
Enacting Interorganizational Work
ows Using

Nets in Nets

Wil van der Aalst1, Daniel Moldt, R�udiger Valk, and Frank Wienberg2

1 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The

Netherlands, wsinwa@win.tue.nl
2 University of Hamburg, Department for Computer Science, Vogt-K�olln-Str. 30,

D-22527 Hamburg, fmoldt, valk, wienbergg@informatik.uni-hamburg.de

Abstract. The primary task of a work
ow management system is to

enact case-driven business processes by joining several perspectives, in-

cluding the control-
ow perspective, the resource perspective, the data

perspective, the task perspective, and the operation perspective. In this

paper, we propose reference nets, a particular class of Petri nets where

the tokens can be references to other Petri nets, as a technique for clearly

specifying each of the perspectives and the relation between these per-

spectives. The \nets in nets" paradigm o�ered by reference nets also

allows to model mobility of a business object like a work
ow instance,

a resource, a data element, a task, or an operation. Therefore, reference

nets are particularly suitable for specifying and enacting interorganiza-

tional work
ows. To hide aspects only relevant for a single organization,

we use advanced inheritance concepts to facilitate the exchange of busi-

ness objects across organizational boundaries. To show the applicability

of the approach, we have implemented a simple work
ow engine using

Renew: a Java-based interpreter of reference nets.

Keywords: Inheritance, Nets in nets, Reference nets, Work
ow, Work-


ow management system

1 Introduction

This paper proposes the use of reference nets [KW99] to tackle the following two

problems. The �rst problem is the unclear mixture of perspectives in the current

generation of work
ow management systems making work
ow speci�cations in-

complete and diÆcult to interpret. The second problem is the absence of tools

to describe and enact the mobility of business objects required for interorgani-

zational work
ows.

To address the �rst problem, we introduce some of the basic work
ow terms

using the following �ve perspectives: (1) control-
ow (or routing) perspective,

(2) resource (or organization) perspective, (3) data (or information) perspective,

(4) task (or function) perspective, and (5) operation (or application) perspec-

tive. Since the main focus of this paper is not to model any of these perspectives

in detail, but to model their relations, we only give a brief description of each

perspective. Refer to [Aal98] and (for a similar approach) to [JB96] for further



d
eta

ils.
In

th
e
co
n
tro

l-

o
w
p
ersp

ectiv
e,

w
o
r
k


o
w

p
r
o
c
e
s
s
d
e
�
n
it
io
n
s
(w
o
rk


o
w

sch
em

a
s)

a
re

d
e�
n
ed

to
sp
ecify

w
h
ich

t
a
s
k
s
n
eed

to
b
e
ex
ecu

ted
a
n
d
in

w
h
a
t

o
rd
er.

W
o
rk


o
w

p
ro
cess

d
e�
n
itio

n
s
a
re

in
sta

n
tia

ted
fo
r
sp
eci�

c
c
a
s
e
s.

S
in
ce

a

ca
se

is
a
n
in
sta

n
tia

tio
n
o
f
a
p
ro
cess

d
e�
n
itio

n
,
it
co
rresp

o
n
d
s
to

th
e
ex
ecu

tio
n
o
f

co
n
crete

w
o
rk

a
cco

rd
in
g
to

th
e
sp
eci�

ed
ro
u
tin

g
.
In

th
e
r
e
s
o
u
r
c
e
p
ersp

ectiv
e,
th
e

o
rg
a
n
iza

tio
n
a
l
stru

ctu
re

a
n
d
th
e
p
o
p
u
la
tio

n
a
re

sp
eci�

ed
.
T
h
e
d
a
ta

p
ersp

ectiv
e

d
ea
ls
w
ith

c
o
n
t
r
o
l
a
n
d
p
r
o
d
u
c
t
io
n
d
a
t
a
.
C
o
n
tro

l
d
a
ta

a
re

d
a
ta

in
tro

d
u
ced

so
lely

fo
r
w
o
rk


o
w

m
a
n
a
g
em

en
t
p
u
rp
o
ses,

e.g
.,
va
ria

b
les

in
tro

d
u
ced

fo
r
th
e
ro
u
tin

g

o
f
ca
ses.

P
ro
d
u
ctio

n
d
a
ta

a
re

in
fo
rm

a
tio

n
o
b
jects

(e.g
.,
d
o
cu
m
en
ts,

fo
rm

s,
a
n
d

ta
b
les)

w
h
o
se

ex
isten

ce
d
o
es

n
o
t
d
ep
en
d
o
n
w
o
rk


o
w

m
a
n
a
g
em

en
t.
T
h
e
ta
sk

p
ersp

ectiv
e
d
escrib

es
th
e
elem

en
ta
ry

o
p
era

tio
n
s
p
erfo

rm
ed

b
y
reso

u
rces

w
h
ile

ex
ecu

tin
g
a
ta
sk

fo
r
a
sp
eci�

c
ca
se.

In
th
e
o
p
era

tio
n
a
l
p
ersp

ectiv
e,
th
e
rela

tio
n

b
etw

een
o
p
era

tio
n
s,
d
a
ta

a
n
d
a
p
p
lica

tio
n
s
is
g
iv
en
.
T
y
p
ica

lly,
o
p
era

tio
n
s
crea

te,

rea
d
,
o
r
m
o
d
ify

co
n
tro

l
a
n
d
p
ro
d
u
ctio

n
d
a
ta

in
th
e
in
fo
rm

a
tio

n
p
ersp

ectiv
e.
(In

th
is
p
a
p
er,

w
e
w
ill

fo
cu
s
o
n
co
n
tro

l
d
a
ta
.)
M
o
st
o
p
era

tio
n
s
a
re

(p
a
rtia

lly
)
im

p
le-

m
en
ted

b
y
a
p
p
lica

tio
n
s.
A

w
o
r
k


o
w
d
e
�
n
it
io
n
is
th
e
sp
eci�

ca
tio

n
o
f
a
w
o
rk


o
w

co
v
erin

g
a
ll
a
sp
ects

a
n
d
lin

k
in
g
th
e
�
v
e
p
ersp

ectiv
es

to
g
eth

er
(see

F
ig
u
re

1
).

