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Abstract. Process mining is an emerging discipline whose aim is to discover,
monitor and improve real processes by extracting knowledge from event logs
representing actual process executions in a given organizational setting. In this
light, it can be applied only if faithful event logs, adhering to accepted standards
(such as XES), are available. In many real-world settings, though, such event
logs are not explicitly given, but are instead implicitly represented inside legacy
information systems of organizations, which are typically managed through rela-
tional technology. In this work, we devise a novel framework that supports domain
experts in the extraction of XES event log information from legacy relational
databases, and consequently enables the application of standard process mining
tools on such data. Differently from previous work, the extraction is driven by a
conceptual representation of the domain of interest in terms of an ontology. On
the one hand, this ontology is linked to the underlying legacy data leveraging
the well-established ontology-based data access (OBDA) paradigm. On the other
hand, our framework allows one to enrich the ontology through user-oriented log
extraction annotations, which can be flexibly used to provide different log-oriented
views over the data. Different data access modes are then devised so as to view
the legacy data through the lens of XES.

Keywords: multi-perspective process mining, log extraction, ontology-based data ac-
cess, event data

1 Introduction

Process mining aims to discover, monitor and improve real processes by extracting
knowledge from event logs readily available in today’s information systems [13]. Dozens
(if not hundreds) of process-mining techniques are available and their value has been
proven in various case studies [9]. Process mining techniques can be used to discover the
real process, to detect deviations from some normative process, to analyze bottlenecks
and waste, and to predict flow times [13]. Normally, “flat” event logs serve as the starting
point for process mining [13,14]. These logs are created with a particular process and
a set of questions in mind. An event log can be viewed as a multiset of traces. Each
trace describes the life-cycle of a particular case (i.e., a process instance) in terms of
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case id timestamp activity resource cost
654423 30-04-2014:11.02 register request John 300
654423 30-04-2014:11.06 check completeness of documents Ann 400
655526 30-04-2014:16.10 register request John 200
654423 30-04-2014:11.18 prepare decision Pete 400
· · · · · · · · · · · · · · ·

Table 1: A fragment of an event log: each line corresponds to an event

the activities executed. Often event logs store additional information about events. E.g.,
many process-mining techniques use extra information such as the resource (i.e., person
or device) executing or initiating the activity, the timestamp of the event, or data elements
recorded with the event (e.g., the size of an order). Table 1 shows a small fragment of a
larger event log. Each row corresponds to an event. The events refer to two cases (654423
and 655526) and have additional properties, e.g., the registration for case 654423 was
done by John at 11:02 on 30 April 2014 and the cost was 300e. An event may also
contain transactional information, i.e., it may refer to an “assign”, “start”, “complete”,
“suspend”, “resume”, “abort”, etc. action. For example, to measure the duration of an
activity it is important to have a start event and a complete event. We refer to the XES
standard [10] for more information on the data possibly available in event logs. See [14]
for logging guidelines and details on getting event data from databases using redo logs.

It is apparent that a condition sine qua non for the application of process mining
is the availability of faithful event logs, adhering to accepted standards (such as XES)
and guaranteeing a certain quality level [15]. In many real-world settings, though, such
event logs are not explicitly given, but are instead implicitly represented inside legacy
information systems of organizations, which are typically managed through relational
technology. This calls for the need of suitable methodologies, techniques and tools for
extracting event logs from relational databases. This problem is extremely challenging,
as pointed out in Chapter 4 of [13], which overviews the different problems encountered
when extracting event data. On the one hand, this extraction process spans across several
levels of abstractions: from the high-level, namely the domain-independent notions
which are characterized at the conceptual level by the so-called domain ontology, and
coming down to the concrete level at which data are effectively stored. On the other
hand, there is no such a notion of “single” event log, but multiple event logs can be
obtained by focusing on the dynamics of different domain entities. For example, in many
applications there is not a single instance (case) notion. This is addressed in the context
of artifact-centric process mining [5].1 Various tools for event log extraction have been
proposed, e.g., XESame [16] and ProMimport [8]. Moreover, commercial tools like
Disco make it easy to convert a CSV or Excel file into a XES log. In [14] it is shown
how event data can be extracted from the redo-logs of a database. However, none of
the tools and approaches actually puts the domain ontology in the loop. As a result, the
extraction is often ad-hoc, data is duplicated for different views, and the semantics of the
resulting event log cannot be traced back. Furthermore, the extraction cannot be driven
by experts of the domain who do not have any technical knowledge about the underlying
information systems and concrete storage mechanisms. Some work has been done on
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semantically annotated event logs [4]. However, these approaches do not consider the
extraction of event data. Their focus is on exploiting ontological information during
analysis.

