Using Life Cycle Information in Process Discovery

Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

Eindhoven University of Technology, the Netherlands
{s.j.j.leemans, d.fahland, w.m.p.v.d.aalst} @tue.nl

Abstract Understanding the performance of business processes is an important
part of any business process intelligence project. From historical information
recorded in event logs, performance can be measured and visualized on a dis-
covered process model. Thereby the accuracy of the measured performance, e.g.,
waiting time, greatly depends on (1) the availability of start and completion events
for activities in the event log, i.e. transactional information, and (2) the ability to
differentiate between subtle control flow aspects, e.g. concurrent and interleaved
execution. Current process discovery algorithms either do not use activity life
cycle information in a systematic way or cannot distinguish subtle control-flow
aspects, leading to less accurate performance measurements. In this paper, we
investigate the automatic discovery of process models from event logs, such that
performance can be measured more accurately. We discuss ways of systemati-
cally treating life cycle information in process discovery and their implications.
We introduce a process discovery technique that is able to handle life cycle data
and that distinguishes concurrency and interleaving. Finally, we show that it can
discover models and reliable performance information from event logs only.

Keywords: process mining, process discovery, performance measurement, rediscover-
ability, concurrency

1 Introduction

One of the central tasks in business process intelligence is to understand the actual per-
formance of a process and the impact of resource behaviour and process elements on
overall performance. Event data logged by Business Process Management (BPM) sys-
tems or Enterprise Resource Planning (ERP) systems typically contains time stamped
transactional events (start, completion, etc.) for each activity execution. Process mining
allows to analyse this transactional data for performance. Typically, first a model of the
process is discovered, which is then annotated with performance information.

Performance information might consist of several measures, for example service
time (the time a resource is busy with a task), waiting time (the time between an activity
becoming enabled and a resource starting to execute it), sojourn time (the sum of both)
and synchronisation time (for concurrent activities, the time between completion of the
first and completion of the last).

Figure [Ta]shows an example process in some imaginary hospital: after an initial ex-
amination (1), tissue samples are investigated in a laboratory (I). Meanwhile, the patient
undergoes two tests: an x-ray (X) and an mri (m) test. When all tests are completed, the

2 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

0 time 5 10 15 20

(b) A trace. The dashed lines denote waiting
(a) A Petri net modeling a process. time. The solid lines denote service time.

Figure 1: A process with concurrency and interleaving and a trace.

patient meets the doctor for a final time (f). Figure [Ib]shows a patient (a frace) of this
process where each activity is logged as an interval of a start (s) event and a complete
(c) event; the dashed lines denote waiting time. The patient cannot perform the x and
m tests at the same time, i.e. they are interleaved (due to place p), thus the waiting time
before m starts after the completion of x. In contrast, the lab test [can be executed
independently of the z and m tests, i.e. they are concurrent, so the waiting time before
[starts at the completion of 7 (waiting time starts at the last time ¢ became enabled).
Without knowledge of the model, the waiting time of | cannot be positioned properly
and thus waiting, sojourn and synchronisation times will be measured incorrectly: The
waiting time is 9 — 2 = 7 time units rather than 9 — 8 = 1 unit. Therefore, in or-
der to reliably compute performance measures, a process model is required to provide
information on concurrency and interleaving.

The difficulty in discovering concurrency lies in the event logs: Most process dis-
covery algorithms [[14/19116/215] assume that the event log contains events represent-
ing atomic executions of activities. On atomic task executions, concurrency and inter-
leaving cannot be distinguished, and more information is required. In this paper, we
assume that the event log contains examples of non-atomic executions of activities, i.e.
for each activity instance the start and the completion time is known. The XES stan-
dard [8]] is often used as an input format for event logs and supports this with the life-
cycle:transition extension. Several process discovery techniques exist that take transac-
tional data into account, such as Tsinghua-a (Ta) [20], Process Miner (PM) [[17]. and
several other approaches [419]. Unfortunately, none of these distinguishes concurrency
and interleaving, and most [20/419]] do not guarantee to return sound models, i.e. without
deadlocks or other anomalies; both of which are prerequisites for reliable computation
of performance measures.