C
a
ses

a
re

in
sta

n
ces

o
f
a
w
o
rk


o
w

d
e�
n
itio

n
a
n
d
a
re

h
a
n
d
led

a
cco

rd
in
g
ly.

A

w
o
r
k


o
w

m
a
n
a
g
e
m
e
n
t
s
y
s
t
e
m

a
im

s
a
t
su
p
p
o
rtin

g
th
e
�
v
e
p
ersp

ectiv
es

sh
o
w
n

in
F
ig
u
re

1
.
T
h
e
b
u
ild

-tim
e
p
a
rt

o
f
th
e
w
o
rk


o
w

m
a
n
a
g
em

en
t
sy
stem

a
llo
w
s

fo
r
th
e
sp
eci�

ca
tio

n
o
f
th
ese

p
ersp

ectiv
es.

T
h
e
ru
n
-tim

e
p
a
rt

o
f
th
e
w
o
rk


o
w

m
a
n
a
g
em

en
t
sy
stem

ta
k
es

ca
re

o
f
th
e
a
ctu

a
l
en
a
ctm

en
t.

control-flow perspective

resource perspective

data perspective

task perspective

operation perspective

enactm
ent service

object nets
content

system
 net

structure

w
orkflow

 design

w
orkflow

 architecture

F
ig
.
1
.
T
h
e
�
v
e
p
ersp

ectiv
es

co
n
sid

ered
in

th
is
p
a
p
er.

T
o
d
a
y
's
w
o
rk


o
w

m
a
n
a
g
em

en
t
sy
stem

s
h
a
v
e
p
ro
b
lem

s
sp
ecify

in
g
th
e
rela

-

tio
n
s
b
etw

een
th
ese

p
ersp

ectiv
es.

M
o
st

co
m
m
ercia

l
w
o
rk


o
w
m
a
n
a
g
em

en
t
sy
s-

tem
s
o
n
ly

a
llo
w
fo
r
th
e
ex
p
licit

sp
eci�

ca
tio

n
o
f
th
e
co
n
tro

l-

o
w
p
ersp

ectiv
e
a
n
d



the resource perspectives. All the other perspectives are modeled implicitly in

the control-
ow perspective. For example, data elements, operations, and tasks

are de�ned inside the work
ow process de�nition. The fact that the control-


ow perspective dominates all other perspectives restricts the reuse of parts of

the work
ow de�nition and limits the extensibility of the work
ow management

system with additional perspectives. Moreover, since all perspectives are inter-

twined, it is impossible to exchange cases, resources, data, tasks, or operations

between work
ow enactment services in di�erent organizations. This brings us

to the second problem addressed in this paper.

E-commerce, in its earliest incarnation mainly driven by Electronic Data In-

terchange (EDI), has traditionally been used by larger corporations to share and

exchange information between business partners and suppliers. However, with

the explosive growth of the Internet in the last couple of years and emerging

technologies such as Java and XML, electronic commerce is now able to o�er

solutions for a much broader range of business processes than EDI previously

addressed. Moreover, E-commerce technologies can also be used inside compa-

nies. As a result of these developments, interorganizational work
ows [Aal99] are

becoming more important. One can think of work
ows crossing organizational

boundaries between corporations in an electronic-commerce setting (business-

to-business E-commerce) but also of work
ows involving multiple business units

within one corporation (i.e., intraorganizational work
ows). Today's commercial

work
ow management systems use a centralized enactment service, and there-

fore, have problems dealing with interorganizational work
ows. This centralized

view is re
ected in both the build-time and the run-time part of the work
ow

management system. Therefore, fundamentally new concepts are needed to sup-

port interorganizational work
ows in a comprehensive manner.

In this paper, we propose reference nets as a partial solution for the two

problems identi�ed. Reference nets are a class of Petri nets using the \nets in

nets" paradigm [Val87]. Using this paradigm tokens in the Petri net are repre-

sented by Petri nets. Many variants of such an approach have been proposed

[Lak95,Hol95,Val87]. In the notion of object-nets [Val98], tokens of a so-called

system-net correspond to marked Petri nets on a lower level, called object-nets.

Since the object-nets actually reside in the system-net, we call this the value-

semantics approach. Reference nets use another approach: The object-nets do

not actually reside in the system-net, but tokens are references to object-nets.

This means that multiple tokens can reference the same object-net. Therefore,

in analogy to programming language, we use the term reference semantics. In

this paper, we want to illustrate the enactment service based on nets in nets by

an actually executable model. We were forced to use nets according to the ref-

erence semantics for pragmatic reasons: Renew (The Reference Net Workshop,

[KW99]) is to our knowledge the only tool supporting execution of any kind of

nets in nets, and it uses reference semantics.

We model the �ve perspectives, i.e., the control 
ow, resource, data, task, and

operation perspective, in terms of reference nets. An instance of each perspective

corresponds to one marked object-net. The system-net joins all perspectives and



can be seen as the enactment service of a work
ow management system. Since

every aspect is modeled in a separate object-net, it is not necessary to intertwine

all aspects. Moreover, the system-net is generic, i.e., independent of actual work-


ows and organization. One can think of the system-net as an architectural model

and the object-nets as the actual content. The work
ow designer only creates

object-nets. The system-net is given by the desired characteristics of the work
ow

management system. This division between structure (system-net) and content

(object-nets) has some interesting features. First of all, the same object-nets can

be used in di�erent system nets representing di�erent architectures. Second, a

system-net can be used to enact arbitrary work
ows satisfying some minimal

requirements. The clear division between structure and content makes the re-

lations between the perspectives explicit and subject to discussion, whereas in

most work
ow management systems these issues remain hidden. (Mobile [JB96]

is one of the rare systems clearly separating the di�erent perspectives.) Another

important feature of the \nets in nets" approach is the ability to describe mobil-

ity in a direct and transparent manner. By simply moving a token corresponding

to an object-net from one place to another, we can model the exchange of cases,

resources, data elements, tasks, and operations.