In this work, we overcome these issues by proposing a novel framework that supports
domain experts in the extraction of XES event log information from legacy relational
databases, and consequently enables the application of standard process mining tools
on such data. Differently from previous work, the extraction is driven by a conceptual
representation of the domain of interest in terms of an ontology. This ontology is linked
to the underlying legacy data leveraging the well-established ontology-based data access
(OBDA) paradigm [11,1]. In this way, domain experts can focus on the ontological
level only, while the connection with the underlying data is automatically managed by
the OBDA system. Notably, after more than a decade of foundational investigation [3],
OBDA systems relying on lightweight description logics [1] are now subject to extensive
implementation efforts [2,12], so as to make them able to manage huge amounts of
data [7]. To leverage OBDA in the context of event log data extraction and access,
our framework allows one to enrich the ontology through user-oriented log extraction
annotations, which can be flexibly used to provide different log-oriented views over the
data. Once these annotations are specified, we show how it is possible to automatically
construct a direct link from the raw relational data sources to a general-purpose ontology
that captures the XES standard. This, in turn, provides the basis for the process mining
algorithms to extract this information either by materializing it explicitly, or by accessing
it on-demand. The framework has been implemented in a prototype ProM2 plug-in that
relies on the state-of-the-art OBDA system Ontop3. The full code with a tutorial and
examples, is available at http://tinyurl.com/op6y82s.

2 Problem Overview

To describe the problem we want to attack and introduce the main technical challenges
towards its solution, we informally discuss a real-world example. John, the owner of a
conference submission web portal, is interested in applying process mining techniques
on the historical system data. His goal is to better understand how the different users of
the system actually use it, and consequently take strategic decisions on how to restructure
the portal and improve its functionalities.

As it is typical in contemporary organizations, the relevant knowledge used by John
and the other members of his company to understand the application domain, is captured
through a conceptual schema (such as a UML class diagram). We call such a schema
a domain ontology. This ontology provides a high-level, shared conceptual view of
the domain. In John’s case, it contains the relevant concepts and relations that must
be captured in order to manage a conference. A fragment of this knowledge is shown
in Figure 1 (for the moment, we ignore the colored annotations). However, the actual
data are not maintained at this level of abstraction, but are instead stored inside an
underlying relational information system. Figure 2 provides the excerpt of a possible
relational database keeping track of papers and authors. At this level, data are hardly
understandable by John. First, the vocabulary and the organization of the data radically

2 http://www.processmining.org/prom/start
3 http://ontop.inf.unibz.it/
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Fig. 1. Domain ontology of the conference submission portal in UML, with annotations to track
the dynamics of BPM 2015 papers

LOGIN

ID User
5 Alifah
6 Marco
2 Diego
3 Wil

LOGINSTATS

User CT LastAccess
5 15.10.14 15.03.15
6 17.10.14 20.03.15
2 18.10.14 20.03.15
3 18.10.14 18.03.15

PUB

ID Title CT User Conf Type Status
151 Mining 09.11.14 5 5 FP R01
127 Monitoring 10.02.15 3 32 SP A03
945 OBDA 13.03.15 2 21 FP S02
724 BPM 15.03.15 3 56 FM A02

Fig. 2. Excerpt of a possible instance of the conference submission information system

depart from that of the domain ontology, due to design and implementation choices made
by the IT staff of the company. Second, internal codes with an implicit semantics are
employed, like in the Status column of the PUB table (which tracks whether a publication
has been submitted, reviewed, accepted, . . . ) or in the Type column of the same table
(which tracks whether the publication is a full/short paper, a front matter, or other).
This so-called impedance mismatch is a challenging problem that has been thorougly
investigated in the field of intelligent data access and integration [11].

