
Detecting Deviating Behaviors without Models

Xixi Lu1, Dirk Fahland1, Frank J.H.M. van den Biggelaar2, Wil M.P. van der Aalst1

1 Eindhoven University of Technology, The Netherlands
2 Maastricht University Medical Center

{x.lu,d.fahland,w.m.p.v.d.aalst}@tue.nl
{f.vanden.biggelaar}@mumc.nl

Abstract. Deviation detection is a set of techniques that identify deviations from
normative processes in real process executions. These diagnostics are used to de-
rive recommendations for improving business processes. Existing detection tech-
niques identify deviations either only on the process instance level or rely on
a normative process model to locate deviating behavior on the event level. How-
ever, when normative models are not available, these techniques detect deviations
against a less accurate model discovered from the actual behavior, resulting in
incorrect diagnostics. In this paper, we propose a novel approach to detect devia-
tion on the event level by identifying frequent common behavior and uncommon
behavior among executed process instances, without discovering any normative
model. The approach is implemented in ProM and was evaluated in a controlled
setting with artificial logs and real-life logs. We compare our approach to existing
approaches to investigate its possibilities and limitations. We show that in some
cases, it is possible to detect deviating events without a model as accurately as
against a given precise normative model.

1 Introduction

Immense amounts of event data have been recorded across different application do-
mains, reflecting executions of manifold business processes. The recorded data, also
called event logs or observed behavior, show that real-life executions of process in-
stances often deviate from normative processes [12]. Deviation detection, in the context
of conformance checking, is a set of techniques that check process conformance of
recorded executions against a normative process and identify where observed behav-
ior does not fit in and thus deviates from the normative process model [1]. Accurately
detecting deviating behavior at the event level is important for finding root causes and
providing diagnostic information. The diagnosis can be used to derive recommenda-
tions for improving process compliance and performance [13].

Existing techniques for detecting deviations, such as alignment-based techniques
[1], require a normative process in the form of a process model. However, normative
models are often not available, especially in flexible environments. For instance, in
healthcare, each patient often follows a unique path through the process with one-of-
a-kind deviations [11]. A solution is to discover a model from an event log. The dis-
covered model is assumed to describe the normative behavior, and then conformance
checking techniques discern where the log deviates. However, the quality of deviation



detection depends heavily on the discovered model, which again depends on the discov-
ery algorithm used and the design decisions made in the algorithm. When an event log
shows high variety (for example, containing multiple process variants), discovering one
normative process almost always results in underfitting models, rendering them useless
for detecting deviations.

In this paper, we consider the problem of detecting deviations without discovering
a normative process model. We limit our scope to only detecting deviating events; we
define deviations as additional behavior observed in an event log but not allowed in
the normative process; other deviations, such as steps of the normative process that are
skipped, are not considered in this paper. We present a new technique to detect deviating
events by computing mappings between events, which specify similar and dissimilar
behavior between process instances. The more they that agree on a certain behavior, the
less such a behavior is a deviation. We use this information to classify deviations.

The approach has been implemented as ProM plugin and was evaluated using ar-
tificial logs and real life logs. We compared our approach to existing approaches to
investigate the possibility and the limitations of detecting deviations without a model.
We show that the approach helps identify deviations without using a normative process
model. In cases where dependencies between events can be discovered precisely, it is
possible to detect deviating events as accurately as when using a given precise norma-
tive model. In other cases, when deviating events happen frequently and in patterns, it
is more difficult to distinguish them from the conforming behavior without a normative
model. We discuss ideas to overcome these problems in our approach.

In the remainder, we first discuss related work in Sect. 2, including input for our
approach. Sects. 3-5 explain our method in more depth: in Sect. 3, we define and explain
the relevant concepts, e.g. similar and dissimilar behavior, mapping, and cost function;
Sect. 4 presents two algorithms to compute mappings; Sect. 5 discusses how to use
mappings for detecting deviations. The evaluation results are presented in Sect. 6, and
Sect. 7 discusses the limitations and concludes the paper.

2 Related Work

We consider an event log as input for our approach for detecting deviations. In addition,
we discuss related work more in detail in this section.