For interorganizational work
ows it is not realistic to assume that all or-

ganizations involved use the same work
ow enactment service. Moreover, the

perspectives are typically modeled in a di�erent way. For example, one orga-

nization uses more tasks to handle a case than another organization. Another

example is the modeling of resources: The rules with respect to the allocation

of resources may vary from one organization to another. For this purpose, we

use the inheritance notions introduced in [AB97,Bas98,BA99]. If one object-net

is a subclass of another object-net, then the transfer rules presented in [AB99]

can be used to map the state of the superclass onto the subclass and vice versa.

This means that if there is a subclass/superclass relation between perspectives

in di�erent organizations, then there is no problem to migrate cases, resources,

data elements, tasks, and operations, i.e., mobility is guaranteed.

To illustrate our approach based on reference nets and advanced inheritance

notions, we have developed a prototype enactment service using Renew.

In the remainder of this paper, we �rst introduce reference nets and the

Renew tool. Then we model the �ve perspectives using object-nets. In Section 4

we link these perspectives together using a generic system-net. Then, we focus

on interorganizational work
ows and the role of inheritance to facilitate the

migration of object-nets. Finally, the strengths and weaknesses of the approach

proposed are evaluated.

2 Reference nets: Formalism and Tool

The reference net formalism de�nes a special class of high-level Petri nets that

uses Java as an inscription language and extends Petri nets with dynamic net

instances, net references, and dynamic transition synchronization through syn-

chronous channels. Reference nets consist of places (graphically represented by



ellipses), transitions (boxes), and arcs (lines with arrow tips). There are, in

essence, three types of arcs. Firstly, ordinary input or output arcs that come

with a single arrow head. These behave just like in ordinary Petri nets, remov-

ing or depositing tokens at a place. Secondly, there are reserve arcs, which are

simply a shorthand notation for one input and one output arc. E�ectively, these

arcs reserve a token during the �ring of a transition. Thirdly, there are test arcs,

which have no arrowheads at all. A single token may be accessed, i.e., tested, by

several test arcs at once.

Each place or transition may be assigned a name, displayed in bold type.

Every net element can carry semantic inscriptions. Places can have an ar-

bitrary number of initialization expressions. The initialization expressions are

evaluated and the resulting values serve as initial markings of the places. By

default, a place is initially unmarked. Arcs can have an optional arc inscrip-

tion. When a transition �res, its arc expressions are evaluated and tokens are

moved according to the result. Transitions can be equipped with a variety of

inscriptions. Expression inscriptions are ordinary expression that are evaluated

while the net simulator searches for a binding of the transition. The inscrip-

tions are Java expressions. The result of this evaluation is discarded, but in

such expressions you can use the equality operator = to in
uence the binding of

variables that are used elsewhere. Guard inscriptions are expressions that are

pre�xed with the reserved word guard. A transition may only �re if all of its

guard inscriptions evaluate to true. By this we cover the basic colored Petri net

formalism.

There are two kinds of tokens: valued tokens and tokens which correspond

to a reference. By default, an arc will transport a black token, denoted by [].

But if you add an arc inscription to an arc, that inscription will be evaluated

and the result will determine which kind of token is moved.

Variables are bound to one single value during the �ring of a transition.

However, during the next �ring of the same transition, the variables may be

bound to completely di�erent values. This is quite similar to the way variables

are used in logical programming, e.g., in Prolog.

The inscription language of reference nets has been extended to include tu-

ples. A tuple is denoted by a comma-separated list of expressions that is enclosed

in square brackets. Tuples are useful for storing a whole group of related values

inside a single token and hence in a single place.

Additionally there are creation inscriptions that deal with the creation of

net instances, and synchronous channels. A net is speci�ed as a static structure.

However, an instance of the net has a marking that can change over time. When-

ever a simulation is started, a new net instance is created. Every net has to be

given a name. New net instances are created by transitions that carry creation

inscriptions, which consist of a variable name, a colon (:), the reserved word

new, and the name of the net.

A net does not disappear simply because it is no longer referenced. On the

other hand, if a net instance is no longer referenced and none of its transition

instances can possibly become enabled, then it is subject to garbage collection.



Net instances need some means of communication. We chose to use syn-

chronous channels, which were �st considered for colored Petri nets by Chris-

tensen and Damgaard Hansen in [CH92]. They synchronize two transitions which

both �re atomically at the same time. Both transitions must agree on the name

of the channel and on a set of parameters before they can synchronize.

Here we generalize this concept by allowing transitions in di�erent net in-

stances to synchronize. In association with classical object-oriented languages

we require that the initiator of a synchronization owns a reference (\knows")

the other net instance.

The initiating transition must have a special inscription, the so-called down-

link. A downlink makes a request at a designated subordinate net. A downlink

consists of an expression that must evaluate to a net reference (usually a vari-

able), a colon (:), the name of the channel, and an optional list of arguments.

On the other side, the transition must be inscribed with a so-called uplink.

An uplink serves requests for everyone. Therefore the expression that designates

the other net instance is missing for uplinks.

In reference nets, this denotes the net instance in which a transition �res.

Generally, transitions with an uplink cannot �re without being requested

explicitly by another transition with a matching downlink. It is allowed that a

transition has multiple downlinks. It is also allowed that a transition has both

an uplink and downlinks.

Channels can also take a list of parameters. Although there is a direction

of invocation, this direction need not coincide with the direction of information

transfer. Indeed it is possible that a single synchronization transfers information

in both directions.

A tool for specifying and executing reference nets called Renew (Reference

Net Workshop) is used here to build the executable models of this contribution.

Renew itself is a Petri-net-based software package developed by members of the

Computer Science department of the University of Hamburg. It is implemented

in Java and is freely available [KW99]. It o�ers an intuitive GUI for building net

models and viewing simulation runs. Both reference nets and their supporting

tool Renew are based on the programming language Java. To be able to use

them to their full capacity, some knowledge of Java is required.

The main strength of Renew lies in its openness and versatility. It is impor-

tant to notice that the use of Java (or a similar language) is the prerequisite to

allow for the portability.

