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Abstract—Tremendous amounts of data can be recorded dur-
ing software execution. This provides valuable information on
software runtime analysis. Many crashes and exceptions may
occur, and it is a real challenge to understand how software is
behaving. Software is usually composed of various components.
A component is a nearly independent part of software that full-
fills a clear function. Process mining aims to discover, monitor
and improve real processes by extracting knowledge from event
logs. This paper presents an approach to utilize process mining
as a tool to discover the real behavior of software and analyze it.
The unstructured software execution data may be too complex,
involving multiple interleaved components, etc. Applying existing
process mining techniques results in spaghetti-like models with
no clear structure and no valuable information that can be easily
understood by end. In this paper, we start with the observation
that software is composed of components and we use this
information to decompose the problem into smaller independent
ones by discovering a behavioral model per component. Through
experimental analysis, we illustrate that the proposed approach
facilitates the discovery of more understandable software models.
All proposed approaches have been implemented in the open-
source process mining toolkit ProM.

I. INTRODUCTION

During the execution of software, execution data can be
recorded. By exploiting the recorded data, one can discover
behavioral models to describe the actual execution of software.
The discovered models can provide insight regarding real
usage of software, motivate novel idea on model-based testing,
enable software usability improvements, localize performance
problems and architectural challenges, etc. Process mining
[15] aims at extracting process models from event logs. There
are three major types of process mining: (1) process discovery;
(2) conformance checking; and (3) enhancement. Process
Discovery takes an event log as input and produces a pro-
cess model. Conformance Checking aims to compare process
models discovered or hand-made with real-behavior recorded
in event logs. Enhancement also takes an event log and an
existing model as inputs and tries to improve or extend the
model using additional information in the log. Enhancement
can be used to highlight bottlenecks, predict performance, etc.
With the development of process mining techniques on the
one hand, and the growing availability of software execution
data on the other hand, a new form of software analytics comes
into reach, i.e., applying process mining techniques to analyze
software execution data. This inter-disciplinary research area
is called Software Process Mining (SPM) [14].

The software execution data consist of method calls and
object information. Usually, each software run may last for a
long time and involve multiple interleaved component execu-
tions. Applying existing process mining techniques typically
results in flat and spaghetti-like models with no clear structure
and no valuable information for comprehension. Given the ob-
servation that software typically involve a set of components,
we propose to use this component information to decompose
the problem into smaller independent ones by discovering a
behavioral model per component. Starting from the original
execution data, we first propose a novel idea that allows us
to identify component instance (one independent run of a
software component) as the case notion of software event
log. As process mining algorithms expect an event log as
input, the choice of case notion determines the scope of the
discovered models [1]. Besides components, software usually
have a hierarchical structure represented as multi-level nested
method calls, hence the discovered behavioral models should
also depict this hierarchy nature. After obtaining a software
event log for each component, we then recursively transform
the log to a hierarchical one using the calling relation among
methods. Given a hierarchical software event log, we use
existing techniques to discover a hierarchical process model.
Existing approaches are unable to discover software (compo-
nent) behavioral models with hierarchies. To the best of our
knowledge this is the first paper to discover such models.

The rest of this paper is organized as follows. Section
IT presents a brief review of related work. Section III de-
fines some preliminaries. Section IV presents the software
component behavior discovery approach. Section VI presents
experimental results. Section V introduces ProM plugin im-
plementation. Finally, Section VII concludes the paper.

II. RELATED WORK
A. Software Dynamic Analysis

Software dynamic analysis is used to understand the be-
havior of software by exploiting its execution data. Several
techniques and tools have been presented to extract informa-
tion from running software. Most existing approaches, such as
[9] and [20], generate automaton-based models using different
variants of the K-Tail algorithm which was first defined by
Biermann and Feldman [2]. However, these techniques cannot
discover concurrency explicitly, resulting in a so-called state
explosion for complex models. Although automaton-based



models are popular in this area, there are several techniques
to learn other types of models. For example, some techniques
visualize software execution traces as sequence diagrams [11]
and some of them are extended with loops [3]. Similarly,
the sequence diagram-based models also lack concurrency
description. Moreover, each sequence diagram or automaton-
based model only describes the behavior of a single execution
trace. Given software execution data referring to multiple
traces, these existing approaches will obtain an excessive
number of behavioral models rather than a compact model for
the whole data. In addition, considering the hierarchy nature
of a software, the discovered flat sequence diagrams or flat
automation-based models cannot accurately capture the real
behavior in a meaningful way.