In the remainder of this paper, we first study the impact of transactional data on
event logs and models. Second, we elaborate on the problem of incomplete/inconsistent
transactional data in event logs and give a way to repair such event logs (Section [3). and
we introduce an abstraction (collapsed process models) that enables reasoning about
such data (Section). Third, we introduce a new process discovery algorithm based
on the Inductive Miner (IM) framework [12]] that uses this information to discover col-
lapsed process models (Section [5). The new algorithm faces two challenges: first, the
transactional data must be handled correctly; and second, it should distinguish concur-
rency from interleaving. In Section[6] we illustrate its functioning, study of the impli-
cations of this abstraction on any process discovery algorithm and on existing model
quality measures, and discuss related work; Section [/|concludes the paper.

Using Life Cycle Information in Process Discovery 3

2 Transactional Information in Event Logs

A trace is a sequence of events, denoting for a case, e.g. a customer, what process steps
(activities) were executed for that case. Events may carry additional attributes, such
as timestamps and a transaction type. The latter indicates whether the activity started,
completed, etc. An activity instance is the execution of an activity in a trace, and may
consist of a start event and a completion event, as well as events of other transaction
types. For instance, t = (all%9 ql1:53 p1203 p12:50% denotes a trace of 4 events: first,
an instance of activity a was started, second, an instance of a completed, after which an
instance of activity b started and an instance of activity b completed. The timestamps in
superscript denote the times at which the events occurred; we will omit timestamps if
they are not relevant. An event log is a multiset of traces.

In trace ¢, it makes sense to assume that a4 and a. are events of the same activity
instance. However, this information is usually not recorded in the event log, and the
techniques introduced in this paper neither need nor try to infer this information. In
the following sections, we assume presence of at least start and completion events; the
techniques describe in this paper will ignore other transaction types.

Consider the trace ¢ = {as). As an activity instance of a was started but never
completed, there is either an a. event missing, or the as event should not have been
recorded. Similar problems could have occurred when unmatched completion events
appear. This raises the notion of a consistent trace, similar to [4]:

Definition 1. A frace is consistent if and only if each start event has a corresponding
completion event and vice versa.

3 Preparing the Input

In real-life data sets, it is possible that some traces in an event log do not adhere to
Definition [T} A trace can be checked for consistency easily with a single pass over the
trace and some bookkeeping. Nevertheless, our approach requires consistent traces, so
any inconsistency need to be dealt with.

We illustrate the decisions that have to be made using an example trace ¢ = {al1:30,
al?40, q13:50% Clearly, this trace is not consistent, as there are two start events of ac-
tivity a and only one complete event. There are several ways to make ¢ consistent:

a11:30a13:50
_ <ai2:40,a(1:3:50
_ <a;1:30, ae, ai21407 a23:50>
_ <a;1:30’ a;2:40, ae, 0%3:50
_ <ai1:30’ ai2:40, CLiB:50, ac>

Without further information, we cannot decide on the trace that matches reality in
the best way possible. Additional information in the event log could be used, such as
the concept:instance extension of the XES standard [8], which links start and complete

events of activity instances. If this extension would indicate that events a'%4° and %40

4 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

EEIIKE | 2 O 2compee

(a) Collapsed. (b) Expanded.

Figure 2: Excerpt of a collapsed and its expanded workflow net.

form an activity instance, it makes sense to opt for (a249, a13:50% or (a11:39 q,, al%40,

al?3%%. For our experiments, we choose option {all3% a.,al?40 a1%%) je. each
completion event is matched with the last occurring start event, and completion events
are inserted right after unmatched start events. Completion events are handled symmet-
rically. Please note that by considering unmatched completion events as atomic, we can
handle logs that contain only completion events using the same approach.

