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Abstract Over thepast decadeprocessmininghas emerged
as a new analytical discipline able to answer a variety of
questions based on event data. Event logs have a very par-
ticular structure; events have timestamps, refer to activities
and resources, and need to be correlated to form process
instances. Process mining results tend to be very different
from classical data mining results, e.g., process discovery
may yield end-to-end processmodels capturing different per-
spectives rather than decision trees or frequent patterns. A
process-mining tool like ProM provides hundreds of differ-
ent process mining techniques ranging from discovery and
conformance checking tofiltering andprediction.Typically, a
combination of techniques is needed and, for every step, there
are different techniques that may be very sensitive to para-
meter settings. Moreover, event logs may be huge and may
need to be decomposed and distributed for analysis. These
aspects make it very cumbersome to analyze event logs man-
ually. Process mining should be repeatable and automated.
Therefore, we propose a framework to support the analysis of
process mining workflows. Existing scientific workflow sys-
tems and data mining tools are not tailored towards process
mining and the artifacts used for analysis (process models
and event logs). This paper structures the basic building
blocks needed for process mining and describes various
analysis scenarios. Based on these requirements we imple-
mented RapidProM, a tool supporting scientific workflows
for process mining. Examples illustrating the different sce-
narios are provided to show the feasibility of the approach.
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1 Introduction

Scientific Workflow Management (SWFM) systems help
users to design, compose, execute, archive, and share work-
flows that represent some type of analysis or experiment.
Scientific workflows are often represented as directed graphs
where the nodes represent “work” and the edges repre-
sent paths along which data and results can flow between
nodes. Next to “classical” SWFM systems such as Taverna
[23], Kepler [33], Galaxy [20], ClowdFlows [27], and jABC
[40], one can also see the uptake of integrated environments
for data mining, predictive analytics, business analytics,
machine learning, text mining, reporting, etc. Notable exam-
ples are RapidMiner [22] and KNIME [4]. These can be
viewed as SWFM systems tailored towards the needs of data
scientists.

Traditional data-driven analysis techniques do not con-
sider end-to-end processes. People are process models by
hand [e.g., Petri nets, UML activity diagrams, or Business
Process Modeling Notation (BPMN) models], but this mod-
eled behavior is seldom aligned with real-life event data.
Process mining aims to bridge this gap by connecting end-to-
end processmodels to the raw events that have been recorded.

Process-mining techniques enable the analysis of a wide
variety of processes using event data. For example, event
logs can be used to automatically learn a process model
(e.g., a Petri net or BPMN model). Next to the automated
discovery of the real underlying process, there are process-
mining techniques to analyze bottlenecks, to uncover hidden
inefficiencies, to check compliance, to explain deviations,
to predict performance, and to guide users towards “better”
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processes. Hundreds of process-mining techniques are avail-
able and their value has been proven inmany case studies. See
for example the twenty case studies on the webpage of the
IEEE Task Force on Process Mining [24]. The open source
process mining framework ProM [58] provides hundreds of
plug-ins and has been downloaded over 100,000 times. The
growing number of commercial process mining tools (Disco,
Perceptive Process Mining, Celonis Process Mining, QPR
ProcessAnalyzer, Software AG/ARIS PPM, Fujitsu Inter-
stage Automated Process Discovery, etc.) further illustrates
the uptake of process mining.

For process mining typically many analysis steps need
to be chained together. Existing process mining tools do not
support such analysis workflows. As a result, analysismay be
tedious and it is easy tomake errors. Repeatability and prove-
nance are jeopardized by manually executing more involved
process mining workflows.

This paper is motivated by the observation that tool sup-
port for process mining workflows is missing. None of the
process mining tools (ProM, Disco, Perceptive, Celonis,
QPR, etc.) provides a facility to design and execute analysis
workflows.None of the scientificworkflowmanagement sys-
tems including analytics suites like RapidMiner and KNIME
support process mining. Yet, process models and event logs

are very different from the artifacts typically considered.
Therefore,wepropose the framework to support processmin-
ing workflows depicted in Fig. 1.

