should not mask possible problems, but one should stress them. So,
the algorithm adds the log move (a2,�) to the overall alignment and advances the
state of the trace and both h1b and h1c.

– Activity a3 is handled by the algorithm in a similar way as a2, as h1b and h1c again
disagree. Note that as a result, the algorithm now has added two log moves for a2
and a3 to the overall alignment, which leads to a transition sequence that is not
executable in the overall net, and to an overall alignment which is (by definition)
not a proper alignment. For this reason, we introduce so-called pseudo-alignments,
which are alignments except for the fact that the trace does not need to be executable
in the net. The result of merging the decomposed alignments at hand would then be
a pseudo-alignment instead of an alignment.

– Etc.

Fig. 8. Alignment of the decom-
posed alignments for obtaining the
overall pseudo-alignment. The top
row shows the trace that we need
to align in the net. The middle
row shows the optimal decomposed
alignments of Fig. 7 laid out in
such a way that the activities match
in the vertical direction. Note that
the ordering in the vertical direction
of these decomposed alignments is
of no importance. The bottom row
shows the pseudo-alignment that
results from merging these decom-
posed alignments.
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This result of this merging is visualized in Fig. 8. In this figure, the middle row shows
the alignment of alignments that results from merging the decomposed alignments. In
this row, the legal moves that have been ignored (because they were in conflict and
were less expensive, like (a2, t3), or because they were missing, like a move on t7) are
indicated with a grey background. The overall pseudo-alignment (see the bottom row
in Fig. 8) follows directly from this alignment of decomposed alignments by taking in
every column a legal move that has no grey background, and by accumulating the costs
in every column.



To avoid the introduction of the same concepts in the formal definitions over and
over again, we first define a base setting for these formal definitions. This definition is
to be used as a preamble for all other definitions in this section.

Definition 11 (Base setting). The base setting for this section is as follows:

– A ⊆ A denotes a set of activities,
– L denotes an activity log over A,
– σ denotes an activity trace from L,
– N = (P, T, F, l, I, O) denotes an accepting Petri net over A,
– $ denotes a cost structure for A and N ,
– h denotes an optimal trace alignment of σ for A and N , given $,
– n equals the number of decomposed nets obtained by decomposing N ,
– for every i ∈ {1, . . . , n}:
• Ai denotes the set of activities of the i-th decomposed net,
• Li denotes the log obtained from L by filtering out all activities not in Ai,
• σi denotes the activity trace from Li obtained from L by filtering out all activ-

ities not in Ai,
• N i = (P i, T i, F i, li, Ii, Oi) denotes the i-th decomposed net obtained by

decomposing N as explained in [1], where P i ⊆ P , T i ⊆ T , F i ⊆ F ,
∀t∈T i li(t) = l(t), Ii = I ∩ P i, and Oi = {o ∩ P i|o ∈ O},

• hi denotes an optimal trace alignment of σi for Li and N i.

First, we introduce the space of alignments that we are interested in, that is, the col-
lection of overall alignments that fit the decomposed alignments. Later on, we introduce
the algorithm that returns an alignment from this space.

Definition 12 (Merged trace alignment). The trace alignment h′ is a merged trace
alignment of h1, . . . , hn if and only if ∀i∈{1,...,n}h′↓Ai= hi, where h′↓Ai is defined as
follows:

h′↓Ai=


〈〉 if h′ = 〈〉;
〈(a, t)〉 · h′↓Ai if h′ = 〈(a, t)〉 · h′ and a ∈ Ai ∨ t ∈ T i;

h′↓Ai if h′ = 〈(a, t)〉 · h′ and a 6∈ Ai ∧ t 6∈ T i;

For decomposed alignments that conflict on some legal move no such merged trace
alignment exists.

Observation 1. (A merged trace alignment may not exist) For arbitrary decomposed
alignments h1, . . . , hn, a merged trace alignment h′ may not exist.