The pre-processing step ignores all events that contain other life cycle annotations
than start or completion (see e.g. the lifecycle:transition extension of the XES 2.0 stan-
dard [8]]). In the remainder of this paper, we only consider event logs consisting of
consistent traces.

4 Transactional Information in Process Models

In standard Petri nets, a transition is considered atomic, i.e. when firing a transition its
start is indistinguishable from its completion. This poses a problem for performance
measurements if we map activities onto transitions, as a transition cannot take time.

A solution could be to use separate transitions for the start and completion of ac-
tivities, such that their execution can be distinguished. This poses a new challenge to
process models: if the start and completion transitions do not match, the model might
allow for inconsistent traces, such as two starts followed by one completion. This may
severely jeopardise the accuracy of performance measurements. Moreover, in order to
measure performance, it must be known which combinations of start and completion
transitions correspond to an activity.

A common solution to these issues is to expand each transition (a, Figure [2a) in
two transitions, connected with a place: one transition denotes the start (as), the other
transition denotes the completion (a.) of the transition (Figure@]) [3]]. The connection
between the two newly created transitions is kept, and therefore the model does not
allow inconsistent traces. We refer to this existing technique as expanding a process
model; the un-expanded process model is a collapsed model.

Process Trees. Process trees are abstract representations of block-structured work-
flow nets [2]]. Process trees are particularly suitable for process discovery, as they are by
definition free of deadlocks and other anomalies (sound [[1]). A process tree describes a
language, and it consists of a hierarchy of operators being the nodes of the tree, and ac-
tivities being the leaves of the tree. An activity describes the singleton language of that
activity, while an operator describes how the languages of its children are to be com-
bined. In [[12], the four operators sequence (—), exclusive choice (), concurrency (A)
and loop () are considered. For example, the process tree
—(a, x(A(b,c),5(d, e)), f) has, among other things, the following traces {a, b, c, [,

Using Life Cycle Information in Process Discovery 5

{a,c,b, f),<a,d,) {a,d, e ,d,e,d, [y Weuse L(T) to denote the language of process
tree 7.

Collapsed Process Trees. Process trees can be mapped onto Petri nets using the
translation presented in [[12]. Hence, they face the problem of atomicity as well. There-
fore, we lift the expanding technique to process trees by introducing a variant that keeps
the link between starts and completes: collapsed process trees. A collapsed process
tree can be expanded into a normal process tree, e.g x (a, b) expands to x (—(as, ac),
—(bs, be)).

Definition 2. A collapsed process tree is a process tree in which each activity -a- de-
notes the process tree —(as, a.).

5 Inductive Miner - life cycle

In this section, we introduce an algorithm (Inductive Miner - life cycle (IMLC)) that
is able to handle life cycle data and distinguishes concurrency and interleaving. In this
section, we first recall principles of recursive process discovery with IM. Second, we
describe how transactional data is dealt with in this framework (Section EI) and intro-
duce a way to distinguish interleaving from concurrency (Section [5). Finally, we give
an example (Section[5) and we describe the implementation (Section [3).

Inductive Miner

The divide-and-conquer framework Inductive Miner [12]] (IM) recursively applies four
steps. (1) Select a cut: a division of activities in the event log and a process tree operator,
e.g. (A, {a,b},{c}). (2) Split the log into smaller sub-logs according to this cut. (3)
Recurse on each sub-log. The recursion ends when a base case, e.g. a log containing
only a single activity, is left. (4) If no cut can be selected, a fall through is returned. We
will make use of this conceptual framework. However, in its current form, IM simply
treats each event as a separate activity instance.

In order to select a cut, IM considers the directly-follows graph, which contains
which activities were directly followed by other activities. Each of the process tree
operators leaves a specific footprint in the directly-follows graph. Thus, IM detects
cuts by identifying these footprints. Figure |3 shows the footprints of the process tree
operators (ignoring the dashed box); [12] provides details and log splitting procedures.