When John wants to apply process mining techniques on this complex information
system, he does not only face the impedance mismatch problem, but also the equally
challenging problem of “process-orientation”: the underlying data must be understood
through a conceptual lens that is different from the domain ontology, and that focuses on
the process-related notions of trace, event, resource, timestamp, and so on. In other words,
John needs to extract an event log that explicitly represents the dynamics John wants
to analyze. In this paper, we consider XES as the reference standard for representing
event logs. This problem becomes even more diffcult if one considers that, in general,
a plethora of different event logs may be extracted from the same data, by changing
perspective and by focusing on the evolution of different entities. For example, John
could decide to analyze his data by following the submission and review of papers within
or across conferences, or he could focus on users and the operations they execute to
submit and review papers.

In this light, supporting John requires to solve three technical problems: 1. How
can John overcomes the impedance mismatch between the domain ontology and the
underlying data? 2. How can John captures the connection of the domain ontology and
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Fig. 3. Domain ontology annotations to track the dynamics of users

the representation of an event log, depending on the dynamics he wants to track? 3. How
can John finally obtains a view of the low-level data in terms of a corresponding event
log? In this work, we tackle this overarching problem by resorting to a novel combination
of techniques coming from intelligent data access and integration, extended and adapted
to the case of process mining and flexible extraction of multi-dimensional event logs
from raw relational data. To attack the first problem, we resort to the well-established
OBDA framework, which allows one to link the raw data to the domain ontology and
overcome the impedance mismatch [11,1]. To tackle the second challenge, we define an
event log ontology that mirrors XES, and provide an annotation language to the user,
which makes it possible to capture semantic links between the constitutive (combinations
of) elements in the domain ontology, and corresponding elements in XES. John could
employ this annotation language to enrich the domain ontology of Figure 1, ultimately
producing the two schemas illustrated in Figure 1 itself and in Figure 3. In particular,
Figure 1 declares that each trace is related to the evolution of a single paper submitted to
the BPM 2015 conference, and that meaningful events in a trace are paper submissions,
reviews, final decisions, and upload of the camera-ready version. Figure 3 declares
instead that each trace tracks the operations of a user, and that meaningful operations
are paper submissions, reviews, and final decisions (to be listed both in the trace of the
person chair who took the decision, and the paper creator who received it). The third
problem is finally solved by automatically establishing a direct bridge from the low-level
relational data to the event log ontology, in a way that is completely transparent to the
user. The user can then access the event log with different modalities, and apply process
mining without knowing how traces, events, and attributes are concretely stored in the
underlying information system.

3 Preliminaries

We introduce some necessary background material, namely the description logic (DL)
DL-LiteA and the ontology-based data access (OBDA) framework. To capture domain
ontologies, we use the DL-LiteA language [1]. This allows for specifying concepts,
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representing sets of (abstract) objects, roles, representing binary relations between
objects, and attributes, representing binary relations between objects and (domain)
values. The syntax of concept expressions (B) and role expressions (R) in DL-LiteA is:

B −→ N | ∃R | δ(U) R −→ P | P−

Here, N , P , and U respectively denote a concept name, a role name, and an attribute
name, and P− denotes the inverse of role P . The concept ∃R, also called unqualified
existential restriction, denotes the domain of a role R, i.e., the set of objects that R
relates to some object. Notice that ∃P− actually denotes the range of role P . Similarly,
the concept δ(U) denotes the domain of an attribute U .

A DL-LiteA ontology is a pair (T , A), where T is a TBox, i.e., a finite set of TBox
assertions, and A is an Abox, i.e., a finite set of ABox assertions. DL-LiteA TBox
assertions have the following form:

B1 v B2

B1 v ¬B2

R1 v R2

R1 v ¬R2

U1 v U2

U1 v ¬U2

(funct R)
(funct U)

In the first three columns, assertions of the first row denote inclusions between concepts,
roles, and attributes, respectively; assertions of the second row denote disjointness.
Assertions of the last column denote functionality on roles and attributes, i.e., that every
object in the domain of R/U is related via R/U to at most one other object/value.

DL-LiteA ABox assertions are used to express extensional knowledge about specific
objects and values in the domain of interest. They have the form N(t), P (t, t′), or
U(t, v), where t and t′ denote individual objects and v denotes a value.

The semantics of DL-LiteA is given in [1]. Interestingly, DL-LiteA TBoxes are
suitable to formally capture the semantics of UML class diagrams (with the exception of
covering constraints in a class hierarchy) [1]. Consequently, whenever we talk about a
DL-LiteA domain ontology, we can always imagine that the intensional knowledge of
such an ontology can be modelled and graphically rendered in UML.