See Fig. 8: Either we have the legal move (a2, t3) or the legal move (a2,�). In the
former case, the decomposed alignment that contains the legal move (a2,�) cannot
be matched. In the latter case, the decomposed alignment that contains the legal move
(a2, t3) cannot be matched.

In such cases, to get any result of merging the decomposed alignments, we need to
let go of the requirement that for some o ∈ O it holds that I[σ〉o, that is, the result is
not an alignment, but a pseudo-alignment.



Definition 13 (Trace pseudo-alignment). A trace pseudo-alignment h for trace σ on
net N is a sequence of legal moves (a, t) ∈ (A ∪ {τ,�}) × (T ∪ {�})) such that
σ = h�1A, where h�1A is defined as in Definition 6.

In a pseudo alignment we drop the second requirement in Definition 6. Using these
pseudo-alignments, the algorithm can handle conflicts between the decomposed align-
ments. A merged pseudo alignment has only legal moves for:

– Each activity in the log trace. In case of conflicts, the cheapest legal move is selected
for the overall pseudo-alignment.

– A model move that all agree on. Note that, by definition, for an invisible model
move all agree, as there is only one decomposed net that contains this transition.

Definition 14 (Merged trace pseudo-alignment). The trace pseudo-alignment h′ is
a merged trace pseudo-alignment of h1, . . . , hn if and only if ∀i∈{1,...,n}h′ ↓Ai= hi,
where h′↓Ai is defined as follows:

h′↓Ai=



〈〉 if h′ = 〈〉;
〈(a, t′)〉 · h′↓Ai if h′ = 〈(a, t)〉 · h′ and a ∈ Ai,

for some t′ such that $(a, t′) ≥ $(a, t);

〈(x, t)〉 · h′↓Ai if h′ = 〈(x, t)〉 · h′, x ∈ {τ,�}, and t ∈ T i;

h′↓Ai if h′ = 〈(�, t)〉 · h′ and t ∈ T i;

h′↓Ai if h′ = 〈(a, t)〉 · h′ and a 6∈ Ai and t 6∈ T i;

As a result, in case of conflicting legal moves, the most expensive legal move is se-
lected to be included in the overall pseudo-alignment (see the second item). Of course,
this selected legal move will not match some unselected legal moves, which most likely
breaks the execution of the transition sequence in the net. Furthermore, note that it is
possible to ignore visible model moves (see the fourth item). This is required for com-
pleteness as otherwise we cannot deal with a conflict for such transitions. For example,
observe that the decomposed alignment h1d includes the legal move (�, t7), which is
not matched in the decomposed alignment h1c. Having (�, t7) in the corresponding
position in h′ would work for h1d, but not for h1c. Likewise, not having it would work
for h1c, but not for h1d. To solve this problem, we decide to have (�, t) in h′ (for sake
of diagnosis) and to compensate for this using this fourth item.

Theorem 1. (A merged trace pseudo-alignment always exists) For arbitrary decom-
posed alignments h1, . . . , hn, a merged trace pseudo-alignment h′ always exists.

Proof. Assume that such an h′ does not exist, and assume that we could find a prefix
of h′ such that the projection of this prefix onto every Ai does result in a prefix of
hi. Obviously, the empty prefix satisfies this requirement. Now, assume that we cannot
extend this prefix anymore, that is, we cannot add a new legal move, while a final mark-
ing has not been reached yet. This can obviously not involve an invisible transition, as
there can be no conflict on such transition. Likewise, this can also not involve a visible
transition contained in only one decomposed alignment. However, this can also not in-
volve a shared visible transition that is enabled by all sharing decomposed alignments,
as then we could simply take a most expensive of the legal moves proposed by these



alignments. As a result, this can only happen in case at least one one of the sharing
alignments expects another shared visible transition first. Such a shared visible tran-
sition cannot correspond to a model move, as otherwise we could use the fourth item
to continue, as explain above. As a result, there should be a conflict with synchronous
moves. But this clearly contradicts the fact that every decomposed alignment adheres to
the order of these transitions in the original trace. Therefore, it cannot be that we cannot
extend the prefix, unless we have reached a final marking.