B. Process Mining

Process mining deals with discovering, monitoring and
improving business processes by extracting knowledge from
event logs [15]. The a-Algorithm [16] defines four kinds
of ordering relations (directly-follow, causality, choice and
concurrency), based on which it constructs a workflow net.
More recently, a family of inductive process mining techniques
[7] using process trees are proposed to handle incomplete
and noisy event logs. Different from these process discovery
algorithms that produce flat models, a two-phase mining
approach using pattern detection techniques was introduced by
Li et al. [8] to discover hierarchical process models. Two types
of patterns, loops and maximal repeats, are considered. Once
patterns are identified, all their occurrences are replaced by an
abstract activity and extracted as sub-process logs. Different
from them, we propose to detect software-related patterns
and discover hierarchical models organized in calling relation.
Conforti et al. [4] present a technique to discover BPMN
model with sub-processes, multi-instance markers, etc. It relies
on some special attributes (primary and foreign keys) to infer
dependencies between parent and sub-processes and multi-
instance markers. Another research area is artifact-centric
process discovery, which aims to discover artifact lifecycle
behavioral models and interactions between them [10]. An
artifact describes the lifecycle of a business object (e.g. a
purchase order). Our work goes into similar direction and aims
to discover software behavioral models.

C. Software Process Mining

Software process mining enables the extraction of knowl-
edge from software execution data, which helps software ana-
lysts better understand software behavior. Our paper belongs to
the software runtime behavior discovery spectrum. One of the
first papers addressing this problem using process mining is
[17]. For the mining of software systems, the recorded events
explicitly refer to parts of the system (components, services,
etc.). References to system parts facilitate the generation of
localized event logs. A generic process discovery approach is
proposed based on localized event logs. Experimental results
show that location information indeed helps to improve the
quality of the discovered models. Leemans and van der Aalst

[6] analyze the operational processes of software systems,
and process mining techniques are applied to obtain precise
and formal models using real-life event logs. They propose
to discover flat behavior models using Inductive Miner [7].
However, the hierarchical structure of software is not fully
considered. More recently, van der Aalst [1] propose to
analyze software systems under real-life circumstances using
process mining, i.e., the “Big Software on the Run “project '.
Our current work is also in the context of this project.

III. PRELIMINARIES

Let S be a set and we use () for the empty set. We use the
standard |S| to denote the number of elements in set S. The
powerset of S is denoted by P(S) = {S’|S" C S}. fe X —
Y is a function, i.e., dom(f) is the domain and rng(f) =
{f(x)|x € dom(f)} is the range. A multi-set (or bag) over
S is a set where elements can appear multiple times, e.g.,
m = [p?,¢?] is a multi-set over S = {p, q} where m(p) = 3,
m(q) = 2. The set of all multi-sets over S is denoted by IN?.
We use + and — for the union and difference of two multi-sets.
Both of them are defined the same way as set.

A sequence over S of length n is a function o
{1,2,....,n} = S. If o(1) = a1,0(2) = ag,...0(n) = an,
we write o = (a1, as, ...an). A sequence of length 0 is called
the empty sequence, denoted by (). The length of a sequence o
is denoted by |o|, e.g., [()| = 0. The set of all finite sequences
over set S is denoted by S*. Let u,v € S* be two sequences,
the concatenation operation denoted by ¢ = w o v is defined
as o {1,2,...|ul + |v|]} — S, such that o(i) = wu(i) for
1<i<|ul,and o(i) = v(i — |u|) for |u| +1 <14 < |u|+ |v].