This paper considers four analysis scenarios where
process mining workflows are essential:

– Result (sub-)optimality Often different process mining
techniques can be applied and a priori it is not clear
which one is most suitable. By modeling the analysis
workflow, one can just perform all candidate techniques
on the data, evaluate the different analysis results, and
pick the result with the highest quality (e.g., the process
model best describing the observed behavior).

– Parameter sensitivity Different parameter settings and
alternative ways of filtering can have unexpected effects.
Therefore, it is important to see how sensitive the results
are (e.g., leaving out some data or changing a parameter
setting a bit should not change the results dramatically).
It is important to not simply show the analysis result with-
out having some confidence indications.

– Large-scale experiments Each year new process mining
techniques become available and larger data sets need to
be tackled. For example, novel discovery techniques need
to be evaluated through massive testing and larger event

Fig. 1 Overview of the
framework to support process
mining workflows

Analysis scenarios for process mining
Result (sub-)
optimality Parameter sensitivity Large-scale

experiments Repeating questions

Categories of building blocks

Event data extraction

Import event data
(ImportED)

Generate event data
from model
(GenerED)

Event data
transformation

Add data to event
data (AddED)

Filter event data
(FilterED)

Split event data
(SplitED)

Merge event data
(MergED)

Process model
extraction

Import process
model (ImportM)

Discover process
model from event
data (DiscM)

Select process
model form
collection
(SelectM)

Process model and
event data analysis

Analyze process
model (AnalyzeM)

Evaluate process
model using event
data (EvaluaM)

Compare process
models
(CompareM)

Analyze event data
(AnalyzeED)

Generate report
(GenerR)

Process model
transformations

Repair process
model (RepairM)

Decompose process
model (DecompM)

Merge process
models (MergeM)

Process model
enhancement

Enrich process
model using event
data (EnrichM)

Improve process
model (ImproveM)

Implementation

RapidProM

ProM RapidMiner
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logs need to be decomposed to make analysis feasible.
Without automated workflow support, these experiments
are tedious, error-prone, and time consuming.

– Repeating questions It is important to lower the threshold
for process mining to let non-expert users approach it.
Questions are often repetitive, e.g., the same analysis is
done for a different period or a different group of cases.
Process mining workflows facilitate recurring forms of
analysis.

As shown in Fig. 1 these scenarios build on processmining
building blocks grouped into six categories:

– Event data extraction Building blocks to extract data
from systems or to create synthetic data.

– Event data transformation Building blocks to pre-
process data (e.g., splitting, merging, filtering, and
enriching) before analysis.

– Process model extraction Building blocks to obtain
process models, e.g., through discovery or selection.

– Process model and event analysis Building blocks to
evaluate event logs andmodels, e.g., to check the internal
consistency or to check conformance with respect to an
event log.

– Processmodel transformations Building blocks to repair,
merge or decompose process models.

– Process model enhancement Building blocks to enrich
event logs with additional perspectives or to suggest
process improvements.

Building blocks can be chained together to support spe-
cific analysis scenarios. The suggested approach has been
implemented thereby building on the process mining frame-
work ProM and the workflow and data mining capabilities of
RapidMiner. The resulting tool is called, RapidProM, which
supports process mining workflows. ProM was selected
because it is open source and there is no other tool that sup-
ports as many process mining building blocks. RapidMiner
was selected because it allows for extensions that can be
offered through a marketplace. RapidProM is also offered
as such an extension and the infrastructure allows us to mix
process mining with traditional data mining approaches, text
mining, reporting, and machine learning. Overall, Rapid-
ProM offers comprehensive support for any type of analysis
involving event data and processes.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses related work and positions our framework.
An initial set of process-mining building blocks is described
in Sect. 3. These building blocks support the four analysis
scenarios described in Sect. 4. The RapidProM implementa-
tion is presented in Sect. 5. Section 6 evaluates the approach
by showing concrete examples. Finally, Sect. 7 concludes the
paper.

2 Related work

Over the past decade, process mining has emerged as a new
scientific discipline at the interface between process models
and event data [45]. Conventional Business Process Man-
agement (BPM) [46,63] and WorkflowManagement (WfM)
[31,51] approaches and tools are mostly model-driven with
little consideration for event data. Data Mining (DM) [21],
Business Intelligence (BI), andMachine Learning (ML) [35]
focus on data without considering end-to-end process mod-
els. Process mining aims to bridge the gap between BPM
and WfM on the one hand and DM, BI, and ML on the
other hand. A wealth of process discovery [29,53,62] and
conformance checking [1,2,48] techniques has becomeavail-
able. For example, the process mining framework ProM [58]
provides hundreds of plug-ins supporting different types of
process mining (http://www.processmining.org).

