
From Low-Level Events to Activities - A Pattern-based
Approach

Felix Mannhardt1, Massimiliano de Leoni1 , Hajo A. Reijers2,1,
Wil M.P. van der Aalst1, Pieter J. Toussaint3

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

3 Norwegian University of Science and Technology, Trondheim, Norway
(f.mannhardt, m.d.leoni, h.a.reijers, w.m.p.v.d.aalst)@tue.nl,

pieter@idi.ntnu.no

Abstract. Process mining techniques analyze processes based on event data. A
crucial assumption for process analysis is that events correspond to occurrences
of meaningful activities. Often, low-level events recorded by information systems
do not directly correspond to these. Abstraction methods, which provide a map-
ping from the recorded events to activities recognizable by process workers, are
needed. Existing supervised abstraction methods require a full model of the entire
process as input and cannot handle noise. This paper proposes a supervised ab-
straction method based on behavioral activity patterns that capture domain knowl-
edge on the relation between activities and events. Through an alignment between
the activity patterns and the low-level event logs an abstracted event log is ob-
tained. Events in the abstracted event log correspond to instantiations of recog-
nizable activities. The method is evaluated with domain experts of a Norwegian
hospital using an event log from their digital whiteboard system. The evaluation
shows that state-of-the art process mining methods provide valuable insights on
the usage of the system when using the abstracted event log, but fail when using
the original lower level event log.

Keywords: Process Mining, Supervised Abstraction, Event Log, Alignment

1 Introduction

Organizations use information systems to support their work. Often, information about
the usage of those systems by workers is recorded in event logs [1]. Process mining
techniques use such event data to analyze processes of organizations. It is assumed that
recorded events correspond to meaningful activities in instances of a process (i.e., cases).
This information about recorded executions of activities can then be used, e.g., to dis-
cover models describing the observed behavior or to check conformance with existing
process documentation. The ability to identify executions of activities based on events
is crucial for any process mining technique. Events that do not directly correspond to ac-
tivities recognizable for process workers are unsuitable for process analytics since their
semantics are not clear to domain experts. However, events recorded by information
systems often do not directly correspond to recognizable executions of activities [2].

Generally, there can be an n:m-relation between recorded events and activities [2,3],
i.e., one higher level activity may create multiple low level events and one such event
possibly relates to multiple activities. There are proposals for unsupervised abstraction
methods that try to determine this relation based on identifying sub-sequences and ma-
chine learning methods [2,4,5,6,7], as well as proposals for supervised methods based
on existing process documentation and constraint satisfaction [3,8,9,10,11]. Unsuper-
vised abstraction methods, clearly, do not take existing knowledge into account and may
fail to provide meaningful labels for discovered event clusters. Existing supervised ab-
straction methods [3,8,9,10,11] assume knowledge about a single model for the overall
process. They resolve to clustering methods and heuristics when challenged with event
logs from processes that feature n:m event-activity relations, concurrent activities, and
noise (i.e., erroneous or missing events).

This paper proposes a supervised event abstraction method. We use behavioral ac-
tivity patterns to capture domain knowledge about the conjectured relation between
high-level activities and recorded low-level events. We align the behavior defined by
these activity patterns with the observed behavior in the event log. Our technique uses
alignment techniques, and, hence, is able to find an optimal mapping between low-level
events and activity patterns even for event logs that contain noise. In this way, we obtain
a reliable abstraction mapping from low-level events to activity patterns. This mapping
is used to create an abstracted event log. This log contains only high-level events at the
desired level of abstraction, which relate directly to executions of high-level activities.
We applied the proposed method together with domain experts from a Norwegian hos-
pital to an event log retrieved from a digital whiteboard system at the observation ward
of the hospital. Through observation and interviews with people working at the hospital
we were able to identify activity patterns for 18 recognizable activities, which, together,
explained 91% of the recorded behavior. Using the abstracted event log, we were able to
analyze how nurses use the digital whiteboard system in their daily work. We obtained
process models that relate to their actual work in a meaningful way.

The remainder of this paper is structured as follows. First, we describe the event
abstraction problem in more detail (Sect. 2). Then, we present the five main steps of
our abstraction method (Sect. 3). We evaluate the proposed method using the results
obtained for the digital whiteboard event log (Sect. 4), and conclude with a summary
and a sketch of future work (Sect. 5).

2 Problem Description

We start with a definition of event logs. An event log stores information about activities
that were recorded by one or more information systems while supporting the execution
of a process. Each execution of a process instance results in a sequence of events.

Definition 1 (Event Log). Given universes of attributes A and values U, we define an
event log as (E,Σ ,#,E) with:

– E is a set of unique event identifiers;
– Σ ⊆U is a set of activities;
– # : E → (A ̸→U) is a function that obtains attribute values recorded for an event;

Table 1. Excerpt of a trace σL ∈ EL from a low-level event log with identifiers Id and attributes
Activity, Time, Instance, and Nurse. Symbol ⊥ denotes that the attribute was not recorded. The
last columns show those high-level activities, which caused the event.