IMLC uses the IM framework and needs to adapt all four steps to cope with trans-
actional events and to detect interleaving. We first introduce how IMLC handles trans-
actional events, after which we introduce how it detects interleaving.

Transactional Events

In order to handle transactional events, changes are required in three of the four steps
of IM; log splitting requires no changes. As base case detection involves little changes
to cope with transactional events, it will not be discussed in this paper.

Cut Detection. Most parts of cut detection remain roughly as in previous works [12],
however cut detection in IM relies on directly-follows graphs, which are constructed
differently in case of transactional events. The method presented here is based on ideas
used in e.g. Ta and PM, but differs in details. (Collapsed) activity a follows (collapsed)
activity b directly, if in the event log an (expanded) event of a follows an (expanded)

6 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

exclusive choice: sequence: loop:

TSe7 <o @rlea;j: - 1 concurrency:
> L | |
.on | |
~Ser o7 | g% |
| |
L — — — 4d

Figure 3: Cut footprints in the directly-follows graph, see [12].

event of b without both a start and completion event of the same activity between them.
For instance, consider trace ¢t = {as, ac, bs, s, be, Cc, ds, d..y; visualised in Figure
In t, consider the event c¢,. Obviously, ¢, follows b, directly, so in Figure @bl ¢ directly
follows b. Moreover, ¢, follows event a. directly, as there is only a completion event of
b in between them, which is not a full activity instance. In contrast, between a. and d
there are two full activity instances (b and c), thus « is not directly followed by d in ¢.

Any activity instance of which the start event is not preceded by the completion
event of another activity instance is called a start activity. In t, a is the only start activity;
b, ¢ and d are not, as there occurs an a. event before them. Similarly, d is the only end
activity of ¢. In Figure these start and end activities are denoted by incoming and
outgoing edges.

Fall Throughs If no cut can be found, a fall through is to be selected. IMLC con-
tains several fall throughs, of which the last one is a model that expresses all behaviour
in the event log, and therefore guarantees fitness. For non-collapsed process trees, the
flower model (5(7,a,b,c,...) serves this purpose, as it allows for any behaviour of
the included activities a b c For collapsed process trees, a model allowing for all
behaviour may not exist, as in a collapsed process tree, no activity can be concurrent
with itself (see Section[6)). Hence, IMLC counts the maximum number of times an ac-
tivity is concurrent with itself in the event log, and constructs a model accordingly.
For instance, in the event log {{as, as, ac, bs, ac, bey}, at most 2 a’s and 1 b are con-
current with themselves. Then, the fall through collapsed model that IMLC chooses is
A(O(T,a),O(T,a), (7, b)). This model can produce any behaviour of two a’s and one
b all concurrent to each other.

>a—c—>d~> a ¢ d
b d I i -~ |
La]l | | |
c b b
(a) Trace t (b) Directly-follows graph (c) Concurrency graph

Figure 4: Trace t and its corresponding graphs.

Using Life Cycle Information in Process Discovery 7

Interleaving

Besides handling transactional data, IMLC is able to detect interleaving. We first intro-
duce the corresponding process tree operator, then describe how to detect it. The inter-
leaving operator < takes any number of subtrees (> 2) and combines their languages.

Definition 3. Let T} ... T,, be process trees. Let p(n) be the set of all permutations of
the numbers {1...n}. Then L(<(Th, ..., Ty)) = U, i epn) £(=(Tin - Tin)).

Note that the union can also be expressed as an exclusive choice over each sequence
Detection Strategy. This structure is exploited in the detection of <, and IMLC
applies a three-stage strategy: (1) An interleaving cut is detected using the footprint
of « (see Figure [3). However, detection of this footprint is insufficient to conclude
interleaving, as e.g. the footprint does not guarantee that each child is executed at
most once. Therefore, we denote the detection with an additional operator (maybe-
interleaved (<)), e.g. the cut (<, {a}, {b}) is detected but (&, {a}, {b}) is reported.
(2) Using the <» cut, the event log is split and recursion continues as usual. (3) Af-
ter recursion, interleaving is derived from the structure of the process tree, e.g. each
occurrence of <A (—(Ty,Ts), —(T%,T1)) is replaced by < (T, T»).
(1) Detection of <. To detect interleaving,
IMLC uses the footprint of the <> operator in the ~ interleaved concurrency
. . L . operator: operator:
directly-follows graph. This footprint is shown in \
Figure[3} from each end activity, an edge must be
present to all start activities of all other circles, oee
and vice versa. Other directly-follows edges be- é)< /
tween circles are not allowed.

