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Abstract. Process mining provides fact-based insights into process be-
haviour captured in event data. In this work we aim to discover mod-
els for processes where different facets, or perspectives, of the process
can be identified. Instead of focussing on the events or activities that
are executed in the context of a particular process, we concentrate on
the states of the different perspectives and discover how they are re-
lated. We present a formalisation of these relations and an approach to
discover state-based models highlighting them. The approach has been
implemented using the process mining framework ProM and provides a
highly interactive visualisation of the multi-perspective state-based mod-
els. This tool has been evaluated on the BPI Challenge 2012 data of a
loan application process and on product user behaviour data gathered
by Philips during the development of a smart baby bottle equipped with
various sensors.

1 Introduction

The aim of process mining is to provide fact-based insights into the execution of
processes [1,11,13]. An important aspect of this is the discovery of process models
based on behaviour captured in event data. These models generally show the
activities that can be executed during the process and how they are ordered [15].

One of the most important aspects of process discovery is to deduce the
states of the operational process in the log [1]. Many mining algorithms only
have an implicit notion of state, i.e. the focus is on learning the ordering of
activities [11, 16]. However, process state information may actually be present
explicitly in information systems. Examples of such explicit state information
are the diagnosis of a patient in a healthcare process or the status of an order in
a purchasing process. In this paper we focus on analysing such state information
instead of merely focussing on the activities that are executed during a process.

A single process can have different facets, or perspectives, each with their own
state space. For example, consider the homeostatic process in a person, parts of
which regulate sleep and nutrition. From the perspective of sleep the state of a
person can be e.g. awake or asleep, while the state of the nutrition perspective
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Fig. 1: A model of a simple healthcare processM and its two perspectives P1 and
P2. Each state in the process is a combination of a state from each perspective.

can be e.g. eating or sated. These perspectives have individual process cycles,
but there are interdependencies between states from different perspectives, e.g.
people are awake while eating. The state of a person is the composition of the
state of both perspectives, and we aim to study such multi-perspective processes.

In Fig. 1 we present a simple healthcare process, which we use as a running
example. This composite process M has two distinct perspectives: P1, related
to the status of the patient being treated, and P2, related to the status of lab
tests of the patient. The initial states are marked with an incoming arrow and
the final states are marked with an outgoing arrow.

The healthcare process starts when the patient is registered, after which a lab
test is planned to diagnose the patient. If the patient misses their appointment or
if the results are inconclusive then a new test is planned, but if the test results are
ready then the treatment can proceed. During the treatment additional tests may
be required, until the patient is healthy again and the process ends. Note that
the composite process is smaller than the cartesian product of the perspectives
(4 × 5 = 20 states) because not all state combinations can be observed due to
interdependencies. For example, once the patient is healthy no extra lab tests are
needed. Such dependencies between perspectives can be interesting to analyse.

In this paper we present an approach to provide insights into processes that
can be considered from multiple state-based perspectives, like the ones described
above. The models of these processes quickly become complex as the number of
perspectives or the number of states per perspective increases, and it is difficult to
interpret the relations between states from different perspectives. Therefore, our
approach focusses on visualising and quantifying these relations and empowering
the user through interactive exploration of the discovered process models.

The structure of the paper is as follows. In Sect. 2 we formally define state-
based models for multi-perspective processes. In Sect. 3 we discuss operations
that simplify these models. In Sect. 4 we introduce metrics to quantify the rela-
tions between perspectives and we show how they can be visualised. In Sect. 5
we discuss an evaluation of the approach on two real-life data sets. Finally, we
present the related work in Sect. 6, and conclusions and future work in Sect. 7.



2 Composite State Machines

We model state-based processes such as the one in Fig. 1 as Composite State
Machines (CSMs). In this section we first formally describe CSMs and their
perspectives, based on the finite-state machine formalism [4,10]. We then define
how the state information of a process can be captured in a system execution log
and present a discovery algorithm to construct a CSM from such a log. Finally,
we define several behavioural relations between process perspectives.