Id Activity Time Instance Nurse High-Level Activity High-Level Instance

e12 NurseChanged 122 12 NurseA Shift 1
e13 CallSignal1 122 13 ⊥ Shift 1
e14 CallSignal0 124 14 ⊥ Shift 1
. .
e20 CallSignal4 185 20 ⊥ Alarm 2
e21 CallSignal1 197 21 ⊥ Alarm 2
. .
e29 NurseChanged 250 29 NurseB Handover 3
e30 CallSignal4 310 30 ⊥ Alarm 4
e31 CallSignal1 311 31 ⊥ Alarm 4
e32 NurseChanged 312 32 NurseC Handover 5
e33 CallSignal0 315 33 ⊥ Alarm 4

– E ⊆ E∗ is the set of traces over E. A trace σ ∈ E records the sequence of events
for one process instance. Each event identifier occurs only in a single trace.

Given an event e ∈ E in the event log E , we write #a(e) ∈ A ̸→ U to obtain the value
u ∈ U recorded for attribute a ∈ A. Three mandatory attributes are recorded by each
event: #act(e)∈ Σ , the name of the activity that caused the event; #time(e)∈U , the time
when the event occurred; #ai(e) ∈ U , the activity instance, i.e., an identifier linking
multiple events, which are related to the same execution of a single activity.

Example 1. Table 1 shows an excerpt of a trace σL ∈ EL obtained from a low-level event
log (EL,ΣL,#L,EL) that is recorded by a digital whiteboard, which supports the work
of nurses in a hospital. Each row represents an unique event e ∈ EL together with the
produced data (i.e., attributes) created by a change in the system. For confidentiality
reasons, we show only some events of an artificial trace that resembles the real data.
The initial events are omitted. After 122 minutes low-level activity NurseChanged (NC)
occurs resulting in event e12. Attribute Nurse is recorded as #L

Nurse(e12)=NurseA. Next,
two low-level activities CallSignal1 (CS1) and CallSignal0 (CS0) are registered as
events e13 and e14 by a call signal system, which is integrated with the whiteboard. An
hour later the call signal system records the activity CallSignal4 (CS4) as event e20
and, again, activity CS1 as event e21. Some further low-level events follow.

Often, not all events e ∈ EL represent work at the same level of abstraction [1,4]. The
execution of some high-level activities might result in multiple low-level events being
recorded during their execution. Those events only store the names of low-level activi-
ties ΣL, i.e., #L

act(e) ∈ ΣL instead of names of recognizable high-level activities. Event
abstraction can be seen as the problem of transforming such an event log (EL,ΣL,#L,EL)
at a lower or mixed level of abstraction, into a new event log (EH ,ΣH ,#H ,EH) with
events EH that record executions of activities ΣH at the desired, higher level of abstrac-
tion. We need to determine how low-level events EL are related to high-level events EH ,
i.e., we need to find an abstraction mapping π ⊆ EL ×EH .

Please note that determining a good abstraction mapping π (i.e., one that reflects
what really happened) is difficult for several reasons. Low-level events mapped to more

Fig. 1. Overview of the proposed event abstraction method

than one high-level activity, i.e., shared functionality [3] need to be disambiguated. It
is difficult to differentiate between reoccurring and concurrent activities [3]. Also, the
low-level event log might contain noise: Erroneous events that should not have been
recorded or missing events that should have been recorded.

Example 2. Event log EL shown in Table 1 contains low-level events. The various
CallSignal events do not directly correspond to high-level activities. Moreover, de-
pending on the context, those events correspond to different high-level activities. The
last two columns in Table 1 list the corresponding names of high-level activities that
caused the low-level events as well as an identifier uniquely identifying the execution
of the activity, i.e., the activity instance. For example, we know that in the context of
a shift change events CS1 and CS0 are recorded when the patient is visited in the nor-
mal routine, i.e., events e12,e13,e14 correspond to one execution (i.e., instance 1) of the
high-level activity Shift. This mapping between low-level events and high-level activ-
ity instances cannot be solely done on the activity names. For example, when CS1 and
CS0 are preceded by event CS4 they correspond to an alarm triggered by the patient,
i.e., events e30,e31,e33 were caused by instance 4 of high-level activity Alarm.

3 Pattern-based Abstraction of Event Logs

We present a method that takes an event log (EL,ΣL,#L,EL) at a lower level of abstrac-
tion and transforms it to an event log (EH ,ΣH ,#H ,EH) at the desired level of abstraction.
We establish an abstraction mapping π from events EL to the events EH . Our method
can deal with noise, reoccurring and concurrent behavior, and shared functionality. The
proposed method consists of four steps (Fig. 1):

1. We encode the low-level behavior of activities in activity patterns (Sect. 3.1).
2. We compose activity patterns in an abstraction model (Sect. 3.2).
3. We align the behavior of the abstraction model and the low-level event log (Sect. 3.3).
4. We create an abstracted event log using the alignment information (Sect. 3.4).

We describe these steps in the following sections. Note that activity patterns represent
domain knowledge on the behavior of high level activities in terms of low-level events.

3.1 Define Activity Patterns

In the reminder of this paper, we use process models to capture behavior. Generally, our
abstraction method is independent of the particular formalism (e.g., Petri nets, UML,

Fig. 2. Three activity patterns pa, pb, pc ∈ P for the example in DPN notation

Declare, BPMN) used to model processes. We represent knowledge about the relation
between low-level events and given high-level activities ΣH in activity patterns. Each
activity pattern is a process model describing those events that are expected to be seen
in the event log for one instance of the corresponding high-level activity.