Definition 1: (Sequence Projection) Let X be a set and
Q C X be its subset. [g€ X* — Q™ is a projection function
and is defined recursively: ()fo=(); and for c€ X* and x € X:

_J ale if ©¢Q
(<$> oa) TQ— { (a:) o (UTQ) if zeq

Definition 2: (Labeled Petri net [13]) A Labeled Petri net
is a 4-tuple PN = (P,T,F,l), satisfying (1) PN T = {,
PUT # () where P is the place set and T is the transition
set; 2) F C (P x T)U (T x P) is the flow relation; and (3)
l:T — o is a labeling function where 7 is a set of labels
and 7 € &/ denotes invisible label.

Given a PN = (P, T, F, ), we define the preset and post-
set of transitions and places. For each z € PU T, the set
*c ={yl(y,z) € F} is the preset (input) of z and z°* =
{y|(z,y) € F} is the postset (output) of z. To describe the
semantics of a labeled Petri net, we use markings. A marking
m of PN is a multiset of places, i.e., m € NP, indicating how
many tokens each place contains. Markings are state of a net.
(PN, my) is a marked net where my is its initial marking. A
transition ¢t € T' is enabled in marking m € IN?, denoted as
(PN,m)[t > if and only if Vp €*t: m(p) > 1. An enabled
transition ¢ may fire and results in a new marking m’ with
m’ =m —* ¢t + t°, denoted by (PN, m)[t > (PN, m/’).

)

Uhttp://www.3tu-bsr.nl/doku.php?id=start
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Fig. 1. Software Component Behavior Discovery: An Overview of the Approach

IV. COMPONENT BEHAVIOR DISCOVERY

This section details the main approach to discover com-
ponent behavioral models from software execution data. In
Section IV-A, we give an overview of our approach. In
Sections IV-B-IV-C, we present our main discovery approach.

A. Approach Overview

The input of our approach is software execution data, which
can be obtained by instrumenting and monitoring software
execution. Fig. 1 shows an overview of the approach which
consists of three main steps:

1. Component Instance Identification. Software typically
contains a set of components. A component is a non-trivial,
nearly independent and replaceable part of software that full-
fills a clear function in the context of a well-defined archi-
tecture [5]. Starting from the original software execution data,
we first propose a novel idea to identify component instances.
These serve as the basic case notion to generate a software
event log for each component. Here, a component instance
refers to one independent run of a software component.

2. Hierarchical Software Event Log Construction. Because
a software (component) usually has a hierarchical structure
represented as multi-level nested method calls, the discovered
behavioral model should depict this hierarchy nature. For each
component, we recursively transform its software event log to
a hierarchical one using calling relations among methods.

3. Component Behavioral Model Discovery. For each
component, we discover a hierarchical behavioral model from
its corresponding hierarchial software event log. Given the
hierarchy of a software event log, we only need to traverse
through different levels of the log and discover a process model
for each sub-log. Note that we can use any existing process
discovery approach in this step.

B. Software Component Instance Identification

The starting point of our component behavior discovery
approach is the software execution data and the method call
is the basic unit in these data.

Definition 3: (Method Call, Attribute) Let %), be the
method call universe. A method call may have various at-
tributes. Let %4 be the attribute universe, i.e., a set of

attribute names. For each method call m € %), and attribute
AN € Uy, #an(m) is the value of AN for m.

In the following, let %y be the method universe, %c, be
the class universe, Zco be the class object universe, and %
be the time universe. We assume that each method call m €
) has at least the following standard (mandatory) attributes:

o Healicers(m) € Uy is the callee method name of m;

o H#eatiecec(m) € ey, is the callee class name of m;

o H#ealiceco(m)E% o is callee class object identifier of m;
o Healierns (M) € %y is the caller method name of m;

o Healierc(m) € oy, is the caller class name of m;

o H#ealierco(m)E o is caller class object identifier of m;
o H#startTime(m) € % is the start timestamp of m; and
o #EndTime(m) € %r is the end timestamp of m.

Definition 4: (Software Execution Trace/Data) Let %),
be the method call universe. o C %), is a software execution
trace. SD C P(%ys) is software execution data such that
Vo0, € SD:0;Noj =0V o; =0j.