Regarding notation, we write σi for the i-th element of a sequence σ ∈ S∗ of
elements from some set S, and |σ| denotes the length of σ. We write s ∈ σ if s =
σi for some i. Additionally, for an element s of a cartesian product S1× . . .×Sn
we write s(i) for the value of the i-th component of s (i ∈ {1, . . . , n}).

2.1 State Machines and Perspectives

We define State Machines (SMs) as follows:

Definition 1. A State Machine M is a tuple (S, T, S0, SF ) where S is the set
of states, T ⊆ S × S is the set of transitions, S0 ⊆ S is the set of initial states,
and SF ⊆ S is the set of final states. (s, s′) ∈ T is also denoted as (s→ s′).

An execution sequence of a state machine is a sequence of states starting
from an initial state and ending in a final state such that every state change is
allowed by the transitions of the SM. The set of all valid execution sequences of
an SM represents the possible behaviour of the process modelled by that SM.

Definition 2. An execution sequence σ ∈ S∗ of an SM M = (S, T, S0, SF )
is a sequence of states such that σ1 ∈ S0, σ|σ| ∈ SF , and (σi, σi+1) ∈ T for
i ∈ {1, . . . , |σ| − 1}. The set ΣM is the set of all the execution sequences of M.

A CSM describes a process with a number of perspectives. A state of a CSM is
defined as the composition of the states of its perspectives, i.e. it is a vector of
states. The set S of all possible states of a CSM is a subset of the cartesian prod-
uct S1×. . .×Sn of the sets of states of its perspectives, as not all combinations of
perspective states are necessarily present. Each transition in a CSM represents
a change in the state of at least one perspective; therefore we do not consider
self loops. Formally:

Definition 3. A Composite State Machine M = (S, T, S0, SF ) is a state ma-
chine where S ⊆ (S1× . . .×Sn), with S1, . . . , Sn being sets of perspective states,
and for all (s, s′) ∈ T it holds that s 6= s′.

Perspectives of CSMs can be interpreted as projections of a CSM, as seen
in Fig. 1. Two states si, s

′
i of a perspective Pi are connected by a transition iff

there is a transition from some state s to a state s′ in the CSM that changes
the value of the i-th state component from si to s′i. Again, self loops are not
considered because transitions represent state changes. Formally:



Fig. 2: Two CSMs M1 and M2 with S = {1, 2} × {A,B}, S0 = {(1, A)},
SF = {(1, B)}. Both have the same two perspectives P1 and P2.

Definition 4. Perspective Pi (i ∈ {1, . . . , n}) of a CSM M = (S, T, S0, SF )
with S ⊆ (S1 × . . .× Sn) is a state machine Pi = (Si, Ti, Si0, SiF ) with Si0 =
{s(i)|s ∈ S0}, SiF = {s(i)|s ∈ SF }, and Ti ⊆ Si × Si such that: (si, s

′
i) ∈ Ti iff

si 6= s′i ∧ ∃(s, s′) ∈ T : s(i) = si ∧ s′(i) = s′i.

Figure 2 shows two different CSMs,M1 andM2, both having identical per-
spectives. However, the possibility of changes of the states w.r.t. one perspective
ofM1 depends on the state of the other perspective, while inM2 these changes
only depend on the state of a single perspective. E.g. the transition from state 1
to state 2 in perspective P1 is only possible whenM1 is in state A in perspective
P2, while this transition is independent of perspective P2 in M2. This type of
dependency shows a relation between the states of different perspectives.

2.2 State Logs and CSM Discovery

The executions of the behaviour of a process can be recorded in a log [1,3–5]. A
state log describes a collection of sequences with each sequence consisting of the
points in time where a process entered a new state. Hence, a state entry in the
log indicates that the given process has a specific state from the corresponding
point in time onwards, until the next different state is entered.

Definition 5. A trace ∈ (S × T)∗ over the state set S is a timed sequence of
state entries with time domain T such that subsequent state entries differ in their
states. A state log L ∈ IN(S×T)∗ is a multiset of traces over S.