3 Modeling perspectives as object-nets

Each of the perspectives introduced in the following can be represented inde-

pendent of the other perspectives, but interfaces have to be provided to have

reasonable models. These interfaces to the other perspectives have to be con-

sidered carefully. Using reference nets object-oriented principles can be applied

to support the separation of concerns. In this section we will describe each per-



spective separately by reference nets with the interpretation that these nets are

object-nets. The integration within the system-net follows in the next Section 4.

3.1 Control-
ow perspective

Work
ows and their instances can be modeled using sound work
ow nets as

de�ned in [Aal98]. Due to the use of reference nets this de�nition is adopted

here. A work
ow net (WF-net) is a reference net with one source transition

and one sink transition. The source transition has a synchronous channel named

new() and the sink transition has one named done(). Every node of the net is

on a path from the source to the sink. Except for synchronous channels the net

inscriptions are not included in this de�nition.

Not every work
ow net is acceptable, e.g., the work
ow net should not dead-

lock. Therefore, the soundness property de�ned in [Aal98] is used. For sound

behavior of work
ow nets it is necessary that after instantiation (i.e., the �ring

of the source transition new()) proper termination is guaranteed: From all pos-

sible reachable states termination (i.e., the �ring of the sink transition done())

must be possible and after termination no part is allowed to be active anymore

and all places have to be empty or may only contain references to inactive parts,

e.g., to the initial data of the net instance. When a work
ow instance is instanti-

ated, the source transition has to synchronize with the environment to start this

case. The instance will be deleted when no reference to the work
ow instance

exists and the synchronous channel done is executed.

Figure 2 shows an example of a work
ow net. Here a fork and a join for the

:start("Verify") :commit()

:rollback()

:done()

:new()

OfficeWorkflow

:start("Complete") :commit()

:rollback()

Fig. 2. An example of a work
ow net modeling tasks in an oÆce.

parallel execution of the example tasks Verify and Complete are modeled (also

called AND-Split and AND-Join, respectively). Each task has a start and two

ends in this particular model. The execution of a task can fail and hence at the

end it has to be determined whether a commit or a rollback has to occur. By

simply removing the rollback opportunity the structure becomes simpler. For



each task the possibility of a failure can be modeled within the work
ow, hence

this kind of information belongs to the work
ow.

The communication to other perspectives is done by the communication with

the tasks which are triggered by the work
ow. For this the synchronous chan-

nels are used. The names used in Figure 2 are new for the initialization of the

work
ow, start(taskname) for the start of the task with the name taskname,

commit for the successful termination of the task, rollback for the unsuccessful

termination of the task, and done for the termination of the work
ow.

The fork and join tasks are \silent" actions. They occur without interaction

with the environment, i.e. the system-net. If the system model should also cover

the control of this kind of actions, then the appropriate channels can easily be

added.

3.2 Resource perspective

Resources can have an arbitrary behavior which is re
ected in their models.

However, in this contribution we use a very simple model, as can be seen in

Figure 3 which presents a trivial behavior. In Figure 3 the initialization is done by

free

busy

:use(role)
:release()

use
release

Resource

:new(role)

role

role

rolerole

role

Fig. 3. An example of a Resource net.

the new(role) channel which receives the parameter role. This allows providing

exactly one role for a resource. This role is used in the use channel to determine

the role in which a resource can be used. In our example exactly one role is

present. However, more roles can easily be modeled. The release channel needs

no parameter hence the active role is determined by the use channel. The speci�c

behavior of the resource can of course be extended without any problems.

3.3 Data perspective

The data perspective covers only the control data, i.e., only the data relevant

for routing purposes. All other data is controlled by the application or, in our

terms used here, the operations.

The net in Figure 4 shows a very simple data model. Via the synchronous

channel create(name,value) the environment can install data with the name

name and with the content value. Via the read channel the environment can

inspect the current value of the data. The update channel allows for the mod-

i�cation of the data. Using remove the data can be removed. In principle, the



:create(name,value)

:remove(name)

:read(name,value)

:update(name,value)
[name,value]

[name,value]

[name,value]

[name,oldvalue]

[name,value]

DataContainer

Fig. 4. An example of a data net.

simple structure can become arbitrarily complex. However, here the structure

can be kept simple, since data instances are associated to speci�c work
ow in-

stances.

From the data there is no link to other perspectives. Note that production

data could be modeled similarly. However, for reasons of simplicity we abstract

from these data.

3.4 Task perspective

Tasks are a central issue concerning the execution of an work
ow. They con-

stitute the speci�c actions within a work
ow instance. Structurally they are

similar to work
ow nets. Therefore, we assume that they have all the properties

of a sound work
ow net mentioned earlier. However, while they have one start

transition there may be a fail transition in addition to the end transition.

In Figure 5 and Figure 6 two examples are given. In Figure 5 the start tran-

:new(dc,res,role);
res: use(role) :end();

res: release()

:fail();
res: release()

res res

res

dc:create("Sum",123)

dc
dc dc dc

:exec("CalcSum",dc);
dc:read("Sum",val)

dc

dc:remove("Sum");

Verify

dc

requiredRole

role

"Official"

start end

fail

Fig. 5. An example of a task net (Verify).

sition has two synchronous channels. One for the creation of the task instance

(new(dc,res,role)) and one for the handling of roles which are allowed for this

particular type of task. The parameters are related to the data of the work
ow

(dc), to the resource required for this task instance (res), and to the role which

is determined within the task (role). In this case the only permissible role is

Official. The environment has to provide oÆcials which are used to execute the

task. Within this example the resources are not related to the execution. If neces-

sary, this could be done. The data reference is used to access the relevant data via



create and read. While here only some dummy actions are performed, arbitrary

complex ones can be modeled. The environment has to provide some means to

synchronize with the exec("CalcSum",dc) and the dc:read("Sum",val). This

is an example for the execution of an operation CalcSum to which the data is

passed in form of dc. Further actions like the read on some data or even some

communication with the resource is possible. The latter is not modeled here.