Example 1. Let Paper and User be DL-LiteA concepts, creator and author roles, and pCT
and uCT attributes (corresponding to the creation time of a paper and of a user respectively). The
following DL-LiteA TBox captures a portion of the UML domain ontology shown in Figure 1:

∃creator v Paper
∃creator− v User

Paper v ∃creator
(funct creator)

∃author v Paper
∃author− v User

Paper v ∃author

δ(pCT ) v Paper
Paper v δ(pCT )

δ(uCT ) v User
User v δ(uCT )

The first column captures the semantics of the creator UML association, where the first two rows
capture the typing of the association, the third row the fact that every paper must have a creator,
and the fourth that every paper has at most one creator. Collectively, the last two assertions capture
the 1 cardinality of the association from the perspective of the paper class. The second column
captures the semantics of the author UML association. The third column instead deals with the
creation time attributes for papers and users.

To interact with the domain ontology, we make use of queries. As typical in DLs,
to query a DL-LiteA ontology we make use of conjunctive queries (CQs) and union
thereof (UCQs). CQs are first-order queries that corresponds to the well-known SPJ
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(select-project-join) queries in SQL. Syntactically, we specify UCQs using SPARQL,
the standard ontology query language for the Semantic Web.
Ontology-Based Data Access. In an OBDA system, a relational database is connected
to an ontology that represents the domain of interest by a mapping, which explicitly
accounts for the impedance mismatch by relating database values with values and
(abstract) objects in the ontology (c.f. [1]).

Technically, we consider a countably infinite set V of values and a set Λ of function
symbols, each with an associated arity. Intuitively, function symbols are used to construct
an abstract object in the ontology from a combination of values in the underlying database.
We also define the set C of constants as the union of V and the set {f(d1, . . . , dn) | f ∈
Λ and d1, . . . , dn ∈ V} of object terms.

Formally, an OBDA system is a structure O = 〈R, T ,M〉, where: (i) R =
{R1, . . . , Rn} is a database schema, constituted by a finite set of relation schemas;
(ii) T is a DL-LiteA TBox; (iii) M is a set of mapping assertions, each of the form
Φ(~x) Ψ(~y,~t), where: (a) ~x is a non-empty set of variables, (b) ~y ⊆ ~x, (c) ~t is a set of
object terms of the form f(~z), with f ∈ Λ and ~z ⊆ ~x, (d) Φ(~x) is an arbitrary SQL query
over R, with ~x as output variables, and (e) Ψ(~y,~t) is a set of atoms over the variables
~y and the object terms ~t, whose predicate symbols are atomic concepts, atomic roles,
and attributes of T . Without loss of generality, we use the special symbol val/1 to map
values from the relational layer to the range of attributes in the semantic layer.

Each mapping assertion creates a link between the database and the ontology, ex-
pressing how instances of the involved concepts/roles are obtained from the answers of
queries posed over the database. We ground this definition to our running example.

Example 2. Consider an OBDA framework devised to link the database shown in Figure 2 to the
ontology in Figure 1. Suitable mapping assertions must be devised so as to interconnect these two
information layers. We consider the definition of User and Paper , with their creation times. One
could argue that a paper can be extracted from the PUB table, by considering only those entries that
have type FP or SP (respectively denoting full and short papers). This is captured by the following
mapping assertion (p/1 constructs a publication object from its identifier in the database):

SELECT ID ,CT FROM PUB WHERE CT=’FP’ OR CT=’SP’
 {Paper(p(ID)), pCT (p(ID), val(CT ))}

A user and his/her system creation time are extracted by joining LOGIN and LOGINSTATS tables:

SELECT L.User ,S .CT FROM LOGIN L, LOGINSTATS S WHERE L.ID=S .User
 {User(u(L.User)), pCT (u(L.User), val(S .CT ))}

where u/1 constructs a user object from its username in the database.