Event logs and Partial Orders. An event log is a collection of traces, each of
which is a sequence of events describing the observed execution for a case. Most pro-
cess mining techniques use an event log as input. Recently, research has been conducted
to obtain partial orders over events, called partially ordered traces, and use them instead
to improve process mining [6,9]. The work in [9] discussed various ways to convert se-
quential traces into partially ordered traces and has shown that such a conduct improves
the quality of conformance checking when the as-is total ordering of events is unreli-
able. The approach proposed in this paper can handle partial orders as inputs, which we
refer to as execution graphs. Two types of partial order [9] are used in this paper: data
based partial order over events, i.e. two events are dependent if they access the same
data attributes; and time based partial order over events, i.e. two events are dependent
if they have different time stamps.



Outlier Detection and Deviance Mining. Existing outlier detection approaches
have a different focus and are not applicable to our problem. These approaches first
converting executions of cases to items of features and then using classification or clus-
tering techniques [7]. However, they only identify deviating cases (thus items) and omit
deviation on the event level (an analogy to classical data mining would be detecting a
deviating value in a item for one feature) and are often unable to handle the situation
in which a multitude of cases contain deviation. One different stream, known as de-
viance mining, classifies cases as normal or deviant, independent of their control-flow
execution, but rather based on their performance (e.g. whether throughput time of a
case is acceptable) [10]. Our approach is inspired by and similar to a log visualization
technique known as trace alignment [3]. However, this visualization technique does not
classify deviations but simply visualizes the mappings between traces to a user.

Conformance Checking. A state-of-art conformance checking technique is known
as (model-log) alignment [1,9], which computes a most similar run of a given normative
model with respect to each input trace. Events observed in traces that have no matching
behavior in such a run are classified as deviating events, also known as log moves.
However, the current cost function used by the approach is rather simple and static. For
example, it is unable to distinguish consecutive events sharing the same event class. In
addition, a precise model is required to identify deviations accurately, which might be
unavailable and difficult to discover, whereas our approach does not require models.

Process Discovery and Trace Clustering. Process discovery algorithms aim to
discover structured process models using an event log [4, 8], but still face various dif-
ficulties [5]. When event logs are highly unstructured and contain deviating behavior,
discovery algorithms often fail to find the underlying structure and return spaghetti
models due to overfitting. Some discovery algorithms aim to be noise/deviation robust
but often result in returning over-generalized or underfitted models. To discover better
models, one may preprocess event logs using, for example, trace clustering. Syntactic-
based trace clustering [5] is a set of techniques that focus on clustering traces in such
a way that structured models can be discovered as different variant of the normative
model. In our evaluation, we compare our approach to [1, 2, 5, 8, 9] more in depth.

3 Mappings - Similarities and Dissimilarities between Executions

In this section, we introduce the key concepts used in this paper and explain how simi-
larity and dissimilarity between executions of cases helps identify deviations.

Execution Graphs and Neighbors. For describing execution of a case, we use an exe-
cution graph. An execution graph is a directed acyclic graph G = (E,R, l): the nodes
E are the events recorded for the case, the edges R are the relations between the events,
and the function l assigns to each event its event type. Each event is unique and has a
set of attributes; one event belongs to one single execution graph. Fig. 1 shows two ex-
ecution graphs. On the right of Fig. 1, e8, e9, e10 are considered concurrent because, for
example, they have the same timestamps [9]. Let e be an event in an execution graph.
k-predecessors Np

k (e) denotes the set of events from which (1) there is a path in the
execution graph to e and (2) the length of the path is at least 1 and at most k; similar for



k-successors Ns
k(e). In addition, we call the set of events for which there is no path to or

from e the concurrences Nc(e) of e. Moreover, for e′ ∈ Nc(e), we define the distance
distG(e, e′) = 0, in contrast to the traditional graph theory.
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Fig. 1: Two examples of execution graphs.

The k-neighbors Nk(e) of
e is a 3-tuple composed of
the k-predecessors, the con-
currences and the k-successors
of e. For example, as shown
in Fig. 1, N1(e8) = ({e7},
{e9, e10}, {e11}).