Given a state log of a process, with every state entry being the product of
the states of all perspectives, i.e. entries (s1 × . . . × sn × t), we can discover a
CSM describing the process behaviour. We interpret the sequence of state entries
in each trace in the log as an execution sequence of the SM being discovered.
Time is not used in the discovery of the model, only in the calculation of statistics
for the visualisation later. The discovery algorithm is defined as follows:

Definition 6. Discovery algorithm D(L) takes a state log L ∈ IN(S×T)∗ over

the set of states S = S1× . . .×Sn and produces a CSM M = (Ŝ, T, S0, SF ) such
that:



– Ŝ = {tracei(1)|trace ∈ L ∧ (i ∈ {1, . . . , |trace|})},
– T = {(tracei(1), tracei+1(1))|trace ∈ L ∧ (i ∈ {1, . . . , |trace| − 1})},
– S0 = {trace1(1)|trace ∈ L},
– SF = {trace|trace|(1)|trace ∈ L},

with tracei(1) denoting the i-th state entry of trace.

This means that each trace in the log is parsed and every state unseen before
is added to Ŝ, and every new pair of consecutive states are added to T . The first
state entry in every trace is added to S0 and the last state entry is added to SF .
The perspectives of the CSM discovered in this way are obtained by projecting
the sets of states and transitions, as defined above.

This discovery algorithm corresponds to the first step of the approach pre-
sented in [1]. The algorithm in [1] takes an event log as input and constructs a
transition system. Several different possible abstractions are described that can
be used to infer implicit states from the events recorded in the log. However, we
defined our state log to contain the explicit state information of our process, so
we do not need to use these abstractions. In fact, mining the log with a horizon
limited to single transitions produces a CSM like the algorithm above.

2.3 Behavioural Relations Between Perspectives

Once we have obtained a CSM, we can consider several types of behavioural
relations to analyse. Traditional process discovery primarily aims to discover
causal relations, i.e. which activity (eventually) follows another [11, 16]. In that
context it is more difficult to analyse relations like the expected waiting time
between two activity occurrences because of the implicit state notion. However,
with an explicit state notion the calculation of time statistics is much easier,
while the causal relations are still expressed as transitions between states.

In addition, there are also specific insights that can be of interest related
to the interdependencies between perspectives in a multi-perspective process.
E.g. for the healthcare process in Fig. 1 one can compare the time required to
obtain a result when the patient is not yet diagnosed versus the time required
for that when the patient is already in treatment. To enable this, it is necessary
to know which states and transitions from different perspectives can be observed
to co-occur, for which additional statistics can then be calculated.

For a given state of a perspective we consider three relations defining with
which states and transitions of another perspective it can co-occur:

Definition 7. Let M = (S, T, S0, SF ) be a CSM with S ⊆ S1 × . . . × Sn and
P1, . . . ,Pn its perspectives. For a state si ∈ Si of perspective Pi (i ∈ {1, . . . , n}),

– the co-occurring CSM states are CMSi(si) = {s ∈ S|s(i) = si}
– the co-occurring states of perspective Pj, j 6= i are CPSij(si) = {sj ∈ Sj |
∃s ∈ S : s(i) = si ∧ s(j) = sj}

– and the state’s co-occurring transitions of perspective Pj, j 6= i are
SCPTij(si) = {(sj , s′j) ∈ Tj |∃(s, s′) ∈ T : s(i) = si ∧ s′(i) = si ∧ s(j) = sj ∧
s′(j) = s′j}.



The CMS and CPS relations show which combinations of states from dif-
ferent perspectives can be observed in a CSM. For the CSM M in Fig. 1, e.g.
CMS1(Diagnosed) = {(Diagnosed, Results ready)}, while the other P2 states do
not occur together with the Diagnosed state. The SCPT relation similarly shows
which transitions in a specific perspective can be observed when in a given state
of another perspective. E.g. SCPT21(Results ready) = {(Registered→Diagnosed),
(Diagnosed→In treatment), (In treatment→Healthy)}, so all transitions of per-
spective P1 are possible when perspective P2 is in the Results ready state.