Notice that if the start and end activities over-
lap, this footprmt might overlap with the concur- Figure 5: Cut footprints in the con-
rency footprint, e.g. <(a,b) has the same foot-
print as A(a,b). Therefore, IMLC also considers currency graph.
the concurrency graph. As shown in [20], transactional data allows for direct detection
of concurrency: whenever two activity instances overlap in time (such as b and ¢ in
Figure [4a)), their activities are concurrent. Figure [dc| shows the concurrency graph of
our example. For this step, it suffices to keep track of the number of started-but-not-
yet-completed activity instances. Interleaving and concurrency have clearly different
footprints in the concurrency graph (see Figure[3)).

(2) Log Splitting for <. For <5, the log is split by dividing traces based on the activ-
ities with which they start. For instance, consider the event log L = {{zs, ., ms, M),
{mg, me, Ts, 2.y} and the cut (&, {x}, {m}). Based on this cut, L is split into the sub-
logs {{xs,xc, ms, mey} and {{mg, e, Ts, Teyl.

(3) From < to <. Intuitively, log splitting ‘unravels’ the interleaved execution: the
sub-trees of {z} and {m} can be executed in any order; for each such ordering, a dif-
ferent sub-log is returned. After unraveling the order, recursion continues and, by the
interleaving semantics, we expect — operators to appear in both branches. Therefore,
after recursion, each occurrence of the pattern <»(—(73,75), —(T%,T1)) (or an n-ary
generalisation thereof) is replaced with <> (77, T»). In case further recursion shows that

8 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

interleaving was not present, i.e. the pattern does not show up, any remaining <» op-
erator is replaced with an x operator; the subtrees remain untouched. Effectively, this
allows a single activity label to occur in multiple branches of the model.

Example

We illustrate IMLC using an example, derived from Figure [Ta] Consider log L; =
{(igy e, Mg, M, Ty lsy Tey ey fsy fers Lhsyie, lsy Ty Ty Mgy ley Me, fs, fer}. The directly-
follows and concurrency graphs of L; are shown in figures [6a and [6b] Cut detection
will find the cut (—, {i}, {z,m, 1}, {f}), after which L, is split into Ly = {{is,i.)},
L = {<m97 Me, Ts, s, Te, lc>, <lsa T, Te, Mg, le, mc>} and Ly = {<fsa fc>} The par-
tial result up till this point is —(IMLC(Ls),IMLC(L3),IMLC(L4)). Next, IMLC re-
curses on the first and last branch, both of which result in a base case, after which
the partial result becomes — (i, IMLC(L3), f). Next, IMLC recurses on L3; figures
and [6d| show the corresponding graphs. Based on the concurrency graph, IMLC se-
lects the cut (A, {m, z}, {l}). Using this cut, L3 is split into Ly = {{ms, M, Ts, Te)s
sy xe,mg,mey} and Lg = {{s, 1), {ls,1.)}. A recursion on the base case Lg yields
the partial result — (¢, A(IMLC(L5),1), f). Next, IMLC recurses on Ls; figures
and [6f] show its graphs. As the directly-follows graph shows interconnected activities
m and z that are not concurrent according to the concurrency graph, IMLC selects
(&,{m},{x}). Log Ls is splitinto Ly = {{mgs, m, Ts, .y} and Lg = {xs, Tc, Mg, M}
The partial result becomes — (i, A (<> (IMLC(L7), IMLC(Lsg)), 1), f). As IMLC recurses
on L7, using the directly-follows graph of Figure[6g] the cut (—, {m}, {z}) is selected,
and by log splitting, two recursions and two base cases, the intermediate result be-
comes — (i, A((—(m,x),IMLC(Lg)),1), f). A similar recursion on Lg yields the
result —(i, A((—(m, z), —(x,m)),1),). Finally, the post-processing step trans-
forms this result into — (i, A(<>(m, z),1), f), which corresponds to Figure 1a]