Given a software system, it contains a set of interacting
components. According to Definition 4, software execution
data are composed of a set of execution traces, each describing
a set of interacting components. The term of component is
generic, and typically consists of a group of classes. Given
software whose development documents are well organized
and kept, we have information of how classes are grouped to
form components [5]. Therefore, we can pre-process software
execution data to obtain a set of software component execution
data. Consider for example the software execution data in
Table 1, it is composed of one software execution trace oe.
Each row corresponds to a method call, we use ID to uniquely
represent each method call, e.g., e; is the first method call.

A component C C %y, is a set of classes and P(Zcr)
is the component universe. In this paper, we assume classes
are uniquely identifiable by using packages as the prefix.
Given a piece of software, COM C P(Zcy) is its com-
ponent set. We assume components of the same software
cannot overlap, i.e., for any C;, C; € COM, C; N C; = or
C; = (. For instance, we assume the software execution data
in Table I has two components: C; = {class1, class2} and
Co = {MainClass}.



TABLE I
AN EXAMPLE OF SOFTWARE EXECUTION DATA

ID | Callee Method | Callee Class | Callee Class Object | Caller Method | Caller Class | Caller Class Object
el init() class2 @5746¢e7cc main() MainClass @mainclass
e init() class1 @3b7359¢cb main() MainClass @mainclass
es3 setClass1() class2 @5746¢e7cc init() Classl @3b7359¢cb
eq perform() class1 @3b7359¢cb main() MainClass @mainclass
es work() class2 @5746e7cc perform() Classl @3b7359¢cb
€6 init() class1 @614b152d main() MainClass @mainclass
er setClass1() class2 @5746e7cc init() Classl @614b152d
es perform() class1 @614b152d main() MainClass @mainclass
eg work() class2 @5746e7cc perform() Class1 @614b152d
€10 main() MainClass @mainclass null null null

Definition 5: (Software Component Execution Trace/-
Data) Let COM C P(%c1) be the component set of a
piece of software, SD C P(%)) be its software execution
data and C' € COM be one software component. For each
o€ SD, oc ={e € g|#caiicec(e) € C} is the software ex-
ecution trace of component C. SD¢ = {o¢|o € SD} is the
software execution data of component C.

According to Definition 5, the example execution
traces of C; and Cy in Table I are oo =
{61, €9, €3, €4, €5, €, €7, €8, 69} and gc2 = {610}.

A component instance represents one run of the component
and a software component execution trace may contain one
or more interleaved component instances. In this work, we
propose to split each component execution trace into different
independent ones. To identify a component instance, we make
the observation that for an object-oriented software, a com-
ponent instance starts when its class objects are constructed.
Then a component instance contains: (1) the first class object
constructed by an external component; and (2) all class objects
that interact (directly or indirectly) with the first constructed
object. To identify independent component instances, we pro-
pose to: (1) construct a Class Object Interaction graph for each
software component execution trace; and (2) detect its weakly
connected components which represent different instances.

Definition 6: (Class Object Interaction Graph)
Let C € COM be one software component and
SD¢c be its software component execution data. For
each o¢ € SD¢e, Gop = (Vs.,Rs,) is the Class
Object Interaction (COI) graph of oc such that (1)
Voo =1{0 € Ucol|3e € 0¢ : #caticeco(e) = 0} and  (2)

Rac = {(Oia Oj) € VU(; X VO’(]|E|e S JC:#callerCO(e) =0; A\
#calleeCO(e) = 0j}~

According to Definition 6, a COI graph contains (1) a
set of class objects, i.e. vertices; and (2) a set of inter-
action relations between them, i.e., edges. It is worth not-
ing that the interaction relation among class objects is ob-
tained from the calling relation among method calls. Given
a class object interaction graph coi, we use coi.V and
coi.R to represent its vertex and edge sets. Considering
the example trace ocp of C, its class object interaction
graph, denoted as coip, is shown in Fig. 2(a). Its class ob-
ject set coi;.V={@5746e7cc, @3b7359ch, @614b152d} and
interaction relation set coii.R={(@3b7359ch, @5746e7cc),

call @614b152d

(a) coij of oc;

(®) coizofac’

Fig. 2. Examples of Class Object Interaction Graphs for two Different Traces

(@614b152d, @5746e7cc)}. If we modify ooy to oy =
{e1,e2,e4,€6,€7,€8,€9}, its class object interaction graph,
denoted as cois, is shown in Fig. 2(b). The class object set is
coio.R={@5746¢7cc, @3b7359ch, @614b152d} and the in-
teraction relation set is coio. V={(@614b152d, @5746¢e7cc)}.