Deviations, Mappings and Sim-
ilarity. We consider deviations
as non-conforming behavior that consists of observed events in an execution graph.
The assumption is that such deviating events occur much less frequently and occur in
a highly dissimilar context, e.g. have dissimilar neighbors and locations, since they are
not specified in the normative process. In addition, it would be difficult to find the events
in other cases that are similar and comparable to these deviating events. Therefore, we
compute similar behavior and dissimilar behavior between each two execution graphs
as a mapping: the similar behavior is formed by all pairs of events that are mapped
to each other, whereas events that are not mapped are dissimilar behavior. Formally,
a mapping λ(G,G′) between two execution graphs is a set of binary, symmetric rela-
tions between their events, in which each event is only mapped to one other event.
Fig. 2 exemplifies a mapping between the two execution graphs shown in Fig. 1. For
instance, the mapping in Fig. 2 specifies that e3 and e8 are not mapped, and therefore,
according to this particular mapping, they are dissimilar and show discrepancies be-
tween the two cases. We use λ to refer to the set of events that are not mapped, i.e.
λ(G,G′) = {e ∈ E | ¬ ∃ e′ ∈ E′ : (e, e′) ∈ λ} ∪ {e′ ∈ E′ | ¬ ∃ e ∈ E : (e, e′) ∈ λ}3.

Based on a mapping, we also obtain similar neighbors and dissimilar neighbors
surrounding two events and are able to compare the events more accurately. A pair
of events are more similar, if they share more similar neighbors. For example, using
a mapping, we can derive the similar predecessors and the dissimilar predecessors
of two paired events (e, e′). We refer to the dissimilar predecessors as DNp

k (e, e
′, λ),

where the k indicates the k-predecessors. The same applies to the set of dissimilar
successors DNs

k(e, e
′, λ) and dissimilar concurrences DNc(e, e′, λ). Fig. 2 shows an

example: because events e5 and e11 have respectively {e3, e4} and {e7, e8, e9, e10}
as their 2-predecessors, of which e4 and e10 are paired, therefore DNp

2(e5, e11, λ) =
{e3, e7, e8, e9}. The pair (e5, e11) has two dissimilar successors e6 and e12, but no
dissimilar concurrences as shown in Fig. 2. Hence, DNs

2(e5, e11, λ) = {e6, e12}, and
DNc(e5, e11, λ) = ∅.

Cost Function and Cost Configurations. To evaluate a mapping, we define a cost func-
tion that assesses the similarity between paired events in the mapping. A mapping that
captures more similar behavior is assigned with a lower cost. The mappings with the
minimal cost are the optimal mappings. The cost function is shown in Equation 1 and

3 We omit G and G′ for both λ and λ where the context is clear.



comprises three components costMatched, costStruc and costNoMatch that assess a mapping
as follows. For each pair of events (mapped to each other) in a mapping, costMatched

and costStruc assess their local similarity and global similarity, respectively. Moreover,
costNoMatch assigns a penalty to the mapping for each event that is classified to be dis-
similar (i.e. not mapped). For each component, we assign a weight, i.e. wM , wS, wN .

cost(G,G′, λ) = wM ∗ costMatched(G,G′, λ) + wS ∗ costStruc(G,G′, λ)

+ wN ∗ costNoMatch(G,G′, λ) (1)
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Fig. 2: An example of a mapping specifying similar
and dissimilar behavior.

The function costMatched, de-
fined in Equation 2, helps to as-
sess the similarity between two
events regarding their proper-
ties and their local execution
contexts (in this case their la-
bels and their neighbors). The
more similar, the lower the cost.
Thus, a higher cost is assigned
to prevent two locally dissimilar
events being mapped to each other. In this paper, we only allow two events with the
same label to be mapped to each other, i.e. cost(l(e), l(e′)) = 0 if l(e) = l(e′), other-
wise infinite.

costMatched(G,G′, λ) =
∑

(e,e′)∈λ cost(l(e), l(e′))

+ | DNp
k (e, e

′, λ) | + | DNs
k(e, e

′, λ) | + | DNc(e, e′, λ) | (2)

In addition, the function costStruc(G,G′, λ) =
∑

(p,p′),(e,e′)∈λ
|distG(p,e)−distG′ (p′,e′)|

2
helps to assess how similar two events are with respect to their positions in the global
context of execution graphs. The more similar their positions in the global context, the
lower cost; the cost is high if they are in very different stages of execution graphs.