Definition 2 (Activity Pattern). Given a set of low-level activity names ΣL, process
moves ΣM , process attributes A and values U. Let S = (ΣM × (A ̸→U)) be the set of all
possible process steps. Let #name : ΣM → ΣL be a labeling function that returns the low-
level activity name of a process move. An activity pattern p ⊆ S∗ captures sequences
corresponding to an execution of one instance of a high-level activity. Steps s ∈ σ in
process traces σ ∈ p correspond to low-level activities executed as part of the high-level
activity. We denote with P = {p ⊆ S∗} the set of all activity patterns.

In the remainder, we require that process moves are not shared between activity patterns,
i.e, given two different patterns p1, p2 ∈ P and sequences σ1 ∈ p1,σ2 ∈ p2 we require
for any steps (m1,w1) ∈ σ1,(m2,w2) ∈ σ2 that m1 ̸= m2. Given a step, we can uniquely
identify to which pattern it belongs. However, process moves from different patterns
may be associated with the same activity name, i.e., #name(m1) = #name(m2).

Example 3. Figure 2 shows three activity patterns pa, pb and pc defined for the event
log in Table 1, implemented as Data Petri Nets (DPNs) [12]. We implement activity
patterns by using DPN as notation with well-defined semantics, which can express the
control-flow as well as the data-, resource- and time-perspective of a pattern. We refer
to [12] for an introduction to DPNs. We use transitions of the DPN to model process
moves. We name transitions uniquely by using the abbreviated low-level activity name
concatenated with the pattern name, e.g., transition CS1A models activity CallSignal1
in pattern pa. Therefore, we can easily obtain the the activity name (i.e., #name(x)) for
each transition x. The first pattern pa describes a shift change. First, the nurse respon-
sible for the patient changes (NCA) and the name of the nurse is recorded (Na). Within
30 minutes (T ′

a −Ta ≤ 30), the responsible nurse visits the patient and the call signal
system records a button press (CS1A). Finally, the nurse leaves the room and another
button press is registered (CS0A) resetting the status. The second pattern pb describes a
similar sequence (i.e., transitions CS1B and CS0B), but represents a different high-level
activity: The patient is attended outside of the normal routine. Transition CS4B has to
be executed at most 10 minutes beforehand (i.e., T ′

b −Tb ≤ 10). The low-level activity
corresponding to CS4B is an alarm triggered by the patient. The third pattern describes
a simple handover between nurses: Only the responsible nurse changes (NCC) without
any consultation of the patient. The corresponding low-level activity NurseChanged is
shared with a transition NCA of pattern pa. This is an example of shared functionality.

Using domain knowledge about the high-level activities of the process at hand we define
such an activity pattern for every activity of interest. Activity patterns represent the
knowledge about how high-level activities are reflected by low-level events in the event
log. Please note that we do not expect an activity pattern to be an exact representations
of every possible way a high-level activity manifests itself in the event log. Later, in
Sect. 3.3 we show that our method is able to deal with approximate matches.

3.2 Build an Composed Abstraction Model

With a set of activity patterns for the process under analysis at hand, we can compose
their behavior into an integrated abstraction model.

Definition 3 (Composition Function). A composition function f : 2P → P combines
the behavior activity patterns p1, . . . , pn into an (composite) activity pattern cp ∈ P, i.e.,
f (p1, . . . , pn) = cp. We denote with F ⊆ 2P → P the set of all composition functions.

We provide the semantics for five basic composition functions: sequence, choice, par-
allel, interleaving and cardinality. Our abstraction method is not restricted to these
functions. Further composition functions can be added. We introduce some necessary
notations for sequences. Given a sequence σ ∈ S∗ and a subset X ⊆ S, σ |X is the pro-
jection of σ on X . For example, ⟨w,o,r,d⟩|{o,r} = ⟨o,r⟩. σ1 ·σ2 ∈ S∗ concatenates two
sequences, e.g., ⟨w,o⟩ · ⟨r,d⟩ = ⟨w,o,r,d⟩. Given activity patterns pi ∈ P with pi ⊆ S∗i
and i ∈ N, we define the following functions:

– Sequence composition ⊙ ∈ F :

p1 ⊙ p2 = {σ ∈ S∗ | σ1 ∈ p1 ∧σ2 ∈ p2 ∧σ = σ1 ·σ2}.

Binary operation ⊙ is associative. We write
⊙

1≤i≤n pi = p1⊙ p2⊙ . . .⊙ pn to com-
pose ordered collections of patterns in sequence. We define

⊙
1≤i≤0 pi = {⟨⟩}.

– Choice composition ⊗ ∈ F :

p1 ⊗ p2 = p1 ∪ p2.

Binary operation ⊗ is commutative and associative. We write
⊗

1≤i≤n pi = p1 ⊗
p2 ⊗ . . .⊗ pn to compose sets of patterns in choice.

– Parallel composition ⋄ ∈ F :

p1 ⋄ p2 = {σ ∈ (S1 ∪S2)
∗ : σ |S1 ∈ p1 ∧σ |S2 ∈ p2}.

Binary operation ⋄ is commutative and associative. We write ⋄1≤i≤n pi = p1 ⋄ p2 ⋄
. . .⋄ pn to compose sets of patterns in parallel.