X m > m> m

/Yk»x Y »

> i —>m—>f > i X f > X > X
(A (

"
\z/ 3 > 2> 2

(a) > of Ly () || of L1 (©—of Ly () of Ls
> m > m > m
Y A A |
> X > X X »

(e) — of Ls (®) | of Ls (g) — of L7

Figure 6: The directly-follows — and concurrency | graphs for a few (sub-)logs.

Implementation

IMLC and the pre-processing step described in Section |3| are available as plug-ins of
the ProM framework [[7]. To guarantee compatibility with existing plug-ins, IMLC re-
turns models being collapsed trees, i.e. the leaves are activities (for instance A(a,b)).
A separate plug-in (“expand collapsed process tree”) is available to expand these trees
according to Definition

Using Life Cycle Information in Process Discovery 9

6 Discussion

In this section, we first study some guarantees offered by IMLC and illustrate some
results using real-life data. Second, we discuss the theoretical limits of any process
discovery algorithm that uses the abstraction of Section [4]

Guarantees

As IMLC uses process trees, any model returned by it is guaranteed to be sound. Fur-
thermore, by the collapsed/expanding concept, all traces that such a model can produce
are consistent.

Fitness and termination are guar-
anteed by the Inductive Miner
framework for consistent traces:
Theorem 3 of [[12] holds because
Definition 1 of [12]] holds: case
distinction on the patterns of Fig-
ure [3| ensures that we add an <
node in the model as a shorthand
for the &(—(...),—(...)) con-
struct (which enumerates all inter-
leaved sequences) only when parti- ~
tioning the log into several sublogs (] varng:2s
based on the start activity (preserves (b) IM
fitness to each interleaving); each
sublog is strictly smaller (termina-
tion).

Rediscoverability, i.e. whether Waitingﬂ
IMLC isfable to redisc?ivei t'he lalrll- () IMLC
guage of a system underlying the
event log, is still guaranteed for sys- Figure 7: Results on PN of Figure
tems consisting of x, —, A and (.

Under which assumptions rediscoverability holds for <> requires further research.

waiting: 1.5

waiting: 2.5

waiting: 1

Ilustrative Results

We applied IMLC, IM, and Ta to the event log of Figure [Ta] and Section [5] enriched
with time stamps: Ly = {(i},i2, m3,m2 2518, 27 18, f9 f10% (233,12, 23, 28, m7,
18, m2, 10, f115Y: Figure [7| shows the results. IM misses the concurrency relation be-
tween m and [and does restrict the number of times each activity can be executed. The
model produced by Ta can only fire ¢ (it is not sound), so no performance measure can
be computed.

For the two other models, we measured waiting and synchronisation time by first
removing the deviations using an alignment [3]], after which we obtained average syn-
chronisation and waiting times by considering the last completed non-concurrent ac-
tivity instance, as described in [21]. Even on such a small log, the measured waiting
and synchronisation times differ wildly, illustrating the need for reliable performance
measures. In case x and m are indeed interleaved instead of concurrent, we argue that
the measured times on the model returned by IMLC are correct.

10 Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

sojourn: 139h34

sojourn: 0h03
|A_DECLINED o- ©- of
—
sojourn: 0h05

waiting: 16h10 sojourn: 39h21

sojourn: 13h19

W_Completeren
aanvraag

(a) IMi

sojourn: 86h27
4 W_completeren =
& aanvraag waiting: 16h10

sojourn: 17h47 > ®

° ° ¢ (-oecune sojourn: 33h51
sojourn: 39h21
sojourn: 0h05

(b) IMilc
Figure 8: Excerpts of models obtained from BPIC12.