After constructing a class object interaction graph, the set
of vertices (class objects) included in each weakly connected
component corresponds to a component instance. A weakly
connected component of a directed graph is a maximal group
of vertices that are mutually reachable by violating the edge
directions. It can be easily obtained by several iterative DFS-
traverses [12] of its corresponding undirected graph. Consider
the execution trace o¢; and its COI graph in Fig. 2(a), it
has one weakly connected component, which means this trace
only relates to one component instance. Consider the execution
trace oy, and its COI graph in Fig. 2(b), it has two weakly
connected components, which means this trace relates to two
component instances and will be split into two different ones.

Definition 7: (Software Component Instance) Let
oc € SDe be a software component execution trace and
Gy = (Voo, Rs,) be its corresponding class object inter-
action graph. I,, = {I} [i > 1} CP(Vs.) is the compo-
nent instance set of o¢ such that (1) |J Igc =V, @

i>1

1<\1<‘I}',legc =0 A Ro N((IL, x T3 YU(IZ, x1L ) =0;
<i<y
and 3) 1), CP(Vor) : | Loy | > |Isel-

By recursively applying Definition 7 to each software ex-
ecution trace of a component, we can identify all instances
of this component. To enable the discovery of the behavior
of software components using process mining techniques,
software event logs of each component are required as input.

A software event log is obtained from a software component
execution data by instance identification. Each software case



is defined as a sequence of software events refer to one
identified component instance, and a software event refers
to a method call. Therefore, all attributes defined on method
calls are included for software events. To explicitly capture all
information that may exist in software event logs, we formalize
software events and their attributes as follows:

Definition 8: (Software Event) Let SDo be the software

execution data of component C. E= |J {ele €oc} is
occ€SD¢
the software event set of component C. All events e € F have

the following standard attributes: (1) #cqse(€) = I . Where
I, € Iy and #canecco(e) € 1, is the case of e; (2)
H#act(€) = (Fcaticec (€), #catteerr (€)) is the activity of e;
and (3) #time(€) = #startTime(€) is the timestamp of e.

A software event is identified by its activity name, e.g.,
#aci(er) = (class2, init()), and is denoted as class2.init().

Definition 9: (Software Case, Software Event Log) Let
E be the software event set of component C. The software
event log over E, denoted as L = {¢|p € E*}, is a finite
set of cases such that (1) each software event appears only
once in each case, i.e., Vo€ L, 1 <i<j<|p|: @i # 055
(2) each software event appears in one and only one case, i.e.,
Vee E,3peL:eco AN P €L, #¢:ecy;(3) all
events in the same case have the same #.,s. attribute
value, ie., Vo € L, 1 < 14,7 < || : #ease (i) = #case(5);
(4) all events with the same #.,¢. attribute value are in
the same case, i.e., Ve;, ¢ € E : #cose(€) = Fease(ej) =
Jp € L e,e; € @; and (5) all events
of the same case are ordered by the timestamp, i.e.,
Vo e L1 <i<j<|pl:#iime(pi) < H#time(p;)-

In the following discussion, we use E(L) = |J {ele € ¢}

p€EL

to denote the event set of a software event log L.

C. Component Behavioral Model Discovery

The software event log of a component contains a set
of cases, each describing one component instance, based on
which we can discover the component behavioral model.
Because a component usually has a hierarchical structure
represented as multi-level nested method calls, the discovered
component behavioral model should be able to depict this.
After obtaining a software event log, we recursively transform
it to a hierarchical one using the calling relation among
methods. To define the hierarchical structure, we first define its
root that we call main (or top-level) event log. It is composed
of a set of events whose caller classes do not belong to the
current component, i.e., they are invoked by other components.

Definition 10: (Main Event Log) Let C' € P(%cy1) be a
software component, L be its software event log and E(L)
be its event set. ME(L) = {e € E(L)[3p € L:e € ¢ A
#ealiceo (€) € C A #catterc(e) ¢ C} is the main event set of
L. mLogyp = {¢lmE(L) |¢ € L} is the main event log of L.