For a given transition of a perspective we consider three relations linking the
transitions of a perspective to the transitions of the CSM and to the states and
transitions of other perspectives:

Definition 8. Let M = (S, T, S0, SF ) be a CSM with S ⊆ S1 × . . . × Sn and
P1, . . . ,Pn its perspectives. For a transition (si, s

′
i) ∈ Ti of perspective Pi

(i ∈ {1, . . . , n}),

– the co-occurring CSM transitions are CMTi(si, s
′
i) = {(s, s′) ∈ T |

s(i) = si ∧ s′(i) = s′i},
– the co-occurring transitions of perspective Pj, j 6= i are CPTij(si, s

′
i) =

{(sj , s′j) ∈ Tj |∃(s, s′) ∈ T : s(i) = si ∧ s′(i) = s′i ∧ s(j) = sj ∧ s′(j) = s′j}
– and the transition’s co-occurring states of perspective Pj, j 6= i are
TCPSij(si, s

′
i) = {sj ∈ Sj |∃(s, s′) ∈ T : s(i) = si ∧ s′(i) = s′i ∧ s(j) = sj ∧

s′(j) = sj}.

The CMT relation gives the set of transitions that contain a specific state
change in a given perspective. E.g. in Fig. 1, CMT2((Test planned→New test
needed)) = {((Registered, Test planned)→(Registered, New test needed)), ((In
treatment, Test planned)→(In treatment, New test needed))}, so the transi-
tion from Test planned to New test needed is possible at two points in M.
The CPT relation gives the transitions that can be observed simultaneously.
So, CPT12((In treatment→Healthy)) = {(Waiting on result→Results ready)}.
Finally, the TCPS relation shows all the states in a perspective where it is
possible to observe a specific transition in another perspective. For example,
TCPS21((Test planned→New test needed)) = { Registered, In treatment }.

3 Creating Simplified Views for CSMs

The CSMs that are discovered on real life process can be quite complex. Thus
it can be desirable to simplify the model in order to focus the analysis on the
parts of interest. Therefore, we consider three different operations that create
a simplified view on a state machine, i.e. the CSM as a whole or one of the
perspectives. These operations take an SM and create a new SM, so multiple
operations can be applied in sequence to create a final view.

The first operation removes a given transition from a state machine. This
simplifies the model in the sense that the number of arcs is decreased. When
creating a view for a perspective of a CSM it is assumed that a similar view is



(a) (b)

Fig. 3: Two views of M from Fig. 1. In view (a) the (Diagnosed, Results ready)
state is abstracted from and in view (b) (Registered, Results ready) and (Regis-
tered, New test needed) are aggregated in addition.

also created for the CSM as a whole. So, if a transition (si, s
′
i) is removed from

perspective Pi then all transitions from CMTi(si, s
′
i) are also removed.

Removing transitions from an SM affects its behaviour, i.e. the set of allowed
execution sequences is reduced. For example, removing the transition (Waiting
on result→New test needed) from perspective P2 in Fig. 1 implies that the result
of the test is never inconclusive. Note that the transitions ((Registered, Wait-
ing on result)→(Registered, New test needed)) and ((In treatment, Waiting on
result)→(In treatment, New test needed)) should also be removed from M in
Fig. 1 to keep P2 consistent with M.

The second operation abstracts from a given state in a state machine, sim-
plifying the model by decreasing the number of states. This means that the
state is removed, but other states that were connected by transitions through
this state should remain connected. In addition, if the abstracted state was an
initial or final state then the states that could directly follow or precede this
state respectively become initial or final states as well. As an example, Fig. 3a
shows the abstraction of the (Diagnosed, Results ready) state fromM in Fig. 1.
In this view there is now a new transition from (Registered, Results ready) to
(In treatment, Results ready).

Abstracting from states is not guaranteed to simplify the model. If a state is
highly connected with many incoming and outgoing transitions then abstracting
from this state can result in the addition of many new transitions that make the
model more complex.