Theorem 2. (A merged trace pseudo-alignment may not be an alignment) Let the trace
pseudo-alignment h′ be a merged trace pseudo-alignment of h1, . . . , hn. Then h′ may
not be a trace alignment for L and N .

Proof. See Fig. 8: We added the legal move (a2,�) as this is more expensive than
adding (a2, t3). In a similar fashion, we also added (a3,�). As a result, neither t3 nor
t4 is present in the transition sequence of the alignment. But, clearly, net N1 requires
either t3 to t4 to fire to reach the final marking. Hence the resulting transition sequence
σ does not satisfy the requirement that I[σ〉o, for some o ∈ O.

Based on these definitions, we first introduce three alignment stitching rules, fol-
lowed by two pseudo-alignment stitching rules. The alignment stitching rules construct
a merged trace alignment, if possible. If this succeeds, we know that the result is again
an alignment, and that the reported costs are exact, and not just a lower bound. Oth-
erwise, we need a pseudo-alignment stitching rule to be able to continue, but this will
result in a pseudo-alignment, and the reported costs will only be a lower bound.

Definition 15 (Stitching function Y ). Let H be the set of all possible trace pseudo-
alignments of L and N , and letHi be the set of all possible trace alignments of Li and
N i. The function Y ∈ (H×A∗×H1× . . .×Hn)→ H returns the first argument con-
catenated by the merged trace pseudo-alignment of the third and following arguments
(h1, . . . , hn), where the second argument (σ) is used to guide the stitching. As a result,
Y (〈〉, σ, h1, . . . , hn) returns the merged trace pseudo-alignment of h1, . . . , hn.

The first alignment stitching rule is a simple rule that detects when the algorithm is
done: If the trace and all decomposed alignments have been dealt with completely.

Alignment Stitching Rule 1 (All done)

Y (h′, 〈〉, 〈〉, . . . , 〈〉) = h′

The second alignment stitching rule is a rule that allows the algorithm to continue
if all relevant decomposed alignments agree on the first activity in the trace. If so, this
activity is now dealt with and so are the corresponding legal moves in the relevant
decomposed alignments. For the irrelevant decomposed alignments, nothing changes.

Alignment Stitching Rule 2 (Activity w/o conflict)

If σ = 〈a〉 · σ and t ∈ (T ∪ {�})
and ∀i∈{1,...,n}(a ∈ Ai)⇒ (hi = 〈(a, t)〉 · hi)
and ∀i∈{1,...,n}(a 6∈ Ai)⇒ (hi = hi)

then Y (h′, σ, h1, . . . , hn) = Y (h′ · 〈(a, t)〉, σ, h1, . . . , hn)



The third alignment stitching rule is a rule that allows the algorithm to continue if all
relevant decomposed alignments agree on a next model move. If so, these legal moves
are now dealt with. Note that the set of relevant decomposed alignments differs per
model move, as this set comprises all decomposed alignments where the corresponding
decomposed net contains the transition involved in the selected legal move. As a result,
multiple legal model moves could be a candidate for applying this rule. Note that this
indicates that the candidate transitions are now all enabled, that is they are concurrent.

Alignment Stitching Rule 3 (Transition w/o conflict)

If t ∈ T and x ∈ {τ,�}
and ∀i∈{1,...,n}(t ∈ T i)⇒ (hi = 〈(x, t)〉 · hi)
and ∀i∈{1,...,n}(t 6∈ T i)⇒ (hi = hi)

then Y (h′, σ, h1, . . . , hn) = Y (h′ · 〈(τ, t)〉, σ, h1, . . . , hn)

As mentioned before, applying these rules will result in an alignment if the algo-
rithm ends and Rule 1 can be applied. However, it may be that no rule is applicable
before reaching the end of one or more decomposed alignments.

Theorem 3 (Alignment stitching rules result in an alignment). Provided that the
application of the alignment stitching rules ends, that is, if at the end Rule 1 is applied,
then the result of applying these rules is an alignment merged trace alignment, that is,
a trace alignment.