A UCQ q over an OBDA system O = 〈R, T ,M〉 is simply a UCQ over T . To
compute the answers of q over O wrt a database instance D over R, two approaches
can be followed. In the first approach, which we call materialization, query answering
consists of two steps. In the first step, an ABox is explicitly materialized starting from
D and by applying the mapping assertions in a forward way. In particular, the ABox
generated from D by a mapping assertion m = Φ(x)  Ψ(y, t) in M is m(D) =⋃
v∈eval(Φ,D) Ψ [x/v], where eval(Φ,D) denotes the evaluation of the SQL query Φ over

D. Then, the ABox generated from D by the mappingM isM(D) =
⋃
m∈Mm(D).

In the second step, the query is posed directly over the domain ontology 〈T ,M(D)〉.
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Fig. 4. General event ontology

In the second approach, which we call on-demand, the data are kept in D and no
further information is explicitly materialized. Instead, the input query q is subject to
a multi-step reformulation approach, which: (i) compiles away T ; (ii) unfolds the
components of the obtained query by applyingM. This produces a corresponding SQL
query that can be posed directly over the underlying database [11]. The answers are then
computed and returned in the form of ontological objects. Notably, the two approaches
yield the same answer, and can be therefore be interchangeably applied.

4 Log Extraction Framework

Our log extraction process is organized in two phases:
1. the design phase, in which a domain expert specifies how to view the domain

ontology using the lens of an event ontology for XES;
2. the data access phase, in which the result of the first phase is applied over actual

data, so as to obtain a corresponding event log that is then accessed by domain
experts or process mining algorithms.

In this section, we focus on the design phase. Data access is discussed in Section 5.
The purpose of the design phase is to support a domain expert in the annotation of a
domain TBox given as input, so as to properly link it to the event ontology that captures
XES. Notice that the domain expert is not required, in this phase, to employ actual data,
nor to have any specific knowledge about how such data are stored inside the company
information system.

Specifically, we discuss how XES has been modeled as a DL-LiteA TBox, and then
focus on the language and modeling language to annotate the domain TBox, implicitly
establishing a link with the XES TBox.
The XES Event Log TBox. We carefully analyzed the documentation of XES [10],
and consequently derived the DL-LiteA TBox X , rendered in Figure 4 as a UML class
diagram. This TBox is fixed once and for all in our framework, and does not depend on
the modeled domain. Beside the standard XES elements of Trace , Event , and Attribute ,
we also consider the following sandard extensions: (i) Concept extension (to assign a
name to events); (ii) Time extension (to assign a timestamp to events); (iii) Lifecycle
extension (to link the event type to the XES transactional model); (iv) (optionally)
Organizational extension (to link an event to its responsible resource).
Annotations. Annotations are defined by a domain expert to link a domain-specific
DL-LiteA TBox T to the generic XES TBox X . Intuitively, they take the form re-
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ported in Figures 1 and 3. Technically, a log annotation over T , written LT , is
a pair 〈Φtr(t, l), E〉, where Φtr(t, l) is a trace annotation, i.e., a SPARQL query
expressing how to extract traces (and their corresponding log) from T , and E
is a set of event-attribute annotations. Each event-attribute annotation is a tuple
〈Φev(~e, t), Φts(ts, ~e), Φn(n,~e), [Φ1

a(v1, a1, c1, ~e), . . . , Φ
k
a(vk, ak, ck, ~e)]〉 of SPARQL

queries over T , where: (i) query Φev(~e, t) is an event annotation, i.e., a SPARQL
query extracting events from T , together with the trace they belong to; (ii) queries
Φts(ts, ~e) and Φn(n,~e) bind events to the two mandatory attributes of timestamp and
activity name (and are consequently called timestamp and name annotations); (iii) each
query Φia(vi, ai, ci, ~e) (with i ∈ {1, . . . , k}) is an attribute annotation that extracts
the value(s) vi of an attribute of type ai and with key ci, binding it/them to event ~e.
Attribute annotations are optional. Among all possible attributes, they can be used to
extract the responsible resource for an event, or its transactional lifecycle type (cf. the
XES Organizational and Lifecycle extensions). Obviously, different guidelines and
constraints apply to the different queries in LT . We discuss this issue in the following.

Note that each query in LT is centred around a concept/role/attribute of T . Hence, it
is straightforward to ideally “attach” an annotation to the corresponding element in T .
Trace Annotations. A trace focuses on the evolution of an entity/object over time. In
Figure 1, the focus is on the evolution of papers, whereas in Figure 3 it is on users.
In general, a trace can be annotated only by selecting a concept in T , possibly adding
further conditions on which members of such concept give raise to a trace. Technically,
this means that in Φtr(t, l), t must be bound to a concept of T . For example, the trace
annotation in Figure 1 can be formalized as:

SELECT ?t "BPM15-papers-log"
WHERE {?t a:Paper; :submittedTo ?conf.