The third operation aggregates two given states into a single new state, sim-
plifying the model by decreasing both the number of states and transitions. The
two old states are removed from the model and a new state is added represent-
ing the combination of the two, so all the transitions to and from the old states
are also added to the new state (omitting self-loops). If either of the old states
was an initial or final state, then the new state is also an initial or final state,



Fig. 4: The interactive visualisation of a discovered CSM. The selected state is
denoted with a red box and its co-occurring states and transitions are high-
lighted in the other perspectives and the overall view based on their confidence.
Additional statistics are displayed for the highlighted states and transitions.

respectively. In Fig. 3b the aggregation of the states (Registered, Results ready)
and (Registered, New test needed) from the CSM of Fig. 3a is shown.

Although no behaviour is removed during aggregation due to the preservation
of transitions, new behaviour may be added. For example, in the CSM in Fig. 3b
it is now possible to go from the state Registered to the state In treatment
without going through the state (Registered, Waiting on result), while this was
not possible before.

4 Exploring Composite State Machines

In this section we introduce the metrics of support, confidence and lift to quantify
the behavioural relations between perspectives. These metrics come from the
field of association rule learning [9] and they enable us to highlight relations of
potential interest. We also discuss the metric visualisation in the implementation
of our approach as a plug-in1 in the process mining framework ProM.

The visualisation of the discovered CSMs is shown in Fig. 4. The CSM is
shown on the left and its perspectives are displayed next to it. Initial states are
marked with a dashed border and final states with a double border. Statistics
such as the number of observations, are displayed at the bottom for the selected
state or transition. The operations from Sect. 3 can be applied to simplify the
discovered models. For example, the user can filter arcs based on the amount of
observations and iteratively select the states to abstract from or to aggregate.

The behavioural relations introduced in Sect. 2.3 are highlighted and quanti-
fied for the selected state or transition. These statistics are calculated from the

1 Contained in the CSMMiner package of the ProM 6 nightly build and the ProM 6.6
release, available at http://www.promtools.org/.

http://www.promtools.org/


observations in the state log that was used to discover the CSM. The reason
for the use of highlighting and an interactive display of statistics based on the
selected state or transition is to prevent an overload of information and to fa-
cilitate the exploration of scenario’s. For example, the user can select a specific
state in a perspective and evaluate what the occurrence of this state means for
the state of the rest of the process and which transitions may be enabled.

The states with the highest support are the most frequently observed states.
This metric is calculated as the number of observations of a state or transition in
the log divided by the total number of observations of states or transitions [9].
That is, if a state s has been observed 40 times and in total there were 100
state entries in the state log then Supp(s) = 40

100 . Similarly, support can also be
calculated as the time that was spent in a given state divided by the total time
covered by the log. For transitions the support is only defined over the number
of observations, as a transition is assumed to happen instantaneously.

The confidence metric is defined over pairs of state or transitions, expressing
the estimated conditional probability of the occurrence of one, given the occur-
rence of the other [9]. E.g. if a state si from perspective Pi co-occurs with two
states CPSij(si) = {sj , s′j} from perspective Pj , and if the co-occurrence of si
with sj is observed 30 times and the co-occurrence of si with s′j is observed 10

times, then Conf (si, sj) = 30
40 and Conf (si, s

′
j) = 10

40 . Confidence for co-occurring
states can also be calculated based on the amount of time that was spent in the
related states. For pairs of transitions the computation is comparable.

We define the confidence metric slightly differently for the co-occurrence of
a state with a transition. For a given state’s co-occurring transitions the confi-
dence expresses the expected conditional probability of observing the transition,
given that the CSM is in this specific state and a transition occurs. For exam-
ple, a state si from perspective Pi co-occurs with two transitions SCPTij(si) =
{(sj , s′j), (sj , s′′j } from perspective Pj . Then the confidence Conf (si, (sj , s

′
j)) is

the estimated conditional probability of observing transition (sj , s
′
j), given that

the CSM is in si and sj and a transition occurs. That is, if (sj , s
′
j) has been

observed 8 times while in state si and (sj , s
′′
j ) has been observed 2 times while

in state si then Conf (si, (sj , s
′
j)) = 8

10 and Conf (si, (sj , s
′′
j )) = 2

10 . The confi-
dence of observing a transition’s co-occurring state is the expected conditional
probability of being in that specific state, given that the transition is observed.