Futhermore, we define the function costNoMatch(G,G′, λ) =
∑

e∈λ CN+ | Nk(e) |,
which assigns a cost to events that are not mapped and helps to asses when not to map
an event. For example, a higher cost is assigned to a not-mapped event if it is important
and should be mapped. We use the number of neighbors of an event to indicate the
importance in addition to a basic cost CN of not matching an event.

The final cost of a mapping depends on the k (defining the neighbors) and the four
weights wM , wS, wN and CN . A 5-tuple composed of these five numbers is called a cost
configuration of the cost function. The mappings with the minimal cost between two
execution graphs according to a configured cost function are the optimal mappings.

4 Algorithms For Computing Mappings

For computing mappings between execution graphs, we propose two algorithms: one
uses backtracking with a heuristic function and guarantees the return of the optimal
mappings; the other provides no guarantees but runs in polynomial time.



Backtracking and Heuristic Function. The backtracking algorithm uses a heuristic
function to prune our search space. The heuristic function is similar to the cost func-
tion and reuses costMatched, costStruc, and costNoMatch. The same configuration as the cost
function is required to guarantee the lower bound property.

Example heuristic
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Fig. 3: An example of an incomplete map-
ping and the estimated lowerbound cost.

The algorithm starts with an empty
mapping between two cases and then in-
ductively computes the cost of the next
decision, i.e. to consider two events sim-
ilar or not, using the heuristic function.
After making a decision to map two
events, a part of the similar and dissimilar
neighbors of the two events is known, ac-
cording to the mapping so far, for which
the heuristic function uses costMatched to
compute the cost. For the neighbors not yet mapped, the heuristic function estimates
the cost by predicting an optimal situation of a future complete mapping. The optimal
situation means that a maximal set of possibly similar neighbors, i.e. the neighbors that
have the same label and are not mapped yet, becomes similar neighbors. Maximizing
the set of possibly similar neighbors minimizes the set of possibly dissimilar neighbors
(impossible to become similar neighbors in the future) and thus gives us a lower bound
of the unknown part of the cost. Formally, we perform label multiset subtraction of not
mapped neighbors to estimate the lower bound.

Fig. 3 illustrates an incomplete mapping that states e4 and e10 are similar and e9
is dissimilar (i.e. λsofar = {e4 → e10, e9 → ⊥}). If we decide that e5 and e11 are
similar (thus mapping e5 to e11), we obtain their similar neighbors e4 and e10 and
dissimilar neighbor e9 according to the mapping so far. We also identify the possibly
similar neighbors e3 and e8 (both labeled with c and not mapped yet), and possibly
dissimilar neighbors e7, e6 and e12. Thus, the cost returned by costMatched is 1 and the
estimated additional future cost is 3. The cost of structure returns 2 because the distance
from S to e5 is 5, which differs from the distance of 3 between S and e11.

The running time of the back tracking algorithm is O(2n), if each graph contains n
events all with unique labels, because for each event, there is a choice between mapping
the event or not. In the worst case when all events have the same label, the running time
is O((n + 1)!).

Greedy Algorithm. The second algorithm we propose is greedy and runs in polyno-
mial time. The greedy algorithm makes the current optimal choice to map two events or
not. The quality of the algorithm depends heavily on the ordering of the choice that is
made. The idea is to start with finding the “most important and unique” event e (which
has the least probability to be a deviating event or to be matched to another deviat-
ing event); then, select, for e, the current most similar event, if any. As the mapping
becomes more complete, the cost returned by the heuristic function resembles more ac-
curately the cost returned by the cost function, which helps the algorithm to make more
difficult choices later.

For formalizing this “importance and uniqueness”, we introduce the concept of a
k-context and its frequency as an example. A k-context Ck(e) of an event e consists



of the label of e, the labels of its k-predecessors, the labels of its concurrences, and
the labels of its k-successors. Fig. 4 shows three 3-contexts with label a (on the right)
based on the four execution graphs on the left. For example, C3(e5) = C3(e25) =
C3(e35) = (a, [b, c, d], [], [f ,E]). The absolute frequency of a k-context of an event e
is the number of events that have the exact same k-context and is formally defined as
follows. Let G denote a set of execution graphs. For each event e in E of G ∈ G, the
absolute frequency of a k-context is FreqG(Ck(e)) =

∑
G∈G | {e′ ∈ E | Ck(e) =

Ck(e′)} |. For example, FreqFig. 4(a, [b, c, d], [], [f ,E]) = 3. A context having a high
absolute frequency indicates that there is a large set of events sharing the same context
and can be mapped to each other.