– Interleaving composition ↔∈ F with p(n) denoting the set of all permutations of
numbers {1, . . . ,n}:

↔ (p1, . . . , pn) =
⊗

(i1,...,in)∈p(n)

⊙
1≤k≤n

pik .

Fig. 3. Overview of the graphical notation of the supported composition functions and an example
of their usage in an composed pattern. Patterns are depicted as plain boxes for better legibility.

– Repetition composition [n,m] ∈ F with n ∈ N0,m ∈ N∪{∞}, and n ≤ m:

p[n,m]
1 =

⊗
n≤i≤m

⊙
1≤k≤i

p1.

We build an overall abstraction model with a formula that contains all patterns of inter-
est. The resulting composed pattern cp ∈ S∗ should include the overall behavior that we
expect to observe for the execution of all high-level activities.

Example 4. Given the activity patterns pa, pb and pc shown in Fig. 2, we can compose
their behavior to cp = (↔ (p[0,∞]

a , p[0,∞]
b))[0,∞] ⋄ p[0,∞]

c . We allow indefinite repetition of
all activity patterns using the repetition composition. We allow the absence of patterns
using the repetition composition as the corresponding high-level activities might not
have been executed in every process instance. We restrict cp to only contain the inter-
leaving of patterns pa and pb as there is only one responsible nurse per patient. There-
fore, the activities expressed by pa and pb can occur in any order but should not happen
in parallel. We add pc using the parallel composition as handovers can take place in par-
allel to pa and pb. In the remainder of this example, we omit the attribute assignments
w from steps (t,w) ∈ S for improved legibility. The result of this composition is the ab-
straction model cp. Model cp corresponds to all behavior that could be observed for ex-
ecutions of the three high-level activities. For example, ⟨NCA,CS1A,NCC,CS0A⟩ ∈ cp
is expected, whereas ⟨NCA,CS1A,CS4B,CS0A⟩ /∈ cp is not expected.

We designed a graphical representation for each composition function, which can be
used to design abstraction models in the implementation of our approach. Figure 3
shows the graphical notation for each of the composition functions. Moreover, the
graphical representation of the composition of activity patterns pa, pb, pc as defined in
Example 4 is shown. Because the repetition composition is unary, we attach its graphi-
cal representation directly to patterns. Parallel composition is the least restrictive com-
position. Unless otherwise specified, we assume that patterns are composed in parallel.
We draw a box around composed patterns if necessary to clarify the precedence of op-
erations. For example, patterns pa and pb are first interleaved and then composed in
parallel with pc. We implemented the composition of activity patterns using the DPN
notation. To simplify the composition, we assume that the DPNs of activity patterns
have a single source place and a single sink place. Figure 3 shows the DPN encoding
of cp = (↔ (p[0,∞]

a , p[0,∞]
b))[0,∞] ⋄ p[0,∞]

c . The implementation of all compositions using
DPN is available in a technical report [13].

Example 5. Figure 4 depicts the DPN implementation of abstraction model cp. The
abstraction model starts with a single sink place sink and ends with a single source

Fig. 4. DPN created by our implementation for the abstraction model cp. Activity patterns
pa, pb, pc are depicted as clouds with source places sa,sb,sc and sink places ea,eb,ec. Black
transitions are invisible routing transitions, which are not recorded in any event log.

Table 2. The top three rows show an alignment of the running example log trace and abstraction
model. Low-level events (L. Event) e are aligned to process moves (P. Move) m that relate to
the same low-level activity (L. Activity). Write operations are omitted for better legibility. One
process move could not be aligned to an event, symbol ≫ is used in this case. The bottom five
rows show the high-level event returned by the abstraction method described in this paper.

L. Event (e) e12 e13 e14 . . . e20 e21 ≫ . . . e29 e30 e31 e32 e33

L. Activity NC CS1 CS0 . . . CS4 CS1 . . . NC CS4 CS1 NC CS0
P. Move (m) NCA CS1A CS0A . . . CS4B CS1B CS0B . . . NCC CS4B CS1B NCC CS0B

H. Activity Shift Shift . . . Alarm Alarm . . . Handover Alarm Handover Alarm
Life-cycle start complete . . . start complete . . . complete start complete complete
Instance 3 3 . . . 6 6 . . . 10 11 12 11
Time 122 124 . . . 185 197 . . . 250 310 312 315
H. Event ê5 ê6 . . . ê11 ê12 . . . ê20 ê21 ê22 ê23

place source. We model the parallel composition of p[0,∞]
c with ↔ (p[0,∞]

a , p[0,∞]
b)[0,∞]

by adding invisible transitions split and merge, which realize a parallel split and join.
Invisible transitions cannot be observed; they are only added for routing purposes. We
use place mutex to model the mutual exclusion constraint of the interleaving composi-
tion of patterns p[0,∞]

a and p[0,∞]
b . Place mutex guarantees that only either pa or pb can

be executed at the same time, yielding the interleaving of pa and pb. Each repetition
composition is implemented by adding two invisible transitions loop and skip, which
allow to repeat the pattern indefinitely or to skip its execution, respectively.