The lift metric is also defined over pairs of states or transitions and it ex-
presses how much the confidence differs from the expected confidence [9]. For
the co-occurrence of two states si and sj , given that the CSM is in state si in
perspective Pi, the lift is computed as the ratio of the confidence Conf (si, sj)
over the unconditional probability of being in sj in perspective Pj . E.g. if
Conf (si, sj) = 30

40 = 0.75 and the probability of being in sj in perspective Pj
(i.e. its support) is 40

100 = 0.4, then Lift(si, sj) = 0.75
0.4 = 1.875. This indicates

that the probability of being in state sj in perspective Pj is 1.875 times higher
than expected when in si in perspective Pi. In other words, the lift quantifies
whether being in si provides information on the likelihood of being in sj and
expresses whether the relation is unexpected and hence potentially interesting.



5 Evaluation

The tool introduced in Sect. 4 has been used to analyse two data sets recorded for
two real-life processes. One is the BPI Challange 2012 data of a loan application
process [6] and the other is product user behaviour data for a smart baby bottle
equipped with various sensors that was developed by Philips.

5.1 BPI Challenge 2012

The BPI Challenge 2012 data set (BPI2012) is a real-life event log that was
obtained from a Dutch financial institute [6]. The log contains 262.200 events
distributed over 13.087 process instances. The process described in this log con-
cerns applications for a personal loan or overdraft at the financial institute. The
events recorded in this log are related to three interrelated sub-processes, which
we take as our perspectives. Artificial initial and final states were added to each
process instance in the log2 to ensure correct calculations of state sojourn times
for all three perspectives.

The first perspective concerns the state of the application (A-events), the
second relates to the work-items performed by the bank’s employees (W -events),
and the third concerns the state of the institute’s offers to the applicant (O-
events). Although the BPI2012 log is presented as an event log, the A and O-
events actually specify changes in the state of the application or an offer. This
means that they can be interpreted as state entries in a state log as defined in
Sect. 2.2. On the other hand, the W -events are clearly identifiable as activities.
These activities are enabled at some point in the process, indicated with a single
schedule event, after which the start and completion of each instance of this
activity is recorded whenever it is performed. At most one activity is performed
per application at a time, so we study the process from the viewpoint that the
states of the work-item perspective indicate either the type of activity currently
being executed (i.e. indicated by a start event) or the type of activity that was
most recently completed (i.e. indicated by a complete event).

The interrelation of these three perspectives introduces complex behaviour
that makes it difficult for traditional process discovery algorithms to discover
informative models. Fig. 5 shows a process model discovered by the Inductive
visual Miner (IvM) [11]. This flower model provides very little insights into the
application process and no relations between the three perspectives. On the
other hand, models such as the one shown in Fig. 6, discovered with the Flexible
Heuristics Miner (FHM) [16], do show these relations, but they provide little
structure and they are difficult to interpret.

Applying the CSM Miner on the BPI2012 results in the models shown in
Fig. 4. The discovered CSM is shown as the leftmost model and, like the result
from the FHM, it is very difficult to interpret. However, the three models for the
individual perspectives are well structured and easy to comprehend. Mining such
structured models is also possible with traditional process discovery algorithms if

2 Available at http://svn.win.tue.nl/repos/prom/Packages/CSMMiner/Logs/

http://svn.win.tue.nl/repos/prom/Packages/CSMMiner/Logs/
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Fig. 5: The result of applying the IvM [11] on the BPI2012 data. The relations
between the events from different perspectives are not visible in this model.

Fig. 6: The result of applying the FHM [16] on the BPI2012 data. The general
flow of the process cannot easily be inferred from this model.

the log is filtered for a specific perspective. However, the resulting models would
not show any of the interrelations between the perspectives. The CSM Miner does
show these relations when the user explores the models interactively.

Another reason why the CSM Miner results are easier to interpret is that
they can be simplified using the transformation operations from Sect. 3. E.g. the
BPI2012 process starts with the submission of the application, shown in Fig. 7a.
This is always immediately followed by a state indicating that the application is
not completed yet, i.e. partly submitted. Based on the fact that the time spent
in the first state is negligible, this state can be abstracted from.