Proof. By construction, the alignment stitching rules append h′ with a legal move (a, t)
if and only if all relevant decomposed alignments hi agree on this legal move. See also
[1].

If conflicts between activities and/or transitions do occur, the algorithm can use one
of the following rules to continue. However, by applying these rules, we know that the
end result will not be an alignment. As we favor alignments, over pseudo-alignments,
we only apply the following stitching rules if the previous stitching rules can not be
applied.

The first pseudo-alignment stitching rule is a rule that allows the algorithm to con-
tinue if the relevant decomposed alignments disagree on the next legal move containing
the first activity in the trace, that is, a synchronous or log move. If so, the most ex-
pensive of the conflicting legal moves is added to the resulting pseudo alignment, the
activity in the trace is now dealt with, and so are all the conflicting moves in the relevant
decomposed alignment.

Pseudo-alignment Stitching Rule 1 (Activity w/ conflict)

If σ = 〈a〉 · σ and R = {i ∈ {1, . . . , n}|a ∈ Ai} and m ∈ R
and ∀i∈R(ti ∈ (T i ∪ {�}) ∧ hi = 〈(a, ti)〉 · hi ∧ $(a, tm) ≥ $(a, ti))

and ∀i∈{1,...,n}\Rhi = hi

then Y (h′, σ, h1, . . . , hn) = Y (h′ · 〈(a, tm)〉, σ, h1, . . . , hn)



In this definition, R can be interpreted as the set of (indices of) relevant decomposed
alignments, and m can be interpreted as the (index of the) relevant decomposed align-
ment with maximal costs.

The second pseudo-alignment stitching rule is a rule that allows the algorithm to
continue if the relevant decomposed alignments disagree on a next model move. If
so, one of these model moves is selected, and added to the pseudo-alignment, and all
corresponding model moves are now dealt with.

Pseudo-alignment Stitching Rule 2 (Transition w/ conflict)

If t ∈ T and l(t) ∈ A
and R = {i ∈ {1, . . . , n}|hi = 〈(�, t)〉 · . . .} and R 6= ∅
and ∀i∈Rhi = 〈(�, t)〉 · hi
and ∀i∈{1,...,n}\Rhi = hi

then Y (h′, σ, h1, . . . , hn) = Y (h′ · 〈(�, t)〉, σ, h1, . . . , hn)
In this definition, again R can be interpreted as the set of (indices of) relevant decom-
posed alignments.

Note that both rules are not deterministic, as there may be more activities or multiple
visible transitions that satisfy the preamble. In such a case, one can select any of these
activities or transitions, apply the rule using that activity or transition, and continue.

Theorem 4 (Stitching rules are complete). Applying all five rules ends, and the result
of applying them is a merged trace pseudo-alignment.

Proof. By construction, Pseudo-alignment Stitching Rule 1 appends h′ with a legal
move (a, t) if and only if it is the most expensive option, which corresponds 1-to-
1 with the second item of the merged trace pseudo-alignment. As a result, this rule
deals effectively with conflicting synchronous moves and conflicting log moves (as ti

is allowed to be �). Also by construction, Pseudo-alignment Stitching Rule 2 allows
to add a conflicting model move, as it may add such a model move to h′ while not
adding it to some hi. This correspond 1-to-1 with the fourth item of the conflicting
merged trace alignment. As a result, the rule deals effectively with conflicting model
moves. What remains is the proof that Alignment Stitching Rule 1 can be applied at
some point in time (algorithm ends). Assume that the stitching blocks at some point in
time, while σ starts with a. If all corresponding hi’s start with the same legal move,
then Alignment Stitching Rule 2 can be applied. If these hi’s start with conflicting legal
moves, then Pseudo-alignment Stitching Rule 1 can be applied. As a result, to have no
stitching rule applicable at this moment, some of these hi’s need to start with a model
move, that is, with some (τ, ti) or (�, ti). In case of (τ, ti), Alignment Stitching Rule 3
can be applied, as ti only occurs in T i. Otherwise, in case of (�, ti), Pseudo-alignment
Stitching Rule 2 can be applied. Hence, the stitching cannot block.