?conf a:Conference. FILTER regex(?conf,"BPM 2015","i").}

where "BPM15-papers-log" identifies the log l we are constructing.
Event Annotations. Event annotations differ from trace annotations in two respects.
First of all, any element of T may be subject of an event annotation: not only concepts,
but also relations and attributes. The arity of the corresponding SPARQL query then
depends on which element is targeted: if it is a concept, than a single event variable will
be used; it if is a relation or an attribute, two variables will be employed, matching with
the involved subject and object. Second, to be a valid target, such an element must be
“timed”, i.e., either directly or undirectly univocally associated to exactly one timestamp
attribute, and have a unique name. To check whether this property is guaranteed or not,
one could pose its corresponding SPARQL query over the input OBDA system, and
verify that, for each event, exactly one timestamp and one name is returned. By referring
again to Figure 1, the indication that a submission upload is an event is captured by:

SELECT ?e ?t WHERE {?e a:UploadSubmitted; :has? t. ?t a:Paper.}

Note that event annotations always have event and trace variables as distinguished
variables, establishing a correspondence between the returned events and their traces.
Also notice that a single variable is used for the event, since it is extracted from a concept.
Timestamp and Name Annotations. We consider two mandatory attributes: a times-
tamp and an activity name. Both of them are distinguished variables in the SPARQL
query together with its event. As pointed out before, each event is required to be asso-
ciated with exactly one timestamp and exactly one name. Obviously, in general many
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different possibilities exist. For example, in Figure 1 it is apparent that the submission
time associated to a submission upload may be the upload time of the upload itself, or
the creation time borrowed either from User by navigating the uploadBy relation, or
from Paper by navigating the has relation. As for the activity name, the most typical
situation is the one in which the name is directly bound to an explicitly specified string.
However, in general one could construct such a name by navigating through T and even
composing the name by concatenating together strings and query results. As for the
timestamp, three annotation patterns typically emerge. We discuss each of them.
1. Concept with single timestamp. The timestamp attests that the concept is directly
timed, and therefore the concept itself is marked as an event. This is the case, e.g., for
the submission upload in Figure 1.
2. Concept with pre-defined multiple timestamps. This pattern emerges whenever there
are objects that flow through different “phases” over time. For example, a cart may be
associated to a pre-defined set of timestamps, such as the creation time, the finalization
time, and the payment time. Each of such timestamps represent a specific phase transition,
and some of such timestamps may be null (this is the case, e.g., for a cart that has been
created but not finalized). Each phase transition could be singled out as a relevant event,
by annotating the corresponding timestamp attribute.
3. Variable CRUD timestamps. This situation arises whenever a certain concept/relation
is subject to many different operations over time, whose number is not known a priori.
For example, objects may have create, read, update, delete actions related to them, and
there can be any number of actions related to the same object, e.g., multiple updates.
Similarly, there may also be create and delete actions for relations. If we imagine to
have an “operation table”, containing the different operation types and the corresponding
object identifiers (each denoting the object over which an operation is applied), then
such a table will be annotated as an event, whose name depends on the operation type.
Optional Attribute Annotations. Optional attributes are annotated by using specific
SPARQL queries having, as distinguished variables: (i) the attribute type, (ii) its key,
(iii) its value, (iv) the variables of the corresponding event.