In general the operations can be manual, like check container in a container

terminal in the harbor of Hamburg, automatic, like calculate the tax sum in a

sale department, or it can be a mixture of both. The �rst is typically performed

by humans while the second operation is performed by speci�c application pro-

grams.

In Figure 6 a di�erent kind of task is modeled. The di�erence to Verify is

:new(dc,res,role);
res:use(role);
dc:create("Count",0);

:end();
res: release()

:fail();
res: release()

res res
res

Complete

dc

dc
dcdc

dc:read("Count",Count) dc:remove("Count")

requiredRole"Secretary"

role

:exec("AddData",dc)

start end

fail

guard Count<=0
[dc,Count]

[dc,Count]

[dc,Count]

guard Count>0

dcdc

dc:update("Count",3)

dc:update("Count",Count-1)
dc

Fig. 6. An example of a task net (Complete).

that the initialization of data is done with the start transition, the required role

is Secretary, and that there is a loop where the operation AddData is called at

least once. The value put into the data here is 3. AddData is executed and then

the value is read from the data. Guards are used to determine the control 
ow

with this task. Finally the task terminates either successfully or it fails.

Interfaces exist to the resources, the data, and the operations.

3.5 Operation perspective

The operations are kept very simple. They represent the concrete items that are

executed by the task. Figure 7 shows a generic model of an operation which can

be given a name during instantiation (see new) that is used for performing the

operation (see perform).

The operation can only be performed when it is in the internal state available.

Due to the autonomous behavior of object-nets, the operation can become un-

available at any time without control of the system-net. Operations are consid-

ered to be atomic. Therefore a single transition with an associated synchronous

channel is necessary for each interaction with the environment. If more complex

structures are needed, this is a hint to use tasks or even work
ows to model the

content of this \operation".



available

Operation
:new(name); :perform(name)

not_available

disappearreappear

executeOperation

name

namename

name

name name

Fig. 7. An example of an operation net.

In this section we showed that the perspectives can be modeled in terms

of object-nets and that each object net corresponds to a sound work
ow net.

This results in decoupled models which still need to be integrated. In the next

section a system-net is given to integrate all models to represent the complete

architecture of one work
ow engine.

4 Linking the perspectives to enact work
ows within one

organization

In this section we discuss the integration of the introduced perspectives. A

system-net is given that represents the general architecture of a work
ow engine

for one organizational unit. Between di�erent organizational units this engine

may vary. Here only one version is presented. Figure 12 shows the relationship

between the di�erent sites. The migration of work
ows, data, resources etc. be-

tween these sites is discussed in Section 5.

:new();
s: new System;
ow: new OfficeWorkflow(); s: addWorkflow(ow);
s: addTask("Complete");
s: addTask("Verify");
off: new Resource("Official"); s: addResource(off);
sec1: new Resource("Secretary"); s: addResource(sec1);
sec2: new Resource("Secretary"); s: addResource(sec2);
cs:new Operation("CalcSum"); s: addOperation(cs);
ad:new Operation("AddData"); s: addOperation(ad);

s
System

Fig. 8. An example of creating a concrete instance of the system-net.

The model in Figure 9 represents the system-net of one work
ow engine.

In the upper right corner is a declaration that imports code from the Renew

library. Figure 8 represents the corresponding initializations needed for a con-

crete simulation. An instance of a system net is created and equipped with the



Workflows

start

Executing
Workflows

w

[w,t,res]

end

w

w:start(T);
t=Net.forName(T).buildInstance();
t:new(dc,res,role);

t: end();
w:commit()

w

fail
t: fail();
w: rollback()

w

[w,t,res]

[w,t,res]

w

done

TaskTypes
T

[w,dc]

[w,dc]

:addWorkflow(w);
dc: new DataContainer

WorkflowData

w:done()

[w,dc]

t:exec(opName,dc);
op:perform(opName);

Operations

op

execOp

[w,t,res]

Resources

res

res

res

res

:addResource(res)

initW

initR

initOp
:addOperation(op)

System

import de.renew.simulator.*;

op

initT

T

:addTask(T)

Fig. 9. An example of a system-net.

example work
ow, tasks, resources, and operations. The transition inscription

in Figure 8 which is responsible for performing these initializations starts with

the uplink new. This uplink is automatically invoked at the beginning of the

execution. Then, a work
ow instance and its corresponding data are created

and initialized via the synchronous channel addWorkflow, which synchronizes

with the initW transition of the system net in Figure 9. Synchronously, the two

example tasks Verify and Complete and declared using the addTask-channel,

so that the system net can check if tasks speci�ed by work
ows do really exist.

Then three resources are added via the same kind of mechanisms (see initR

and addResource(res)): One Official and two Secretarys. Finally two op-

erations are created, CalcSum and AddData. It is important to note that all

initializations are invoked from the environment via a call of the appropriate

synchronous channels, making the system net entirely independent of concrete

work
ows, tasks, resources, and operations.

The structure of the engine is very simple, but also very generic. Work
ows

can be started (see start). This requires a work
ow, a resource, and a task (tem-

plate reference) and results in an executing work
ow. The synchronous channels

describe how the possible bindings are restricted and how the relation between

the system-net and the object-net are de�ned. From the place of the executing

work
ows the transition end for successful termination and the transition fail

for a failure of the case execution are used. In both cases resources and work
ows

are restored in their \original" places.



Fig. 10. Screenshot of the Renew tool at work.

5 Interorganizational work
ow and inheritance

In this section, we will show that the \nets in nets" paradigm also enables

mobility in the various perspectives: Moving a business object (e.g., work
ow

instance, a resource, a data element, a task, or an operation) from one system

to another can be modeled in a uniform manner. Mobility only makes sense if

there is some degree of freedom, i.e., it should be able to allow some variations

with respect to the perspectives identi�ed. For this purpose, we use inheritance.