We now have everything in place for the merge algorithm, which simply keeps on
checking whether the rules as provided earlier (in the order given) can be applied. As
soon as it detects a rule that it can apply, it applies that rule and starts over again by
checking whether the rules can be applied. In the end, the first rule is applied, which
provides us with the result: either a pseudo-alignment or a proper alignment.



Fig. 9. Screenshot of the result of the decomposed replay (left-hand side) and of the result of the
non-decomposed replay (right-hand side). Both alignments are projected onto the overall log.

4 Implementation

The alignment merge as described in the previous section has been implemented in the
“LogAlignment” package of ProM 6 [19]. This “LogAlignment” package2 is part of the
“DivideAndConquer” framework [18] in ProM 6 that supports decomposed discovery
and decomposed replay.

In the framework, a single replay (that is, on overall alignment of every trace in
a log on a net) has a timeout of 10 minutes. In Fig. 6 we already noted that some
non-decomposed replays did not finish within this time. This timeout of 10 minutes is
set to prevent a single replay to take almost forever. Experiences indicated that only
rarely a replay finishes successfully after more than these 10 minutes [14, 15]. In case
of a decomposed replay, this timeout is enforced in a progressive way. If one of the
decomposed replays has failed, then the resulting pseudo-alignment will be empty. For
this reason, after one of the decomposed replays has exceeded the timeout, the timeout
will be set to 0 minutes. This effectively prevents time being spent in decomposed
replays that are not needed anyway as the resulting pseudo-alignment is already known
to be empty.

Figure 9 shows two screenshots: one of the result of the decomposed replay and the
alignment merge, and one of the result of the non-decomposed replay. The resulting
(pseudo-)alignments have both been projected onto the overall log. This figure shows
that the decomposed replay followed by the alignment merge successfully matches all

2 See https://svn.win.tue.nl/repos/prom/Packages/LogAlignment/
Trunk
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Fig. 10. Computation times for the replay and the alignment merge on the data sets.

synchronous moves (the lighter and green chevrons), and also most of the visible model
moves (the darker and purple chevrons).

5 Discussion

Figure 10 shows the computation time needed for the decomposed replay extended with
the alignment merge for the three data sets introduced earlier. For sake of reference,
this figure also includes the computation time needed for both the non-decomposed
replay and the decomposed replay. Clearly, in many cases, doing a decomposed replay
followed by an alignment merge is faster than doing a non-decomposed replay. As a
result, a pseudo-alignment can be returned in a fraction of the time it would take to
return an alignment. Note that, for every data set used, the computation of a pseudo-
alignment would take up to 20 seconds, whereas the computation of an alignment might
take more than 10 minutes, that is, days [14, 15].

If the decomposed alignments do no incur any costs, then there exists an alignment
that is the result of the merge [1]. For this alignment, it is guaranteed that there are no
conflicts when merging. As a result, in such cases, the algorithm as introduced in this
paper is guaranteed to return an alignment instead of only a pseudo-alignment.

If the decomposed alignments do incur costs, then it is still possible that an optimal
alignment is returned by the stitching algorithm: If at every step during the stitching all
relevant decomposed alignments agree on a next legal move, then the result will be an
alignment. Note that this alignment may still incur costs, as every relevant decomposed
alignment may agree on the move to be a log move, or in case all misalignments are
local. As a result, in certain cases if costs are incurred, the algorithm will return an
alignment, and this alignment will have the same costs as the non-decomposed align-
ment [1].