To introduce the nesting relationships in the hierarchical
structure, we define the nested event set and events invoked
by each nested event in the following.

Definition 11: (Nested Event Set) Let L be a software event
log and E(L) be its event set. NE(L) = {ne € E(L)|3¢ €

e; e €y €6 es
I

call call call call

v
€3 €s €7 €

Fig. 3. Hierarchical Structure of oy

L,e € p:ine € pN #callerCO(e) = #calleeCO(ne)} is the
nested event set of L.

Definition 12: (Invoked Event Set) Let L be a software
event log, E(L) be its event set and NE (L) be its nested event
set. The event set of L invoked by ne € NE(L) is defined as:
IE(ne,L) = {e € E(L)|3p € L : e € ¢ A #catlerco(e) =
#calleeCO(ne)}-

According to Definitions 11-12, the nested event set of ¢
is {ea, eq, €6, €5} and the invoked event set of es is {e3}.

Given a software event log L and mlLogy is its main
event log, NEy(mLogy) = E(mLogg) N NE(L) is the nested
event set of mLogy and NES(mLogy) = {#act(e)le €
NEg(mLogo)} is the nested event class set of mLogg.

Definition 13: (Hierarchical Software Event Log) Let L
be a software event log. HL(L) = (mLogy, HL(mLogy)) is
defined as the hierarchical software event log of L where:
mLogy is the main event log of L; and

o HL(mLogy)=0 if NEg(mLogy) = 0; otherwise

o HL(mLogy)={(nec,ILogyec, HLILOGne: ) Inec GNEg(mLogg)}

where 1Logpec = U
ne€ NEy(mLogp)

#act(ne) = nec} is the invoked event log of L by nec.

{(pFIE(ne,L) ‘(P € LA

Taking a software event log with only trace ooy as
example. Its hierarchical structure is shown in Fig. 3.
According to Definitions 10-11, its main event log is
mLogy = [(es, ez, €y, €6, €5)], its nested event set is
NEg(mLogg) = {eg, ey, s, es} and nested event class set
is NES (mLogg) = {class1.init(), class1.perform()}.
Then, the event logs invoked by class!.init() and
class1 .perform() arc ILOgclassl.init() = [<65’>7 <6’7>] and
IL0G 1ass1.perform() = [{€5), (€9)]. The recursive definition
stops at this level as the invoked event logs of class! .init()
and class!.perform() do not contain any nested events.

Given the hierarchy of a software event log, we need
to discover a hierarchical process model to explicitly show
the behavior. For this step, we can recursively apply any
process discovery approach, including techniques such as the
Inductive Miner[7]. Instead of obtaining a normal Petri net, the
discovered Petri net is extended with a set of nested transitions.

Definition 14: (Petri net with Nested Transitions) A Petri
net with nested transitions is a 2-tuple PNy = (PN, ) such
that (1) PN = (P, T, F,l) is a labeled Petri net; and (2) N :
T — {A, N} is a mapping function such that V¢ € T, N'(t) =
A represents t is an atomic transition and A/ (¢) = N represents
t is a nested transition.

Given a PNy, we denote by T, ={t € T| N(t) = A}
the atomic transition set and T, = {t € T| N () = N} the
nested transition set. In the following, we will use the notation
T.o and T,y for PNyy. Fig. 4 shows a simple example of



Fig. 4. An Example of Petri Net with Nested Transitions

class2.init() [ classL.init) | cla.vsl.pcm
> T
P )

PNt il PNy H

.
 Olamzacmi O} (O emtwonio O

Fig. 5. An Example Hierarchical Petri Net with Nested Transitions

Petri net with nested transitions where an atomic transition
is drawn using single-line rectangle (m) and a double-line
rectangle (n) is used to draw a nested transition.

Let %py be the universe of Petri net with nested transitions.
Based on calling relation, we recursively define the hierarchi-
cal Petri net with nested transitions.