5.1 Inheritance of dynamic behavior

Inheritance is one of the cornerstones of object-oriented programming and object-

oriented design. The basic idea of inheritance is to provide mechanisms which

allow for constructing subclasses that inherit certain properties of a given super-

class. In our case a class corresponds to an object-net class (i.e., the de�nition

of a net used to describe one of the �ve perspectives) and objects correspond to

object-net instances. Recall that each object-net class corresponds to a sound

work
ow net, i.e., an object life-cycle without deadlocks, livelocks, and other

anomalies. The work presented in [AB97,Bas98] deals with inheritance of dy-

namic behavior such object life-cycles. In particular, we will use of the notion



of projection inheritance to tackle the problems indicated in this paper. Note

that projection inheritance is just one of the four inheritance notions presented

in [AB97,Bas98].

The notion of projection inheritance is based on abstraction. Let x and y

be two object-net classes each represented by a sound work
ow net. If it is not

possible to distinguish x and y when arbitrary tasks of x are executed, but when

only the e�ects of tasks that are also present in y are considered, then x is a

subclass of y with respect to projection inheritance. For distinguishing x and y

under projection inheritance we only consider the tasks present in both nets

(i.e., in y). All other tasks in x are renamed to � . One can think of these tasks as

silent, internal, or not observable. Since branching bisimulation (see [Bas98] for

detailed information and literature pointers) is used as an equivalence notion, we

abstract from transitions with a � label, i.e., for deciding whether x is a subclass

of y only the tasks with a label di�erent from � are considered. The behavior

with respect to these tasks is called the observable behavior. Added tasks (i.e.,

tasks present in x but not in y) can be executed but are not observable by the

outside world, i.e., projection inheritance conforms to hiding or abstracting from

tasks new in x.

Figure 11 shows �ve work
ow processes modeled in terms of work
ow nets.

Work
ow process (A) consists of three sequential tasks: register, handle, and

archive. Each of the other work
ow processes extends this process with one ad-

ditional task: check. Work
ows (B), (D), and (E) are subclasses of (A) with

respect to projection inheritance. Work
ow process (B) is a subclass of work
ow

process (A) with respect to projection inheritance: If task check is abstracted

from, then the two processes behave equivalently (i.e., are branching bisimilar).

Work
ow process (C) is not a subclass with respect to projection inheritance:

Hiding task check introduces the possibility to skip task handle and thus change

the actual behavior. Work
ow process (D) is a subclass of work
ow process (A)

with respect to projection inheritance: Hiding this task results in two equivalent

processes. Work
ow process (E) is a subclass of work
ow process (A) with re-

spect to projection inheritance: The detour via task check can be hidden thus

yielding an observable behavior identical to (A).

In [AB97,Bas98] we proposed a number of inheritance-preserving transfor-

mation rules. These rules correspond to frequently used design constructs and

preserve one or more of the four inheritance notions. A detailed description

of these rules is beyond the scope of this paper, but given in [AB97,Bas98].

Therefore, we just give an informal description of the three rules that preserve

projection inheritance: PP, PJ, and PJ3. Details and subtle requirements are

omitted to simplify the presentation of the main ideas.

{ Tranformation rule PP can be used to add loops: The extension (i.e., the

added subnet) takes a token from a place in the original net but returns the

token after a while.

{ Inheritance-preserving transformation rule PJ inserts new tasks in-between

two tasks in the original net. The added subnet may have any structure



o

A

archive

register

p2

handle

p1

i i

p1

handle

register

p2

archive

B

o

check

i

p1

handle

register

p2

archive

D

o

check

p4

p3

i

p1

handle

register

p2

archive

C

o

check

i

p1

handle

register

p2

archive

E

o

check

p3

Fig. 11. Five routing diagrams describing variants of a simple work
ow process.

as long as it is guaranteed that once the subnet is activated eventually the

control is returned to the original net.

{ Transformation rule PJ3 also preserves projection inheritance and can be

used to add parallel behavior. (The rule is named PJ3 for historical reasons.)

The added subnet may use arbitrary routing constructs as long as some

straightforward properties are satis�ed.

The work
ow nets shown in Figure 11 can be used to illustrate the four rules.

The rules PP, PJ, and PJ3 can be applied to construct the work
ows (B), (E),

and (D) from work
ow (A) respectively. The three rules correspond to design

constructs that are often used in practice, namely iteration, sequential composi-

tion, and parallel composition. If the designer sticks to these rules, inheritance is

guaranteed. Moreover, if the designer sticks to the inheritance-preserving trans-

formation rules, then it is possible to guarantee instant transfers, i.e., it is pos-

sible to map states from a subclass to a superclass and vice versa. In [AB99]

these transfer rules are de�ned formally. Suppose that x is a subclass of y con-

structed using the rules PP, PJ, and PJ3. For any state in work
ow process y it

is possible to transfer a case to x such that the transfer is instantaneous (i.e., no

postponements needed) and does not introduce syntactic errors (e.g., deadlocks,

livelocks, and improper termination) nor semantic errors (e.g., the double exe-



cution of tasks or unnecessary skipping of tasks). Moreover, it is also possible to

transfer cases from subclass x to superclass y without any problems.

5.2 Putting inheritance to work

In the introduction we mentioned two bene�ts of the use of reference nets for (in-

terorganizational)work
ows: (1) clear separation of the perspectives and systems

architecture, and (2) mobility. i.e., the ability to move objects corresponding to

the various perspectives. The �rst bene�t was already demonstrated in the �rst

part of the paper. In the remainder we will focus on mobility. However, we �rst

show that inheritance also allows for the speci�cation of constraints with respect

to the object-net classes used for the various perspectives.

In Section 3, it was stated that the object-net classes used for the control-


ow perspective must be sound work
ow nets similar to those de�ned in [Aal98].

This can be checked using the veri�cation tool Wo
an [VA]. The object-net class

used to model the resource perspective should be a subclass under projection

inheritance of the object-net class shown in Figure 3. This implies that the

minimal life-cycle model for a resource comprises a release method and a use

method. These two methods need to be executed alternatingly. It is allowed to

add new methods that are executed in-between the existing methods (rule PJ),

in parallel (rule PJ3), or using the loop construct (rule PP). Similar remarks

hold for the other perspectives. The object-net class used to model the data

perspective should be a subclass (under projection inheritance) of the object-net

class shown in Figure 4. Additional methods could be introduced to model more

details about the management of data. The object-net class which brings into

play the task perspective should be an object life-cycle (i.e., a sound work
ow net

[Aal98]) starting with an operation to allocate a resource and an \end operation"

and/or a \fail operation" (both releasing the resource allocated). Finally, the

object-net class which speci�es the operation perspective should be a subclass

under projection inheritance of the object-net class shown in Figure 7.