To compute a good mapping between two given execution graphs, the greedy algo-
rithm first sorts the nodes (i.e. events) based on the absolute frequencies of their context,
and then simply starts with the “most important” node according to the ordering, and
selects the best match for this node using the heuristic function introduced in the pre-
vious section. This process of making choices is repeated, and the algorithm simply
works through the nodes linearly. Therefore, the running time of the greedy algorithm
is quadratic in terms of the number of events.

5 Deviation Detection Using Mappings

We use the mappings to compute representative execution graphs (regs) of cases and
use them to locate uncommon behavior and identify deviations. A reg can be seen as
an aggregation of a cluster of similar execution graphs and represents one variant of
process execution. Each node of a reg represents a set of similar events; the number
of events a node represent indicates the commonness of this behavior among cases of
the reg. Similarly, each edge depicts a set of similar relations between the events. Fig. 5
shows three regs. As can be seen, a reg resembles a directly follows graph with unfolded
duplicated labels and shows executions of its cases, but the commonness of the nodes
can also be used for detecting deviations and visualizing their positions.

Fig. 5 also shows the process of aggregating execution graphs into a reg which we
refer to as fusion. We compute regs of cases by fusing execution graphs among which all
mappings are consistent regarding all behavior. In other words, the mappings between
a set of execution graphs are consistent when all of them agree with each other about
the similar behaviors. Formally, assuming a set of execution graphs is given, and Λ
denotes the set of all mappings between them: Λ is consistent iff. Λ is transitive, i.e.
for all (e, e′), (e′, e′′) ∈ Λ ⇒ (e, e′′) ∈ Λ. The consistency of guarantees that the
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ordering of fusing a set of similar events (e.g. e, e′, e′′) is irrelevant (thus commutative
and associative). Fig. 5 illustrates a fusion of two regs representing four cases. The
nodes m1 and v1 are fused into n1, meaning that the mappings between them all agree
that the four events are similar. The same holds for the rest of the nodes. Now, assume
that, according to a mapping, one of the events of m1 is actually similar to one of the
events of v4 instead of v1, then the two regs will not be fused. We apply this principle
incrementally by simply fusing the two most similar (groups of) cases indicated by the
cost of their mappings. The algorithm returns a set of regs that can no further be fused.

Deviations are assumed to be uncommon behavior. If the number of events that a
node n in a reg represents is low, it indicates that the behavior rarely occurs among
the cases that are similar. If this number is below a certain threshold T relative to the
maximum number of events represented by another node that has the same label in the
same reg, we classify this node n to be uncommon and the events of n to be deviating.
For example, assuming we have the reg on the right of Fig. 5 and T is 60%, then the
events of nodes n5 and n6 are classified as conforming since they represent the maxi-
mum number of events with respect to their labels g and f , respectively, whereas the one
of n4 is only 50% of the maximum as 2 of 4 (represented by node n1). Thus, the events
of n4 are classified as deviating. Another example, if the two regs shown on the left of
Fig. 5 were not fused due to inconsistency and T is 60%, then all events are classified
as normal behavior; the same for any reg that only represents one execution graph.

6 Evaluation and Results

The proposed deviation detection approach is implemented in the process mining toolkit
ProM4. We conducted controlled experiments to compare our approach to existing ap-
proaches and discuss the results in this section.
Experimental Setup. We compared our approach to other techniques on how accu-
rately deviating events are detected as shown in Fig. 6. Given a log with each event
labeled as deviant or conforming, our approach and existing approaches classify each
of the events as deviating or conforming. Events correctly classified as deviations (based
on the labels) are considered true positives (TP). Similarly, false positives (FP) are con-
forming events that are incorrectly classified as deviations; false negatives (FN) are de-
viating events that are incorrectly classified as conforming events; true negatives (TN)
are correctly classified as conforming events. Based on this, we compute the accuracy
score (abbreviated to acc)5, i.e. acc = (TP+TN)/(TP+TN +FP+FN). For example,
achieving an accuracy score of 0.9 after classifying 10 events means one of the events
is incorrectly classified as deviating (FP) or conforming (FN).