5 XES Log Extraction and Access

In Section 4, we have shown how a domain expert can annotate a domain DL-LiteA TBox
so as to express how to conceptually identify traces, events and their attributes starting
from the domain concepts, relations and attributes. We now show how such annotations
can be employed so as to make the framework operational. We assume to have, as input,
not only a domain TBox, but also an entire OBDA system, previously prepared to link
the domain TBox with the corresponding underlying relational database. This process is
completely independent from process mining-related interests. Hence, the overall input
for our log extraction framework is an OBDA system O = 〈R, T ,M〉. After the design
phase, we also have a log annotation LT for T . To make the framework operational and
effectively get the data contained in a concrete instance D of the company databaseR,
we proceed in two steps: (i) The annotations are used to automatically create a new
OBDA system that links the company database R to the XES TBox X , according to
the semantics of annotations in LT . (ii) This OBDA system is exploited to access the
concrete data in D through the conceptual lens of X , following the materialization or
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the on-demand paradigm (cf. Section 3). We focus on both aspects, discussing how
they have been implemented using ProM as process mining infrastructre, OpenXES as
reference implementation for XES, and Ontop for OBDA.
Automatic Generation of Schema-to-XES Mapping Assertions. Given an OBDA
system O = 〈R, T ,M〉 and a log annotation LT for T , we automatically construct a
new OBDA systemOlog = 〈R,X ,Mlog〉 that directly links schemaR to the XES TBox
X . This is done by iterating through the annotations present in LT , and by transforming
each annotation into a corresponding mapping assertion in Mlog. Intuitively, this is
done as follow. Let Φ(~x) be the SPARQL query associated to one of the annotations
in LT . We first reformulate Φ(~x) as a corresponding SQL query Q(~x) directly posed
overR. We then construct a mapping assertion of the form Q(~x) Ψ(~y,~t), where Ψ
is a set of atoms over X , built according to the semantics of the annotation. Since we
have 5 kinds of annotations (for trace, event, event timestamp, event activity name, event
attributes), 5 corresponding translation rules must be provided do as to generate such
mapping assertions. As an example, we consider the case of the trace annotation Φtr(t, l)
in LT . The corresponding mapping assertion to be inserted inMlog is:

Q(t, l) 

LcontainsT (log(l), tr(t)),TcontainsA(tr(t), attr(t)),
keyAttribute(attr(t),"concept:name"),
valueAttribute(attr(t), t), typeAttribute(attr(t),"literal")


where Q(t, l) is the SQL query corresponding to Φtr(t, l), and specific unary function
symbols are used to contruct the abstract objects of log, trace, and attribute, out from the
flat values for t and l. The first line defines the relationships between the log log(l) and
the trace tr(t), as well as between tr(t) and an attribute generated for it. Note that there
is no need to explicitly assert the concepts to which these three objects belong, as all
relations are typed in X . The features of the trace attribute are fixed in the second and
third line, which model that value t is a literal that constitutes the name of tr(t).
Data Access. Once the OBDA system 〈R,X ,Mlog〉 has been obtained, the data con-
tained inR (D henceforth) can be “viewed” and accessed through the lens of the XES
ontology X thanks toMlog. We support in particular two access modes, which have
been effectively implemented. The first mode is the XES log materialization mode,
and consists in concretely materializing the actual event log in the form of the ABox
Mlog(D), using Ontology-Based Data Access procedure. This ABox is then automati-
cally serialized into an XML file that is fully compliant with the XES standard. Multiple
XES logs can be seamlessly obtained by just changing the annotations. This mode has
been implemented as a ProM 6 plug-in. It currently supports only a textual specification
of the ontology and the annotations, but we are working on a GUI that exposes the
domain TBox as a UML class diagram, and allows the user to visually annotate it.

The second mode is the on-demand access. With this approach, do not useMlog to
concretely materialize the log, but we maintain the data in D, and reformulate queries
posed over X as SQL queries directly posed over D. In this light, the XES log only
“virtually” exists: no redundant copy of the data is created, and log-related information is
directly fetched from D. Since the caller does not perceive any difference when adopting
this strategy or the other one, process mining algorithms can seamlessly exploit both
techniques without changing a line of code. This mode has been realized by providing
a new implementation of the OpenXES interface, used to access XES logs from JAVA.
The implementation combines the on-demand OBDA approach with the well known
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design pattern of lazy loading [6], which intutively indicates to defer the initialization
of an object to when it is needed. In particular, the JAVA side does not really maintain
in memory the whole log, but when a portion of the log is needed by the requester, it is
lazily constructed by issuing a query to the underlying database.

6 Conclusions

We have proposed a novel methodology and technology to flexibly extract event logs
from legacy, relational data sources, by leveraging the ontology-based data access
paradigm. This is especially useful for multi-perspective process mining, since event logs
reflecting different views of the same data can be obtained by just changing the ontology
annotations. Our framework enables the materialization of event logs from legacy data, or
the possibility of maintaining logs virtual and fetch log-related information on-demand.
We are currently following three lines of research: (i) application of the framework
to real-world case studies; (ii) improvement of the framework with visuali interfaces;
(iii) benchmarking of the different data access strategies.
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