3.3 Alignment of Patterns Behavior and the Event Log

With an abstraction model at hand, we need to relate the behavior in the low-level event
log to process traces defined by the abstraction model. More specifically, we need to
determine the mapping between low-level events in the event log and process steps
of the abstraction model. We use existing alignment techniques [12] that establish a
mapping between log traces and process traces. The top three rows of Table 2 show
such an alignment between the example log trace (Table 1) and a process trace of the
example abstraction model cp (Fig. 3). The alignment in Table 2 consists of moves
(e,s) ∈ (EL ∪ {≫})× (S ∪ {≫}) that relate low-level events e to process steps s in
the abstraction model. Events e can only be mapped to process steps s = (m,w) that

refer to the same low-level activity, i.e., #act(e) = #name(m). It may not be possible to
align all events and process steps. These deviating events and process steps are mapped
to ≫ (e.g., (≫,(CS0B,w)) in Table 2). Alignments find an optimal mapping, which
minimizes the number of such deviations. They return the most likely mapping between
events and process steps. Moreover, an alignment guarantees that its sequence of model
steps without ≫-steps is a process trace defined by the model. For example, the third
row in Table 2 is a process trace of abstraction model cp. Pattern pa is executed once,
i.e., ⟨NCA,CS1A,CS0A⟩ is a sub-sequence. Patterns pb and pc are both repeated twice,
i.e., there are two sub-sequences ⟨CS4B,CS1B,CS0B⟩ and two sub-sequences ⟨NCC⟩.
We can uniquely identify sub-sequences of initial activity pattern since we required that
process moves are unique among activity patterns.

3.4 Build the Abstracted Event Log Using the Alignment

We describe how to build the high-level event log (EH ,ΣH ,#H ,EH) and the abstraction
mapping π using an alignment of the low-level event log with the abstraction model.

The bottom four rows of Table 2 show how we obtain the high-level event log from
the information provided by the alignment. We align each trace of the low-level event
log with the abstraction model. Doing so, we obtain an alignment as shown in the first
three rows for each trace in the low-level log. Given the alignment, we use two mappings
to build the high-level log:

– µ : ΣM → ΣH , a mapping between process moves and high-level activities.
– λ : ΣM ̸→ L, a mapping between process moves and life-cycle transitions.

Mapping function µ can be obtained from the initially defined activity patterns. Each
activity patterns models exactly one high-level activity and each process move be-
longs to exactly one activity patterns, thus, the corresponding high-level activity can be
uniquely determined for each process move. For example, we use µ(NCA) = Shi f t and
µ(NCC) = Handover. Mapping function λ defines which process moves correspond
to transitions in the life-cycle of activities. Mapping λ is motivated by the observation
that activities rarely happen instantaneously. Activities have life-cycles [1]. The set of
life-cycle transitions L and mapping function λ is specified by the user. In the case-
study we use L = {start,complete} and define λ such that the first process move of an
activity pattern is mapped to the start transition and the last process move is mapped to
the complete transition. The other process moves are not mapped, i.e., they are not in
the domain of λ . For example, we use λ (NCA) = start and λ (CS0A) = complete.

We add new high-level events eH to EH (i.e., EH = EH ∪{eH}) for those alignment
moves (e,s) for which process steps s = (m,w) are not mapped to ≫ (i.e., s ̸=≫) and
process move m is mapped to a life-cycle transition λ (m) (i.e., m ∈ dom(λ))1. In this
manner, we create a high-level trace in EH for each low-level trace in EL. We obtain the
high-level log (EH ,ΣH ,#H ,EH) and a mapping between low-level events e and the new
high-level events eH . We include (e,eH) in the abstraction mapping π when event e is
not mapped to ≫ (i.e., e ̸=≫). For example, events ê5 and ê6 in Table 2 are created
based on the alignment of low-level events e12 and e14 to process moves NCA and

1 dom(f) denotes the domain of a function f .

CS0A, i.e., (e12, ê5) ∈ π and (e14, ê6) ∈ π . We assign event ê5 the activity name Shift
(i.e., #H

act(ê5) = Shift) and the life-cycle transition start (i.e., #H
cycle(ê5) = start). Event ê6

is assigned the same activity name Shift, but a different life-cycle transition: complete.
Then, the high-level events EH are enriched with additional information: activity

instance and timestamp. A unique instance identifier is added for each execution of
an activity pattern. For example, event ê21 and event ê23 are both assigned instance
identifier 11 (i.e., #H

ai(ê21) = #H
ai(ê23) = 11). Both are aligned to process steps in the

same execution of activity pattern pb (Alarm). Instance 11 of the activity Alarm was
started by event ê21 and completed by event ê23. Regarding the timestamp, there are
two cases depending on the alignment move (e,s): (1) The process step was aligned to
a low-level event e and (2) the process step was mapped to e =≫. In the first case, we
use the timestamp of the aligned low-level event (e.g., #H

time(ê11) = #H
time(e20) = 185).

In the second case, we cannot directly obtain a timestamp. For example, event ê12 in
Table 2 is missing a low-level event: e =≫. There are multiple methods to determine
the most likely timestamp for ê12. For the case study (Section 4), we use timestamps of
neighboring low-level events that are mapped to the same activity instance, e.g, we use
the timestamp from event e21 for the high-level event ê12 (i.e., #H

time(e21) = 197).
In general, there might be scenarios where one event could be mapped to several ac-

tivity instances. We simplified the discussion by assuming that events are only mapped
to single activity instances. This is not a limitation, as described by Baier et al. [3]:
Those events can be duplicated in a pre-processing step beforehand.