Inheritance plays an important role in enabling mobility between di�er-

ent enactment services. The \nets in nets" paradigm allows for the transfer

of object-nets from one system-net to another system net. Consider for example

the schematic representation shown in Figure 12. This reference net connects

three system nets via so-called transfer transitions. Each of the three enactment

services (A, B, and C) corresponds to a system-net such as the one shown in

Figure 9. Each transfer transition transfers one or more object-nets from one

enactment service to another. Consider for example transition Transfer case AB

which transfers a work
ow instance (i.e., a case) and the associated data from

enactment service A to enactment service B. The transitions Transfer case BC

and Transfer case CA also move work
ow instances and the associated data from

one location to another. Moving a case with its associated data is easier than just

moving the case. If a case and its associated data reside at di�erent locations,

there has to be a mechanism to get to the work
ow related data. Note that

middleware such as CORBA can be used to simplify the access to remote data.

Figure 12 also shows two other transfer transitions: Transfer resource BC and



Transfer resource CB. These transitions move resources (in the form of object-

nets) from enactment service B to enactment service C and vice versa.

Figure 12 illustrates the modeling power of reference nets: In one model, it

is possible to deal with both the actual work
ows represented by the object-

nets and architectural considerations such as the transfer and distribution of

cases, data, resources, operations, and tasks. Note that related work on work
ow

inheritance [Bus99] does not consider these mobility aspects.

enactment service B
(system net)

TaskTypes

WorkflowsOperations Resources

WorkflowData

enactment service A
(system net)

TaskTypes

WorkflowsOperations Resources

WorkflowData

enactment service C
(system net)

TaskTypes

WorkflowsOperations Resources

WorkflowData

Transfer_case_AB

Transfer_resource_BC

Transfer_resource_CB

Transfer_case_BC

Transfer_case_CA

Fig. 12. Exchanging object-net instances to distribute work and resources.

The constellation of system-nets and transfer transitions subsumes a transfer

policy. The transfer policy should provide answers to the following two questions:

{ When to transfer?

There are many reasons for a transfer. Consider for example the transfer of a

case (i.e., work
ow instance). The case can be transferred because (1) there

are no resources quali�ed to execute a given task, (2) another department

is responsible, (3) to balance the workload, (4) the customer the case refers

to moved to another city, or (5) the associated goods are transported to

another country. Resources can be transferred for capacity balancing or other

organizational reasons. Data, tasks, and operations can also be transferred

or replicated for various reasons.



{ What to transfer?

If a case is moved, it may be good to move the associated data (see Figure 12).

However, it is also possible to centralize data and only distribute the control


ow. The perspectives can be bound tightly together or there can be a very

loose connection between the perspectives. For example, data, operations,

resources, and tasks related to a case may reside at di�erent locations.

It is far from trivial to devise a suitable transfer policy. The policy should be

based on architectural considerations of both an organizational and technical

nature. We will not discuss this in any detail. However, it should be clear by

looking at examples such as the one shown in Figure 12 that reference nets

allow for the modeling of these mobility aspects.

Concerning the relation to inheritance, it is essential for interorganizational

work
ows that there can be local variations, e.g., one department uses a slightly

di�erent control 
ow or the life-cycle of a resource has some local particularities

(e.g., switching between day-shifts and night-shifts). To allow for these varia-

tions, we use the inheritance concepts de�ned earlier. If an object-net instance

is moved from one enactment service to another, then the corresponding two

object-net classes should have a subclass/superclass relationship. This way it is

possible to map the object-net instance onto the new object-net class using the

transfer rules de�ned in [AB99]. Recall that the inheritance-preserving trans-

formation rules PP, PJ, and PJ3 are augmented with transfer rules for moving

tokens from the subclass to the superclass and vice versa. The same rules can be

used to map an object-net instance onto a superclass or a subclass. The transfer

rules to move an object-net instance to a subclass are: rPP , rPJ , , rPJ3;C and

rPJ3;P ([AB99]). Transfer rules rPP , and rPJ are rather trivial because addi-

tional behavior (i.e., alternative branches or parts inserted in-between existing

parts) is introduced without eliminating existing states. The transfer rule corre-

sponding to transformation rule PJ3 is more complex because PJ3 adds parallel

behavior rather than additional behavior. When adding parallel behavior, it may

be necessary to mark places in the newly added parts. If this is the case, there

is a choice to put the tokens in the beginning of the parallel part (conservative

approach rPJ3;C) or to put the tokens at the end of the parallel part (progressive

approach rPJ3;P ). This choice depends of the desired policy. The transfer rules

to move an object-net instance to a superclass are: r
�1

PP , r
�1

PJ , and r
�1

PJ3. The

transfer rule corresponding to transformation rule PJ3 is simple: Simply remove

the parallel parts. Transfer rules r
�1

PP and r
�1

PJ move tokens from the extended

part to the superclass part. Note that as long as the designer sticks to the in-

heritance preserving transformation rules, the transfer rules can be generated

automatically, so no complicated migration schemes have to be designed.

5.3 Related work on interorganizational work
ow

Most of today's commercial work
ow systems use a centralized enactment ser-

vice. Therefore, many of the research prototypes such as MENTOR (Univer-

sity of Saarland at Saarbrucken), METEOR (University of Georgia), MOBILE



(University of Erlangen), Panta Rhei (University of Klagenfurt), and WASA

(University of Muenster) focus on distribution aspects. The MENTOR system

is based on state charts partitioned into fragments, which are distributed under

the supervision of Tuxedo, a TP monitor. The METEOR system is entirely based

on CORBA to provide a platform independent environment. It also supports in-

teroperability mechanisms like SWAP and JFLOW. Moreover, the METEOR3

model introduces the notion of foreign task vs. native tasks. A foreign task refers

to a task whose realization is unknown to the work
ow designer, whereas the

implementation details are known for a native task. Another important feature

for E-commerce are channels (also called sink nodes) that are used to specify

communication or synchronization between two independent work
ows. An in-

teresting project focussing on work
ow technology in E-commerce is the WIDE

Project (http://dis.sema.es/projects/WIDE/). Its goal is to enable interor-

ganizational work
ows across multiple platforms by linking geographically sep-

arated applications including IBM's MQSeries Work
ow, SAP R/3, Opera, and

Structware. Other projects focussing on interorganizational work
ows are Cross-

Flow (http://www.crossflow.org/), MariFlow, and ACEFlow.