Definition 15: (Hierarchical Petri net with Nested Transi-
tions) HPN = (PNyg, HPN(PNyy)) is defined as a hierar-
chical Petri net with nested transitions where: PNy € Upn
is the top-level Petri net with nested transitions; and

e HPN(PNyg) = 0 if Ty = 0; otherwise

e HPN(PNpy) = {(ti, PNn;, HPN(PNp;))|ti € Tho}

where PNy; € py is the Petri net with nested
transitions that is called by ¢;.

The behavior discovery approach takes a hierarchical soft-
ware event log as input, and discovers a hierarchical Petri
net with nested transitions. As the hierarchical software event
log already has the notion of hierarchies, we only need to
(1) traverse different levels of software event log to discover
its PNy and (2) construct the mapping from each nested
transition (nested event class) to its corresponding PNy .

Definition 16: (Discovery) Let %y be the universe of
hierarchical software event log and %py be the universe of hi-
erarchical Petri net with nested transitions. D : Zx1, — %HPN
is a discovery function such that for each HL(L) € nr,
D(HL(L)) = HPAN is defined as following:

e PNpng = (PNy,Ny) such that: PNy = a(mLogg) where

« represents a process discovery algorithm; and V¢ € T},
No(t)=N if Fnec € NEF(mLogp) : I(t) = nec,
Ny(t) = A otherwise; and

o HPN(PNpp) =0 if T,y = 0; otherwise

e HPN(PNny) = {(ti, PNn;, HPN(PNp;))|ti € Tho}

where PNy; = (PN, ;) such that
PN; = a(ILogye.) where nec € NES (mLogy)
and nec=1I(t;); and VieT;, N;(@t)=N if

Inec’ € NES(ILogne. ) : 1(t) =nec’, N;(t) = A otherwise.
An example of a hierarchical Petri net is shown in Fig. 5.
It can be obtained from the example execution trace o ¢;. The
top-level PNy contains one normal transition (class2.init())
and two nested transitions each referring to a Petri net
with nested transitions. More specifically, nested transition
classl.init() refers to PNy; and classl.perform() calls PNys.
Because both PNy; and PNy do not contain any nested
transitions, the recursive definition stops at this level.

V. IMPLEMENTATION IN PROM

The open-source (Pro)cess (M)ining framework ProM 6
[18] has been developed as a completely plugable environment
for process mining and related topics. It can be extended by
adding plug-ins, and currently, more than 1500 plug-ins are
included. The framework can be downloaded freely 2.

The proposed software component behavior discovery ap-
proaches have been implemented as two consecutively exe-
cuted plug-ins in our ProM 6 package 3. The first one, called
Identifying Software Event Log of Components, is used to
generate a set of software event logs for different components
by taking (1) the original software execution data, and (2) a
configuration file describing which classes belong to which
components. The second plugin, Software Component Behav-
ior Discovery, takes the software event log of each component
as input, and returns its behavioral model.

VI. EXPERIMENTAL ANALYSIS

In this section, we use an online bookstore software as
a case to show that the proposed approach exploits both
component information and hierarchical structure and as a
result produces more understandable behavioral models. This
case contains three components, i.e., Starter, SearchOffer and
OrderAndDelivery. The Starter component contains Book-
storeStarter class, the SearchOffer component consists Cat-
alog, BookSeller and Bookstore classes, and the OrderAndDe-
livery component contains Orderclass and Delivery classes.
More specifically, the software starts with the instantiation of
the Starter component, the SearchOffer component is used to
get an offer for each book and the OrderAndDelivery compo-
nent is used to generate book orders and perform delivery for
all selected books. We first instrument the source code using
Kieker framework [19]. Therefore, the method invocations
are stored as software execution data. Each method call has
all attributes defined in Definition 3. In this experiment, we
created a software execution data by collecting 20 traces which
cover all possible execution scenarios.

Without considering component information and hierar-
chical structure of the software, we can directly transform
the original software execution data (i.e., without using the
approach described). This yields a software event log with
20 cases, denoted as OnlineBookstore.xes, where each case
refers to an execution trace. Taking this event log as input,
we run the Inductive Miner with default settings and discover
a behavioral model as shown in Fig. 6. It is a flat Petri net
model where the labeled transitions represent methods and
the places represent method invocation relations. The model
is a bit spaghetti-like and contains misleading behavior which
hinders the understanding of how software really behaves. For
example, the model has some self-loops which do not exist in
our software implementation. Using our approach, we split the
software execution data to different components, and a set of
software event logs each refers to one component are obtained.