Finally, we define two quality measures for the abstraction mapping. First, we use
fitness as a measure for how well the entire event log matches the behavior imposed
by the abstraction model. In this context, a fitness measure such the one defined in [12]
for alignments of DPNs can be seen as measure for the quality of the used abstrac-
tion model. A low fitness indicates that there are many events that cannot be correctly
matched, thus, the abstraction model does not capture the whole process correctly. Sec-
ond, we define a matching error ε : ΣH → [0,1] on the level of each recognized high-
level activity. Some process steps in the alignment are not matched to an event in the
log, i.e., the event is missing. For example, in Table 2 one execution of process activity
CS0B is mapped to ≫. Given a high-level activity h ∈ ΣH (e.g., Alarm) and the subset
of process activities M ⊂ ΣM that are mapped to the activity pattern defined for the
high-level activity (e.g., CS4B, CS1B and CS0B). We determine the number of those
alignment moves (e,(m,w)) with process activities m ∈ M, for which the event is miss-
ing, i.e., e =≫. The matching error ε(h) is the fraction of such erroneous alignment
moves over the total number of alignment moves with process move m. For example,
ε(Alarm) = 5

6 for the alignment in Table 2. The matching error can be used to exclude
unreliable matches, which exceed a certain ε-threshold.

4 Evaluation

We evaluate the proposed abstraction method by conducting a case study using event
data that was obtained from a digital whiteboard system2. The whiteboard supports the

2 The used whiteboard system is Imatis Visi: http://www.imatis.com

Fig. 5. Abstraction model used in the case study. Most activities can only interleave as there is
only one nurse assigned to a patient.

daily work of nurses in the observation unit of a Norwegian hospital. Our method is
implemented as plug-in of the open-source process mining framework ProM3.

4.1 Case and Dataset

Digital whiteboard systems are used to improve health care processes by raising situa-
tion awareness among nurses and to support coordination of care [14]. In our case, the
whiteboard is used to manage information about admitted patients. The information is
displayed in a tabular manner, where each row shows information about a single patient.
The cells are used for various purposes, such as displaying logistical and medical infor-
mation about the patient. A call signal system, which allows patients to trigger an alarm,
is integrated with the whiteboard. Alarms are shown on the whiteboard. Generally, there
are few constraints on how the whiteboard is actually used.

We obtained an event log with 8,487 cases and 286,000 events recorded by the
whiteboard of the observation unit between 04/2014 and 12/2015. Each case records
events for the visit of a single patient. On average, traces contain 34 events. Events are
recorded for changes of single cells of the whiteboard. This very fine grained logging
leads to a low-level event log. Events in the log do not directly represent recognizable
activities. In total, there are 42 distinct low-level activity names in the log. Moreover,
varying work practices among nurses lead to different events being recorded for the
same high-level activity. The event log is unsuitable for any kind of process analytics
as the semantics of results are not clear to process workers.

We created an abstraction model with 18 activity patterns as shown in Fig. 5. The
activity patterns are based on information on the whiteboard system and interviews with
a domain expert from the hospital, who observed the actual work of nurses. In this case
study, we do not use all composition functions that our framework provides, as some do
not apply to the whiteboard system. However, we believe that the unused functions are
useful in many different settings. All 18 activity patterns are listed in Table 3 together
with the number of process activities and the name of the modeled high-level activity.
The examples introduced in Fig. 2 correspond to the activities Shift (pa), Alarm Normal
(pb) and Handover (pc) in the case study.

4.2 Results and Discussion

We applied the proposed abstraction method to the event log and successfully obtained
a smaller abstracted event log with 206,054 high-level events for 103,027 activity in-
stances (i.e., each instances has a start and a complete event). The computation of the

3 Plug-in Log Abstraction of the ProM package LogEnhancement: http://promtools.org

Table 3. Activity patterns used in the digital whiteboard case study. For each pattern we list the
number of process activities, the number of low-level activity names shared with other patterns,
and the results of our method: the number of recognized activity instances and the matching error.

Activity Name Transitions (Shared) Matches Matching Error (ε)

Announcement (Ann) 8 (6) 29 0.02
Change Room (CR) 5 (4) 662 0.09
Discharge (Dis) 7 (4) 8,054 0.0
Registration (Reg) 6 (6) 9,855 0.01
Transfer (Tra) 6 (6) 575 0.09
Update Report (UR) 4 (0) 6,912 0.0
Update Arrival (UA) 5 (1) 4,626 0.0

Handover (H) 1 (1) 24,228 0.0
Shift (S) 3 (3) 405 0.04
Call Nurse (CN) 2 (2) 12,416 0.08
Alarm Normal (AN) 3 (3) 8,842 0.02
Alarm Quick (AQ) 2 (2) 12,730 0.0
Alarm Assist (AA) 5 (3) 32 0.17