Fig. 7b also shows a transformation simplifying the application perspective. It
contains the end of the application process for successfully accepted applications,
which are approved, registered and the loan is activated. The model structure
and state statistics indicate that these states occur in arbitrary order and that
the process immediately ends afterwards (i.e. the state sojourn time is 0). Hence,
these states can be merged into a single one representing a successful application.

Exploring the discovered CSM provides several interesting insights. For ex-
ample, when inspecting the declined applications that co-occur with automatic
processing (Fig. 8a) and comparing them to the declined applications that co-



(a) (b)

Fig. 7: Part of the application perspective with a submitted marked for abstrac-
tion, and a registered, a activated and a approved marked for aggregation.

(a) (b) (c)

Fig. 8: The decline of applications by the institution, highlighted to show statis-
tics for the co-occurrence with automatic application submission (a), manual
handling of leads (b), and fraud detection (c).

occur with manual handling of the leads (Fig. 8b). These statistics show that
the rate of declined applications is very similar for both type of applications. So,
this suggests that perhaps the guidelines for declining applications are uniform,
but some applications may come in through a channel where it is not possible
to automatically evaluate them on the application.

Exploration of the CSM also shows that some applications are declined while
the institution is investigating potential fraud, shown in Fig. 8c. In the 75 cases
where fraud is investigated for applications that have not been validated, 57
were declined (76%). However, after application validation there were also 33
cases where potential fraud was investigated, but none of these were declined.
Therefore, the validation appears to be successful at filtering out fraud and it
suggests that they only investigate applications that have not been validated for
which they already have a suspicion of possible fraud.

Finally, it is also possible that an application is declined after it has been
validated and the offer sent to the applicant. This appears to be related to un-
responsive applicants or incomplete applications. In Fig. 9a the co-occurrence
statistics are shown for the state where the client is called because of an incom-



(a) (b)

Fig. 9: Status changes of the application after it is finalized, while the client is
called due to an incomplete application (a), or during application validation (b).

plete application. While on the phone, only 86+193+127
1647 = 25% cases changed

state, so most people cannot provide the required information right away. The
number of successfully registered applications at this point is also lower than for
the other applications that reach this point in the process, as shown in Fig. 9b.

Interestingly, exploration also revealed that on average 7 calls are made for
the cases where information is incomplete, suggesting that these clients are
not taking the effort to complete the application even after being contacted.
Therefore, the institution could investigate the trade-off between the value of
additional successful applications and the required effort for these incomplete
applications. To get more insights into this, it would also be useful to see the ac-
ceptance rate for the applications that are incomplete. However, this information
cannot currently be obtained as the relations between the different perspectives
are limited to co-occurrence and do not show (long term) dependencies.

5.2 Smart Product User Behaviour

This data set was obtained from Philips during a study where Philips worked
on the design of a smart baby bottle equipped with various sensors. The goal
of the study was to investigate the characteristics of the data obtained during
the use of the bottle, and to explore potential product improvements or ideas
for related services based on analysis of this data.

The data set used during this evaluation concerns 358 instances of baby feed-
ings that resulted in 8369 state entries in a state log. There are two perspectives
used in the analysis: a temperature sensor and an accelerometer measuring bottle
movement. The states in this log correspond to the state of the sensor signals of
these two sensors and their product-specific interpretation. They were obtained
by clustering the sensor measurement values and labelling the cluster centroids.
The resulting CSM is shown in Fig. 10 The main challenge of analysing this sen-
sor data is the recognition of user behaviour and its effects on the measurements.

One of the basic assumptions on user behaviour for this smart bottle is that
a feeding is started soon after the bottle has been heated. Figure 11a shows
the bottle movement states, highlighted to indicate their co-occurrence with the



Fig. 10: The result of applying the CSM Miner on the Philips data set.

(a) (b) (c)

Fig. 11: States in the accelerometer perspective, highlighted for the co-occurrence
with the bottle heating (a), cooling (b), and small temperature increases (c).

state of the bottle having just been heated. The high lift of the state Down-
ward BigMove shows that the feedings are indeed generally started soon after
heating, as this state is an important indicator for the start of a feeding.