We compared the accuracy of our approach to three existing methods shown in
Fig. 6: (1) classify deviations by checking conformance [1] against the given normative
model; (2) discover a normative model and then apply conformance checking using the
discovered model; (3) first cluster traces to discover a more precise normative model for

4 Both the plugins and the experiments can be found in the TraceMatching package of the ProM.
5 In this paper, we only discuss the accuracy score. However, one may use the confusion matrix and compute the F1 score of

event identification or swap the confusion matrix to compute the F1 score of deviation identification. We have computed
all three, and they have shown similar results.
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Fig. 6: Experiment design: comparing our approach to existing approaches

each process variant, and then check conformance for each cluster of traces against the
corresponding variant model. For conformance checking, we use alignments [1,9]. The
Inductive Miner (IMinf) [8] with filter (from 0.2 to 1.06) is used for discovering models
and the best result is chosen. For clustering, we used the ActiTraC (4 clusters) [5] and
the Generic Edit Distance (GED with 4 and 10 clusters) [2] with standard settings.

We ran this experiment on 1 artificial and 2 real-life logs. In an artificial setting,
an artificial normative model was used to generate a perfect log. For each trace in the
perfect log, we then randomly add kdev deviating events to derive a log with deviations
labeled. The artificial hospital process model in [9] was used for generating event logs.
The generated logs contain 1000 cases, 6590 events, and data-based relations between
events which are used to derive the execution graphs.

For the two real-life logs, i.e. the MUMC and the Municipality (GOV) logs, we
acquired their normative process model and used alignments to label deviating events
(thus (1) achieves an accuracy of 1). The labeled real-life logs are then used to compare
our approach to (2) and (3). The MUMC data set provided by Maastricht University
Medical Center (a large academic hospital in the Netherlands) contains 2832 cases and
28163 events. The Municipality log7 contains 1434 cases and 8577 events.

Results. In the following, we show results organized in the forms of experiments.
Experiment 1: How does our approach perform in comparison to (1), (2) and (3), and
what is the effect of different configurations? Fig. 7 shows the accuracy scores (on
the y-axis) of our algorithms along different configurations (on the x-axis)8. For other
approaches, the accuracy scores remain constant (i.e. the horizontal lines) along our
configurations. Interestingly, using the right configuration (highlighted by boxes), the
backtracking algorithm is able to detect deviating events more accurately than sequen-
tial alignments (1) against the normative model. This is due to the situation in which
two events of the same event type executed consecutively. From these two events, se-
quential alignments cannot find the deviating event, whereas our cost function uses
the neighbors and their relative position in a global structure to distinguish them. Both
backtracking and greedy have higher accuracies than (2) and (3). Another observation
is that a configuration has a strong influence on the accuracy scores since the score
fluctuates along the x-axis. We observe that no weight has a dominant effect on the ac-

6 Using filter from 0.0 to 0.2, IMinf returns a flower model which is the same as classifying all events as conforming.
7
http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6

8 For each case, we added one deviating event resulting in a log with 13.2% deviating events. Repeating this five times, we
show the average acc scores.

http://dx.doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
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Fig. 7: Avg. accuracy scores using data
and compared to existing approaches.
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Fig. 8: Avg. acc scores using the sequen-
tial ordering.

curacy. Some of the configurations that achieve the highest accuracies are the following:
k = 1, cn = 3,wM = wN ≥ wS, e.g. wS = wM = wN = 1 (we write [k1M1N1C3S1] as
a shorthand).

Experiment 2: What is the effect of using sequential orders instead of partial orders
on the scores? Fig. 8 (similar to Fig. 7) shows the acc scores of our approach using
sequential ordering. The acc scores in Fig. 8 show a decrease in backtracking if sequen-
tial ordering is used instead of data-based partial orders. However, we still observe that
our approach can perform better than partially ordered alignments [9] and (2) and (3).
Interestingly, the greedy approach shows that it is less sensitive for the input format;
accuracy is, for some configurations, even higher when using sequential traces.