6 Conclusion

Modeling of enactment of interorganizational work
ows is a central issue. In this

paper we used reference nets as the basic modeling technique. They allow for dis-

tributed execution and provide the conceptual and practical means to model the

di�erent perspectives of an enactment service in a natural way. Renew enables

work
ow designers to build appropriate prototypes and directly model the dif-

ferent perspectives. Users can now identify their di�erent perspectives directly

within models. Hence the interpretation becomes relatively easy. Furthermore

the concept of mobility is nicely expressed by moving the appropriate object-

nets which are directly related to some conceptual objects of users. Here we only

discussed the movement of work
ows with their related data and the movement

of resources. However, migration can be implemented for every perspective. The

conceptual basis is the same. Problems that could occur due to di�erent kinds

of implementations are covered by the inheritance concept which can be used to

check that casting between the di�erent types is done in the correct way.

References

[Aal98] W.M.P. van der Aalst. The Application of Petri Nets to Work
ow Manage-

ment. The Journal of Circuits, Systems and Computers, 8(1):21{66, 1998.

[Aal99] W.M.P. van der Aalst. Interorganizational Work
ows: An Approach based

on Message Sequence Charts and Petri Nets. Systems Analysis - Modelling -

Simulation, 34(3):335{367, 1999.

[AB97] W.M.P. van der Aalst and T. Basten. Life-cycle Inheritance: A Petri-net-

based Approach. In P. Az�ema and G. Balbo, editors, Application and Theory

of Petri Nets 1997, volume 1248 of Lecture Notes in Computer Science, pages

62{81. Springer-Verlag, Berlin, 1997.



[AB99] W.M.P. van der Aalst and T. Basten. Inheritance of Work
ows: An approach

to tackling problems related to change. Computing Science Reports 99/06,

Eindhoven University of Technology, Eindhoven, 1999. in print.
[BA99] T. Basten and W.M.P. van der Aalst. Inheritance of Dynamic Behaviour: De-

velopment of a Groupware Editor. In G. Agha, F. De Cindo, and G. Rozen-

berg, editors, Advances in Petri Nets: Concurrent Object-Oriented Program-

ming and Petri Nets, Lecture Notes in Computer Science. Springer-Verlag,

Berlin, 1999. in print.
[Bas98] T. Basten. In Terms of Nets: Systems Design with Petri Nets and Process

Algebra. PhD thesis, Eindhoven University of Technology, Eindhoven, 1998.
[Bus99] C. Bussler. Work
ow class inheritance and dynamic work
ow class binding.

In W. van der Aalst, J. Desel, and R. Kaschek, editors, Proceedings of the

Workshop Software Architectures for Business Process Management at the

11th Conference on Advanced Information Systems Engineering CAiSE*99,

Heidelberg, Germany, June 1999. Report No. 390, University of Karlsruhe.
[CH92] S�ren Christensen and Niels Damgaard Hansen. Coloured Petri Nets Ex-

tended with Channels for Synchronous communication. Technical Report

DAIMI PB{390, Computer Science Department, Aarhus University, DK-8000

Aarhus C, Denmark, April 1992.
[EN93] C.A. Ellis and G.J. Nutt. Modelling and Enactment of Work
ow Systems. In

M. Ajmone Marsan, editor, Application and Theory of Petri Nets 1993, volume

691 of Lecture Notes in Computer Science, pages 1{16. Springer-Verlag, Berlin,

1993.
[GHS95] D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Work
ow

Management: From Process Modeling to Work
ow Automation Infrastruc-

ture. Distributed and Parallel Databases, 3:119{153, 1995.
[Hol95] Tom Holvoet. Agents and petri nets. In O. Herzog, W. Reisig, and R. Valk,

editors, Petri Net Newsletters, number 49 in Petri Net Newsletters, 1995.
[JB96] S. Jablonski and C. Bussler. Work
ow Management: Modeling Concepts,

Architecture, and Implementation. International Thomson Computer Press,

1996.
[Kou95] T.M. Koulopoulos. The Work
ow Imperative. Van Nostrand Reinhold, New

York, 1995.
[KW99] Olaf Kummer and Frank Wienberg. Renew homepage. URL:

http://www.renew.de, University of Hamburg, Department for Computer Sci-

ence, Vogt-K�olln Str. 30, 22527 Hamburg, Germany, 1999.
[Lak95] C.A. Lakos. From Coloured Petri Nets to Object Petri Nets. In 16th Interna-

tional Conference on the Application and Theory of Petri Nets, number 935

in Lecture Notes in Computer Science, pages 278{297, Torino, Italy, 1995.

Springer.
[Law97] P. Lawrence, editor. Work
ow Handbook 1997, Work
ow Management Coali-

tion. John Wiley and Sons, New York, 1997.
[VA] E. Verbeek and W.M.P. van der Aalst. Wo
an Home Page.

http://www.win.tue.nl/ wo
an.
[Val87] R�udiger Valk. Modeling of task-
ow in systems of functional units. Technical

Report FBI-HH-B-124/87, University of Hamburg, Department for Computer

Science, Vogt-K�olln Str. 30, 22527 Hamburg, Germany, 1987.
[Val98] R�udiger Valk. Petri Nets as Token Objects: An Introduction to Elemen-

tary Object Nets. In J�org Desel, editor, 19th International Conference on

Application and Theory of Petri nets, number 1420 in LNCS, Berlin, 1998.

Springer-Verlag.