Similarly, Fig. 11b shows the co-occurrence of bottle movement states with
the transition from a warm bottle to a cold bottle through a big decrease in
temperature. Here the lift of the state Upright BigMove is high, indicating a
relation with this indicator of the feeding having ended. This shows that the
bottle is usually cleaned soon after a feeding has ended.

Interestingly, there is also a strong relation between a small temperature in-
crease and the Upright BigMove state, as shown in Fig. 11c. This occurs because
during the feeding the warm food was further away from the sensor than when
the bottle was in a stationary position, resulting in fluctuating temperatures.
The product designers inferred from this that the temperature sensor was not in
the correct position to measure the temperature accurately during the feeding.

6 Related Work

The discovery of state-based models from logs of behavioural data is not a recent
idea [4,5]. Finite state machines have been found to be convenient to model his-



torical patterns of behaviour in different contexts, e.g. to understand software
behaviour [5, 12] or to find successful proof strategies for interactive theorem
provers [8]. These approaches are similar to traditional process discovery ap-
proaches that produce a single model describing the observed behaviour [1,11,16].

More recently, processes have been studied from the point of view of the
business objects or artifacts involved in a process [13–15],e.g. orders or invoices.
In this context, state machines have been traditionally used to model the indi-
vidual lifecycles of artifacts, although more specific formalisms have also been
developed [14]. While artifacts are generally defined to include both an informa-
tion model with all data related to the artifact and a lifecycle model describing
how events and activities affect the state of the artifact, a perspective is only a
collection of related states and the transitions that are possible between these
states in the context of a state-based process. To the best of our knowledge, there
is currently no publicly available implementation of an artifact-centric approach
that can discover the interactions between objects or artifacts [13,14].

Systems composed of multiple state machines have also been studied in the
areas of model checking and software analysis [3, 7]. The individual state ma-
chines are generally assumed to either operate independently or interact using
messages [2,10]. Few approaches can discover models for such systems and they
model interaction through message passing instead of the relations we study [3].

The formalisms we introduce for CSMs are similar to notions from automata
theory [2], but while automata theory is centered on actions or activities, we
deviate from the dominating activity view in process mining and utilize available
state information explicitly. In automata theory notions of e.g. product automata
can be used to build up a system of multiple automata based on synchronised
transitions [2], which can be reduced to create a minimal automata, i.e. bottom-
up construction. However, a CSM cannot be built up from its perspectives as
there is no information in the data of individual perspectives to synchronise on.
This information is only available in the log of the entire process, which is mined
to directly create a composite model that is minimal by definition.

7 Conclusion

This paper presented an approach to discover state-based process models that
can be interactively explored. We first formally defined the notion of a Composite
State Machine as a way to model multi-perspective processes that can be learned
from event logs. As the resulting models can be quite complex, we provided three
different operations that can be used to create simplified views on state machines.

To explore the discovered models we have developed an interactive visualisa-
tion tool that is available as a plug-in for ProM. The tool highlights interesting
relations between states and transitions graphically and quantifies them in terms
of support, confidence and lift. This tool has been evaluated on two real-life data
sets, demonstrating that valuable and novel insights can be obtained.

Future work we plan to do in this area aims at improving practical usability.
For example, the view creation operations could be automatically evaluated to



provide the user with feedback on the changes in process model quality when
creating a new view. Based on the existing metrics or on concurrency detection
there could also be automatic suggestions for candidate transitions and states
for removal or aggregation. Finally, the approach should be extended to support
more types of behavioural relations between the perspectives. In addition to co-
occurrence, it is also interesting to look at the dependencies between perspectives
that occur before or after reaching a given state.
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15. Ryndina, K., Küster, J.M., Gall, H.C.: Consistency of business process models and
object life cycles. In: Models in Software Engineering, Workshops and Symposia
at MoDELS 2006, Reports and Revised Selected Papers. pp. 80–90 (2006)

16. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: Proceed-
ings of the IEEE Symposium on Computational Intelligence and Data Mining,
CIDM 2011. pp. 310–317 (2011)

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

	Discovering and Exploring State-based Models for Multi-perspective Processes