This paper takes a different perspective on the gap between
analytics and BPM/WfM. We propose to use workflow tech-
nology for process mining rather than the other way around.
To this end, we focus on particular kinds of scientific work-
flows composed of process mining operators.

Differences between scientific and business workflows
have been discussed in several papers [3]. Despite unification
attempts (e.g., [38]) both domains have remained quite dis-
parate due to differences in functional requirements, selected
priorities, and disjoint communities.

Obviously, the work reported in this paper is closer to sci-
entific workflows than business workflows (i.e., traditional
BPM/WFM from the business domain). Numerous Scientific
Workflow Management (SWFM) systems have been devel-
oped. Examples include Taverna [23], Kepler [33], Galaxy
[20], ClowdFlows [27], jABC [40], Vistrails, Pegasus, Swift,
e-BioFlow, VIEW, and many others. Some of the SWFM
systems (e.g., Kepler and Galaxy) also provide repositories
of models. The website http://www.myExperiment.org lists
over 3500 workflows shared by its members [19]. The diver-
sity of the different approaches illustrates that the field is
evolving in many different ways. We refer to the book [41]
for an extensive introduction to SWFM.

An approach to mine process models for scientific work-
flows (including data and control dependencies) was pre-
sented in [65]. This approach uses “process mining for
scientific workflows” rather than applying scientific work-
flow technology to process mining. The results in [65] can
be used to recommend scientific workflow compositions
based on actual usage. To our knowledge, RapidProM is the
only approach supporting “scientific workflows for process
mining”. The demo paper [34] reported on the first imple-
mentation. In the meantime, RapidProM has been refactored
based on various practical experiences.
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There are many approaches that aim to analyze reposi-
tories of scientific workflows. In [64], the authors provide
an extensible process library for analyzing jABC workflows
empirically. In [14] graph clustering is used to discover sub-
workflows from a repository of workflows. Other analysis
approaches include [16,32], and [61].

Scientific workflows have been developed and adopted in
various disciplines, including physics, astronomy, bioinfor-
matics, neuroscience, earth science, economics, health, and
social sciences. Various collections of reusable workflows
have been proposed for all of these disciplines. For example,
in [42] the authors describe workflows for quantitative data
analysis in the social sciences.

The boundary between data analytics tools and scientific
workflow management systems is not well-defined. Tools
like RapidMiner [22] and KNIME [4] provide graphical
workflow modeling and execution capabilities. Even the
scripting in R [25] can be viewed as primitive workflow sup-
port. In this paper we build on RapidMiner as it allows us to
mix process mining with data mining and other types of ana-
lytics. Earlier we developed extensions of ProM for chaining
process mining plug-ins together, but these were merely pro-
totypes. We also realized a prototype using an integration
between KNIME and ProM. However, for reasons of usabil-
ity, we opted for RapidMiner as a platform to expose process
mining capabilities.

3 Definition of the process-mining building blocks

To create scientific workflows for process mining we need to
define the building blocks, which are, then, connected with
each other to create meaningful analysis scenarios. This sec-
tion discusses a taxonomy and a repertoire of such building
blocks inspired by the so-called “BPM use cases”, which
were presented in [46]. The Process-Mining Building Blocks
(PMBB) are characterized by two main aspects. First, they
are abstract as they are not linked to any specific technique
or algorithm. Second, they represent logical units of work,
i.e., they cannot be conceptually split while maintaining their
generality. This does not imply that concrete techniques that
implement process-mining building blocks cannot be com-
posed by micro-steps, according to the implementation and
design that was used.

The process-mining building blocks can be chained, thus
producing process-mining scientific workflows to answer a
variety of process-mining questions.