CT 4 (2) 1,443 0.0
MRI 4 (2) 124 0.0
Surgery (Sur) 3 (3) 297 0.17
Ultrasound (Ult) 5 (3) 1,164 0.0
X-Ray 4 (2) 1,117 0.0

abstracted event log took one hour and used 6 GB of memory. We decomposed the DPN
of the abstraction model into two smaller DPNs that did not share labels. The overall
fitness with regard to the log was 0.91, which indicates that most of the observations
could be explained. Even though 9% of the events did not match, this is a good result for
further analysis as we can expect the event log to contain noise, i.e., events unrelated to
any modeled high-level activity. The abstracted event log contains 25 high-level activi-
ties: 18 activities were obtained through abstraction and 7 further activities were already
at the appropriate level of abstraction. Table 3 shows the resulting number of activity
instances that were matched, as well as the corresponding matching error. It should be
noted that the relatively high error for the activity Surgery stems from the fact that this
activity is sometimes recorded in a different manner, i.e., one event is missing. Regard-
ing the error for activity Alarm Assist we found that the assist button can be pressed
without a prior alarm by the patient, which is different from our initial assumption.

The activities under consideration can be grouped into three categories: (1) actions
related to patient logistics, (2) actions related to the call signal system and handover
between the nurses, and (3) actions related to ordered examinations and surgeries. Given
the absence of a perfectly abstracted event log as ground truth, we evaluate our method
by comparing the results obtained using three process analytics techniques with and
without the abstraction. Using the abstracted event log, we obtained several insights
into work practices of nurses in clinical processes. A domain expert from the hospital
stated that the analysis: “[..] gives insight beyond the usual reports and analysis that
we have access to. It gives a fresh and “new” perspective on how we understand the
processes involved in running a ward or department.” By contrast, we show that using
the low-level event log directly does not lead to any insights for stakeholders, because
the semantics of low-level events are unclear. We used the ProM plug-ins Log Projection
(LP), Inductive Visual Miner (IVM), and Multi-perspective Explorer (MPE).

Time of Day

T
ra

c
e

(a) Events NC (blue), CS1 (green)
and CS0 (yellow) in the original
event log.

Time of Day

T
ra

c
e

Shift 2 Shift 3

Adm
issions

Shift 1

(b) Abstracted event log only show-
ing the high-level Shift events cap-
tured by pattern pa.

Fig. 6. Dotted charts of events related to the activity Shift. Traces are shown on the y-axis and
sorted by the time of day of the first event in a trace.

Log Projection (LP) Figure 6 shows two dotted charts created with LP. Figure 6(a) is
created using the original event log. It shows the distribution of events NC, CS1 and CS0
over the course of a day. As expected, the NC event (i.e., the responsible nurse changed)
mostly occurs when a patient is admitted (i.e., on the blue diagonal) and during one of
the three shift changes (i.e., the three blue vertical lines). Still, the responsible nurse
also changes between those well-defined times. Yet, from Fig. 6(a) it is not evident
whether nurses use the call signal system when visiting a patient after their shift started.
Looking at Fig. 6(b), which shows only the event Shift (pa) from the abstracted event
log, it is clearly visible that our assumption was correct. Activity pattern pa captured
a meaningful high-level activity. Figure 6(b) shows that nurses do use the call signal
system to indicate their presence in the room of the patient after taking responsibility
for a patient. In contrast to the dotted chart in Fig. 6(a), event Shift only occurs after
admissions (dots on the main diagonal) and after shift changes (three vertical lines).
Still, by comparing the number of activity instances in Table 3 it is clear that activity
Shift (405 times) happens rarely in comparison to activity Handover (24,228 times).
Two likely reasons for this are that nurses do either not attend the patient after a shift
change, or that they do not use the system to indicate their presence. This is a valuable
insight on how the whiteboard system is used in practice. Notably, this could not be
concluded without the use of our abstraction method.

Inductive Visual Miner (IVM) We analyzed two parts of the whiteboard system by
discovering process models with IVM [15]. We used only those events from the origi-
nal event log that are used in the respective activity patterns. This indicates what results
could be obtained by only filtering the original log based on some knowledge about the
low-level events. Figure 7 shows Petri nets discovered using IVM for events related to
nurse handovers and the call signal system based on the original event log (Fig. 7(a)),
and the abstracted event log (Fig. 7(b)). The model in Fig. 7(a) gives little insights into

(a) Low-level log (b) Abstracted log

Fig. 7. Petri nets of the nurse handover and call signal system discovered by IVM

the usage of the call signal system. Most events can be repeated in any order, expect for
CallSignal3, Diagnose, and ReportChanged which may only occur once. The model in
Fig. 7(b), instead, contains recognizable activities that can be used to investigate the us-
age of the call signal system further. The model indicates that activities Shift and Alarm
Assist occur together, recording a diagnose and updating the report cell (Update Report)
that is used to store medical information about patients. This finding deserves further
investigation. Regarding the other variants of using the call signal system (Alarm Quick,
Alarm Normal, and Call Nurse), no specific ordering among the high-level activities is
discovered. This could be expected given the flexible nature of the whiteboard system.
Moreover, we compared models discovered for low-level and high-level events related
to examinations and patient logistics (Fig. 8). Again, the model that is discovered from
the low-level event log, shown in Fig. 8(a), does not offer insights into the work at the
observation unit. The only visible structure is that event TreatmentChanged, which is
related to some examination, is executed in parallel with the event Abdom. Pain. Fig-
ure 8(b) shows the process model discovered by IVM with the abstracted event log.
The control-flow structure of this model is more specific than the model shown in Fig-
ure 8(a). It shows several interesting structures that could be used to investigate further
with people working in the hospital. For example, for multiple patients the planning and
execution of surgeries and updating the diagnose occur together in parallel. One path
reveals that 300 patients with chest pain receive an X-Ray. Another path shows that for
1,300 patients with abdominal pain no examinations are ordered. By using activities
on the same abstraction level, the process model in Figure 8(b) offers a better insight
into the process. Moreover, it allows to discuss the observations with process workers.
Please note that the high-level model in Fig. 8(b) contains more activities since the same
event is shared among multiple, high-level activities.