Figure 11 shows that in general it is not possible to obtain an alignment in every
case. The dashed line in this net indicates the only way this net can be decomposed into
nets: The first decomposed net (Na) contains all transitions labeled a and the second net
(Nd) contains all transitions labeled d. Now assume that the trace at hand is the empty
trace and that every model move costs 4. The optimal alignment for Na contains only
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Fig. 11. An example net for which there is no proper alignment.

the legal move (�, tc) (with costs 2), whereas the optimal alignment for Nd contains
only (�, tb) (also with costs 2). Clearly, there is no alignment in the overall net that has
lower costs than the costs (4) of these two model moves: The upper branch would cost
4 × k + 2, the lower branch 2 + 4 × l. This example also shows that we cannot give
an upper bound for an overall alignment using the decomposed alignment, as k and l
could be arbitrary high.

At the moment, the cost-based replay algorithm results in on overall optimal align-
ment. As a result, it is conceivable that for two decomposed replays two optimal de-
composed alignments are returned which have conflicts, while there would also be two
optimal decomposed alignments that do not conflict. In case of the conflicting decom-
posed alignments, the algorithm returns a pseudo-alignment, whereas it would return
an alignment if the alignments do not conflict. As such, it would be beneficial for the
merge algorithm if the replay algorithm would return all optimal alignments instead
of only one. If so, then the merge algorithm could return an alignment in more cases,
although of course this would take more time as the algorithm would have to check
possibly many combinations of decomposed alignments.

6 Conclusions

This paper has introduced an algorithm to merge decomposed alignments. In general,
the result of the algorithm will be a pseudo-alignment, that is, an alignment except for
the fact that it may not be executable in the net. However, if the decomposed alignments
agree with each other, then the algorithm returns a proper optimal alignment. In case
of a perfect match between the log and the net, then these decomposed alignments
will always agree with each other [1], and hence the result of the algorithm will be an
alignment. In case of mismatches between the log and the net, the result many still be
an alignment, but then all decomposed alignments need to agree.

This paper has also shown that, especially for logs and nets that contain many ac-
tivities, the computation of a (non-decomposed) alignment takes longer than the com-
putations of the decomposed alignments and the time it takes to merge them. As the
pseudo-alignment that results from the decomposed approach can still be used effec-
tively to diagnose mismatches, it will often be more convenient to use this approach.

In case the algorithm returns a proper alignment, then the costs of this alignment are
exact, that is, it equals the costs obtained through a non-decomposed replay. In case the



algorithm does not return an alignment but a pseudo-alignment, then the costs of this
alignment are a lower bound for the costs obtained through a non-decomposed replay.

In the future, we want to see whether heuristics exist that help the merge into obtain-
ing better (pseudo-)alignments. As is, the current algorithm contains non-determinism,
in which case it has several alternatives to proceed. For example, there could be mul-
tiple visible model moves to merge next. Possibly, using some local heuristic, we can
select a next merge action which most likely results in a (pseudo-)alignment that better
matches the overall alignment one would get by doing a non-decomposed replay. Note
that the better this match, the better the gain of using the non-decomposed replay.

Also, we want to extend the stitching rules with rules that allow for different ways of
decomposing the net. The decomposition introduced in [1] takes care that every invisi-
ble transition ends up in a single decomposed net. As a result, there can be no conflict
that involves invisible transitions. However, different decomposition approaches may
not guarantee this. As an example take a decomposition approach where a decomposed
net is obtained by simply hiding (that is, making invisible) those visible transitions that
are not relevant for this decomposed net. For such a decomposition approach, every
transition occurs in every decomposed net, only some visible transitions will be made
invisible. Of course, if some visible transition has been made invisible in some decom-
posed net, then there will definitely be a conflict when merging the alignment. This gets
even more complicated if the decomposition approach first reduces the decomposed
nets, for example, by using existing Petri net reduction rules [6, 16]. Then some invisi-
ble transitions will be present in only some decomposed nets, and some of them might
also have visible counterparts in other decomposed nets.

Finally, an interesting idea is to recompose decomposed nets and decomposed logs
in case their decomposed alignments have many conflicts. By recomposing the nets
and the logs, we remove these conflicts but obtain a slightly larger recomposed net
and recomposed log. As this recomposed net and recomposed log might still be much
smaller than the overall net and overall log, the decomposed replay might still be much
faster than the overall replay.
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