Experiment 3: What is the effect of different deviation levels? The effects of increasing
the number of deviations from 13.2% up to 43.1% (by increasing kdev) on the accuracy
of identifying deviating events are shown in Fig. 9. For the backtracking and the greedy
approach, we used configuration [k1M1N1S1C3] and configuration [k2M2N1S1C5]
based on the previous results. As can be seen, backtracking [k1M1N1S1C3] with T =
100 performs as well as (1) using sequential alignments. Also, as expected, using the
same configuration but with a lower threshold T = 40, the approach classifies fewer
events as deviating and therefore is less accurate when the level of deviation increases.

Experiment 4: Performance and Scalability. We compute the average running time of
the approach of 5 runs while increasing the average number of events per trace from
6.59 to 10.59. The running time of the greedy algorithm increased only by 78%, from
0.18 min (11.8 sec.) to 0.32 min (19.2 sec.), whereas the backtracking shows an ex-
ponential increase from 2.7 min to more than 3 hours, which is more than 10000%.
The average running time of using ActiTraC together with discovery and alignments
increased from 0.016 min to 0.172 min, showing an increase of 975%. For GED, the
average running time increased by 800%, from about 0.010 min to 0.090 min.

Experiment 5: Different Models and Real-life Logs. For the two real-life logs, the re-
sults are shown in Fig. 10. For the MUMC data set, existing approaches perform better
than our approach. ActiTraC achieves the best accuracy and is about 0.02 higher than
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Fig. 10: Accuracy of different ap-
proaches on real life logs.

our approach. Surprisingly, discovering an imprecise model that allows all activities to
be executed in any order was better than applying our approach. For the GOV data set,
our approach achieves the second best accuracy with 0.002 lower than the ActiTraC
method. Most other approaches perform worse than when classifying all events as con-
forming behavior. This is due to an event class which occurs frequently in the log and
all occurrences are deviations. Techniques (2) based on discovery only are unable to
detect these deviations.

7 Discussion and Conclusion

In this paper, we investigated the problem of detecting deviating events in event logs. We
compared existing techniques, which either use or construct a normative model to detect
deviations via conformance checking, with a new technique that detects deviations from
event logs only. The result of our evaluation shows four interesting observations.

Firstly, when the deviations are less structured and the dependencies between events
are precise, we can detect deviations as accurately as performing conformance checking
using a precise normative model. This indicates that our cost function is indeed able
to distinguish individual events and accurately identify similar and dissimilar behavior.
However, we also observe that the accuracy of our approach depends heavily on the way
the cost function is configured. Some possible solutions to ease choosing a configuration
could be: (1) normalizing the cost function (e.g. one divided by each components);
(2) having predefined criteria or configurations such as “matching as many events as
possible”; (3) showing visual mappings between events, allowing the users to select the
right ones, and ranking configurations accordingly.

Another interesting observation is that, using the cost function, the backtracking
algorithm performs worse than the greedy approach for sequential traces. This may
suggest that the current definition of neighbor and structure is too rigid for sequential
ordering of concurrent events. One may consider the union of predecessors, concur-
rences and successors as the neighbor of an event, instead of distinguishing them.

We also observer that when deviations are frequent and more structured, our ap-
proach achieves slight lower accuracy than existing approaches. However, all approaches



performed rather poorly on the real life data sets. One way to improve this is to conduct
“cross checking” between different process variants using the mappings between regs
to find frequent deviations that occur in one variant but not in others. Still, all current
approaches have difficulty in detecting very frequent deviations, when no normative
model is available, as shown by the results for GOV data sets.

A interesting challenge is to use mappings for detecting other deviations such as
missing events. Detecting some events are missing may be simple (e.g. frequent but
incomplete nodes in regs), whereas the deduction of the exact events that are missing
only from an event log appears to be much more difficult. In any cases, it is possible to
implement many other deviation classifiers using regs, or to use the computed costs of
mappings as a measure of similarity for clustering traces and detecting deviating traces
instead of events. Future research will be aimed at investigating these possibilities, dif-
ferent cost functions, and the use of regs for improving process discovery.
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