Multi-perspective Explorer (MPE) Finally, we used the MPE to analyze differences
between the different ways nurses respond to patient-initiated call signals. It was found
that the assumed activities Alarm Normal (AN) and Alarm Quick (AQ), indeed, corre-
spond to different work practices by nurses. For activity AN the nurse first indicates her

(a) Low-level log

(b) Abstracted log

Fig. 8. Petri nets of the examinations and patient logistics discovered by IVM

presence in the room by using a button on the call signal system, after which she at-
tends the patient. However, within activity AQ nurses do not use this functionality. The
average service time for activity AN (7.3 min) is longer than for activity AQ (1.5 min).
A hypothesis is that nurses do not use the full functionality of the call signal system for
minor tasks, which may be important for the hospital to investigate further.

5 Conclusion

We presented a new method for supervised event abstraction using behavioral activ-
ity patterns. Activity patterns encode assumptions on how high-level activities mani-
fest themselves in terms of recorded low-level events. We obtain an abstracted event
log based on an alignment between activity patterns and the low-level event log. Two
quality measures (fitness, matching error) are defined that can be used to evaluate the
quality of the abstraction result. We used this method to analyze the work of nurses in a
Norwegian hospital. The case study shows that our abstraction method can be success-
fully applied in complex real-life environments. We obtained an abstracted event log
from a system, in which (1) multiple high-level activities share low-level events with
the same label, (2) high-level activities occur concurrently, and (3) erroneous events
(i.e., noise) are recorded. We applied state-of-the-art process mining tools on both the
original and the abstracted event log The results obtained from the abstracted even log
reveal insights that cannot be obtained when using the original event log. Moreover,
the results are more useful in the communication with stakeholders, since they refer to

recognizable activities. Future work may still be needed to address some limitations of
our method. At this point, if a sequence of events fits two activity patterns perfectly,
one of them will be chosen arbitrarily. A prioritization of activity patterns used dur-
ing the alignment computation could be introduced. Moreover, alignment techniques
require a lot of resources for event logs with very long traces. Work on decomposing
the alignment computation could help to alleviate this limitation.

Acknowledgments We would like to thank Ivar Myrstad for his valuable insights on
the digital whiteboard and his help with the case study.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of
Business Processes. Springer (2011)

2. Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity mining by global trace segmen-
tation. In: BPM Workshops. Volume 43 of LNBIP. Springer (2010) 128–139

3. Baier, T., Mendling, J., Weske, M.: Bridging abstraction layers in process mining. Inf. Syst.
46 (2014) 123–139

4. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in process mining: A
taxonomy of patterns. In: BPM. Volume 5701 of LNCS., Springer (2009) 159–175

5. Cook, D.J., Krishnan, N.C., Rashidi, P.: Activity discovery and activity recognition: A new
partnership. IEEE T. Cybernetics 43(3) (2013) 820–828

6. Ferreira, D.R., Szimanski, F., Ralha, C.G.: Improving process models by mining mappings
of low-level events to high-level activities. J. Intell. Inf. Syst. 43(2) (2014) 379–407

7. Folino, F., Guarascio, M., Pontieri, L.: Mining multi-variant process models from low-level
logs. In: Business Information Systems. Volume 208 of LNBIP. Springer (2015) 165–177

8. Baier, T., Rogge-Solti, A., Mendling, J., Weske, M.: Matching of events and activities: an
approach based on behavioral constraint satisfaction. In: SAC, ACM (2015) 1225–1230

9. Ferreira, D.R., Szimanski, F., Ralha, C.G.: Mining the low-level behaviour of agents in
high-level business processes. IJBPIM 6(2) (2013) 146–166

10. Fazzinga, B., Flesca, S., Furfaro, F., Masciari, E., Pontieri, L.: A probabilistic unified frame-
work for event abstraction and process detection from log data. In: OTM Conferences. Vol-
ume 9415 of LNCS., Springer (2015) 320–328

11. Baier, T.: Matching events and activities. PhD thesis, Universität Potsdam (2015)
12. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-

perspective checking of process conformance. Computing 98(4) (2016) 407–437
13. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.: From

low-level events to activities - a pattern-based approach. Technical report, BPMcenter.org
(2016) BPM Center Report BPM-02-06.

14. Wong, H.J., Caesar, M., Bandali, S., Agnew, J., Abrams, H.: Electronic inpatient white-
boards: Improving multidisciplinary communication and coordination of care. International
Journal of Medical Informatics 78(4) (2009) 239 – 247

15. Sander J. J. Leemans, D.F., van der Aalst, W.M.P.: Using life cycle information in process
discovery. In: BPM Workshops 2015. (to appear).