As a second experiment, we created a secondary algorithm that applies infrequent-
behaviour filtering, similar to IMi [[11]. This algorithm, Inductive Miner - infrequent &
life cycle (IMilc) was applied to the BPI challenge log of 2012 [6], filtered to contain a
subset of activities (starting with A and W), and only the cases denoted as ’successful’
in the log. This event log describes a mortgage application process in a Dutch financial
institution. Figure[§]shows an exerpt of the results obtained by IMilc and IMi, enriched
with average waiting and sojourn times. The model obtained by applying tc is unsound
and therefore, performance could not be computed.. Waiting time can be computed de-
terministically only for W_completeren aanvraag, as that is the only activity in the event
log having start events. In the model by IMi, W_Completeren aanvraag has a waiting
time of 16 and a sojourn time of 13. This is inconsistent, as sojourn time = waiting time
+ service time. Manual inspection reveals that this activity overlaps with the A activi-
ties in this excerpt, which is correctly captured by concurrency. IMi (Figure[8a) did not
detect the concurrency, and therefore some sojourn times are measured with respect to
completion events of different activities, making the results unreliable.

Limitations of Collapsed Models

The idea of collapsed tasks implies some representational bias on several process for-
malisms; we identified three main restrictions. First, as the start and complete transitions
acts as a transactional envelope for an activity, no restrictions can be posed on start and
completion transitions themselves. For instance, take the partial workflow net shown
in Figure EL in which approve, must happen before send starts. This restriction is not
expressible in collapsed process models, as it inherently involves targeting the ‘hidden’
start in a collapsed activity, regardless of the formalism used.

Second, unbounded concurrency cannot be
expressed in most formalisms. Consider the infi-
nite set of traces L = {{as,as,...ac,a.y}, i.e.
a can be parallel with itself arbitrarily often. The
YAWL [10] language supports unbounded con- Figure9: A partial workflow net
currency by means of ‘multiple-instance activi- in which approve, happens before

send.

|approveS

Using Life Cycle Information in Process Discovery 11

ties’. However, correctly handling multi-instance

activities requires an emptiness test [[13]] which is

expressible in neither process trees nor regular Petri nets. This restriction also implies
that a flower model that produces only consistent traces cannot exist.

Third, the language of any collapsed process model can obviously only contain
consistent traces (Definition . Even though, as shown in Section [3| inconsistent traces
show inherent ambiguity, input traces might be inconsistent and therefore, traditional
perfect fitness might be unachievable. e.g. there is no collapsed process model to repre-
sent {as, asy. We argue that fitness measures should be robust against such ambiguities,
but adapting measures is outside the scope of this paper.

Related Work

Several process discovery techniques take transactional data into account, e.g. [20/17/4/9]:
transactional data is used to aid in directly-follows relation construction. For instance,
transactional data enables explicit concurrency detection in low information settings [20].
IMLC uses a similar idea, but slightly differs in details, e.g. in IMLC, two activity in-
stances can be both directly-following as well as concurrent. However, none of the other
approaches distinguishes concurrency and interleaving, and most [4/20l9]] do not guar-
antee to return sound models. Unsound models, as shown in Section[6] cannot be used
to measure performance in some cases.

Of the mentioned approaches, only PM [17]] guarantees to return sound models: it
constructs structured models similar to process trees based on the directly-follows re-
lation over transactional data. However, the particular approach does not generalise the
behaviour of the log [17], is not robust to noise [3], and does not distinguish concur-
rency and interleaving.

7 Conclusion

We investigated an aspect of measuring business process performance by discovering
process models with performance information from event logs with transactional data,
i.e., start and complete events that are recorded for each activity instance. We have
shown that performance information depends on whether activities have been executed
truly concurrently or interleaved. All existing process discovery algorithms assume no
difference between concurrency and interleaving and thus may yield inaccurate perfor-
mance results.