Zhttp://www.processmining.org
3https://svn.win.tue.nl/repos/prom/Packages/CongLiu/
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Fig. 7. Class Object Interaction Graph of one Execution Trace

In addition, one software execution may trigger multiple
executions of a component, i.e., multiple component instances.
For example, the instance number of component SearchOlffer is
the same with the number of searched books as this component
is iteratively instantiated for each book. Fig. 7 gives an
example of class object interaction graph of one SearchOffer
component execution trace. It contains two weakly connected
sub-graphs, each refers to one instance of SearchOffer com-
ponent. Next, we refactor each component log by identifying
component instances as new case notion using the approach
in Section IV-B.

According to Table II, the refactored logs of different

TABLE 11
SOFTWARE EVENT LOG S1ZE COMPARISON

Log Name Number of Cases
OnlineBookStore.exs 20
Starter.xes 20
SearchOffer.xes 54
OrderAndDelivery.xes 20

source 30

init(+Order+BookstoreExample

init()+Bookstore+BookstoreExample

sink 26

‘generateOrder()+Order+BookstoreExample

searchBook()+Bookstore+ BookstoreExample

init()+Delivery+BookstoreExample

deliver()+Delivery +BookstoreExample

source 20

getOrder()+Ordert BookstoreExample

sink 31 %

OrderAndDelivery

sink 21

Starter SearchOffer

Fig. 8. Behavioral Models of Different Components

“*Carl,

BookstoreExample. Bookstore:scarchBook()

Fig. 9. Behavioral Model of the SearchOffer Component

components are Starter.xes with 20 cases, SearchOffer.xes with
54 cases, and OrderAndDelivery.xes with 20 cases. The reason
why SearchOffer.xes has more than 20 cases is that each
execution will invoke an arbitrary number (exactly the number
of searched books) of instances. Taking these refactored logs
as inputs, we run the Inductive Miner again for different
components and obtain one behavioral model per component
as shown in Fig. 8. Fig. 8 shows three flat Petri nets each
describing the behavior of one component. The behavioral
model of each component is much simpler compared to that in
Fig. 6. However, given the observation that software usually
has a hierarchical structure implemented as multi-level nested
method calls, the discovered flat models still cannot give an
accurate description of its actual behavior.

Next, we take the notion of hierarchy into account and
perform hierarchial behavior discovery for each component



Fig. 10. Behavioral Model of the OrderAndDelivery Component

using the approach in Section IV-C. The discovered hierarchi-
cal behavioral models of SearchOffer and OrderAndDelivery
are shown in Figs. 9-10 where: (1) a single-line rectangle rep-
resents an atomic method call; and (2) a double-line rectangle
stands for a nested method call which refers to another sub-net.

By comparing the flat model in Fig. 6 with the hierar-
chical models of each component, we argue that the use of
component information and hierarchy helps to give a better
understanding of how software behaves from the perspective
of individual component.

VII. CONCLUSION

By exploiting tremendous amounts of software execution
data, this paper proposes to utilize process mining techniques
to discover behavioral models for each software component.
To do this, we first identify component instances and construct
software event logs for each component from the raw software
execution data. Then, based on the software event log, we con-
struct its corresponding hierarchical software event log using
calling relations among methods. Next, the software behavioral
model, represented as a hierarchical Petri net with nested
transitions, is discovered from a hierarchical software event log
by recursively applying existing process discovery techniques.
Our proposed approaches are demonstrated through an online
bookstore software case and implemented in the open source
process mining toolkit ProM.

This work serves as a starting point for several re-
search directions. Given a software with several components,
these components usually interact with each other by inter-
component method invocations. The representation and dis-
covery of inter-component interactions are our on-going work.
A component is a set of classes collaborating to perform a
particular function. This paper assumes that the mappings
between classes and components are known beforehand. In
real-life cases, for instance some legacy software systems, the
development documents are incomplete or even unavailable.
Automatic identification of components (groups of classes)
from software execution data will be investigated in the future.
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