We presented a first process discovery technique that can distinguish concurrency
and interleaving in the presence of transactional data, i.e. start and completion events,
using the Inductive Miner [[12] framework. The algorithm guarantees soundness and fit-
ness; a first evaluation showed that it can return more accurate performance information
than the state of the art.

An open question remaining is under which assumptions rediscoverability holds for
IMLc, and how discovery can benefit from other life cycle transitions, e.g. assign, re-
assign, schedule, suspend etc. For instance, an enqueue event [18|] might reveal when
queueing commenced and hence provide even more information about dependencies
with other activities. Another point of future research is how expanding and collapsing

12

Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst

influences the existing model/log evaluation criteria fitness, precision and generalisa-
tion.

References

1.

e}

10.

11.

13.

14.

15.

16.

17.

18.

20.

21.

van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek, HM.W.,
Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification, decidability, and
analysis. Formal Asp. Comput. 23(3), 333-363 (2011)

. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering process models

from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128-1142 (2004)

. Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D. thesis, Eindhoven Univer-

sity of Technology (2014)

. Burattin, A., Sperduti, A.: Heuristics miner for time intervals. ESANN (2010)
. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality as-

sessment of state-of-the-art process discovery algorithms using real-life event logs. Informa-
tion Systems 37, 654-676 (2012)

. van Dongen, B.: BPI Challenge 2012 Dataset (2012), http://dx.doi.org/10.4121/

uuid:3926db30-£712-4394-aebc-75976070e91f

. van Dongen, B., de Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: The ProM

Framework: A new era in process mining tool support. ICATPN 3536, 444-454 (2005)

. Giinther, C., Verbeek, H.: XES v2.0 (2014), http://www.xes—standard.org/
. Giinther, C., Rozinat, A.: Disco: Discover your processes. CEUR Workshop Proceedings,

vol. 940, pp. 40-44. CEUR-WS.org (2012)

ter Hofstede, A.H.M., van der Aalst, WM.P., Adams, M., Russell, N.: Modern Business
Process Automation - YAWL and its Support Environment. Springer (2010)

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured pro-
cess models from event logs containing infrequent behaviour. LNBIP, vol. 171, pp. 66-78.
Springer (2013)

. Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process models

from event logs - a constructive approach. LNCS, vol. 7927, pp. 311-329. Springer (2013)
Linz, P.: An introduction to formal languages and automata. Jones & Bartlett Learning (2011)
Redlich, D., Molka, T., Gilani, W., Blair, G.S., Rashid, A.: Constructs competition miner:
Process control-flow discovery of BP-domain constructs. LNCS, vol. 8659, pp. 134-150
(2014)

Redlich, D., Molka, T., Gilani, W., Blair, G.S., Rashid, A.: Scalable dynamic business pro-
cess discovery with the constructs competition miner. CEUR-WP, vol. 1293, pp. 91-107
(2014)

Schimm, G.: Process miner - a tool for mining process schemes from event-based data.
LNCS, vol. 2424, pp. 525-528. Springer (2002)

Schimm, G.: Mining exact models of concurrent workflows. Computers in Industry 53(3),
265-281 (2004)

Senderovich, A., Leemans, S., Harel, S., Gal, A., Mandelbaum, A., van der Aalst, W.: Dis-
covering queues from event logs with varying levels of information. BPI. accepted (2015)

. Solé, M., Carmona, J.: Process mining from a basis of state regions. LNCS, vol. 6128, pp.

226-245. Springer (2010)

Wen, L., Wang, J., van der Aalst, W., Huang, B., Sun, J.: A novel approach for process mining
based on event types. JIIS 32(2), 163-190 (2009)

Wolffensperger, R.: Static and Dynamic Visualization of Quality and Performance Dimen-
sions on Process Trees. Master’s thesis, Eindhoven University of Technology (2015)

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://www.xes-standard.org/

	Using Life Cycle Information in Process Discovery