Each process-mining building block takes a number of
inputs and produces certain outputs. The input elements rep-
resent the set (or sets) of abstract objects required to perform
the operation. The process-mining building block compo-
nent represents the logical unit of work needed to process
the inputs and produce the outputs. Inputs and outputs are

indicated through circles, whereas a process-mining building
block is represented by a rectangle. Arcs are used to connect
the blocks to the inputs and outputs. A generic example of a
building block interacting with inputs and outputs is shown
in Fig. 2.

Two process-mining building blocks a and b are chained
if one or more outputs of a are used as an inputs in b. As
mentioned, inputs and outputs are depicted by circles. The
letter inside a circle specifies the type of the input or output.
The following types of inputs and outputs are considered in
this paper:

– Process models, which are a representation of the behav-
ior of a process, are represented by letter “M”. Here we
abstract from the notation used, e.g., Petri nets, Heuristics
nest, BPMN models are concrete representation lan-
guages.

– Event data sets, which contain the recording of the
execution of process instances within the information
system(s), regardless of the format. They are represented
by letter “E”. XES is currently the de-facto standard for-
mat to store events.1

– Information systems, which supports the performance of
processes at runtime. They are represented by the label
“S”. Information systems may generate events used for
analysis and processmining results (e.g., prediction)may
influence the information system.

– Sets of parameters to configure the application of
process-mining building blocks (e.g., thresholds, wei-
ghts, ratios, etc.). They are represented by letter “P”.

– Results that are generated as outputs of a process-mining
building blocks. This can be as simple as a number or
more complex structures like a detailed report. In princi-
ple, the types enumerated above in this list (e.g., process
models) can also be results. However, it is worth differen-
tiating those specific types of outputs from results which
are not process mining specific (like a bar chart). Results
are represented by letter “R”.

– Additional Data Sets that can be used as input for certain
process-mining building blocks. These are represented
by the letter “D”. Such an additional data set can be used
to complement event data with context information (e.g.,
one can use weather or stock-market data to augment the
event log with additional data).

The remainder of this section provides a taxonomy of
process-mining building blocks grouped into six different
categories. For each category, several building blocks are
provided. They were selected because of their usefulness

1 XES (Extensible Event Stream) is an XML-based standard for event
logs http://www.xes-standard.org. It provides a standard format for the
interchange of event log data between tools and application domains.
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Fig. 2 Generic example of a
building block transforming a
process model (M) and event
data (E) into process analytics
results (R) and an annotated
process model

for the definition of many process-mining scientific work-
flows. The taxonomy is not intended to be exhaustive; there
will be new process-mining building blocks as the discipline
evolves. Section 5 discusses how these building blocks can be
implemented into concrete operators and provides examples
of these operators implemented in RapidProM.

3.1 Event data extraction

Event data are the cornerstone of process mining. In order
to be used for analysis, event data has to be extracted and
made available. All of the process-mining building blocks of
this category can extract event data from different sources.
Figure 3 shows some process-mining building blocks that
belong to this category.

Fig. 3 Process-mining building blocks related to event data extraction

Import event data (ImportED) Information systems store
event data in different format and media, from files in a hard
drive to databases in the cloud. This building block represents
the functionality of extracting event data from any of these
sources. Some parameters can be set to drive the event-data
extraction. For example, event data can be extracted from
files in standard formats, such as XES, or from transactional
databases.

Generate event data from model (GenerED) In a number of
cases, onewants to assesswhether a certain technique returns
the expected or desired output (i.e., synthetic event data). For
this assessment, controlled experiments are necessary where
input data are generated in a way that the expected output of
the technique is clearly known. Given a process model M ,
this building block represents the functionality of generating
event data that record the possible execution of instances
of M . This is an important function for, e.g., testing a new
discovery technique.Various simulators have beendeveloped
to support the generation of event data.

3.2 Event data transformation

Sometimes, event data sets are not sufficiently rich to enable
certain process-mining analyses. In addition, certain data-
set portions should be excluded, because they are irrelevant,
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Fig. 4 Process-mining building blocks related to event data transfor-
mations

out of the scope of the analysis or, even, noise. Therefore, a
number of event data transformationsmay be required before
doing further analysis. This category comprises the building
blocks to provide functionalities to perform the necessary
event data transformations. Figure 4 shows the repertoire of
process-mining building blocks that belong to this category.

Add data to event data (AddED) In order to perform a cer-
tain analysis or to improve the results, the event data can
be augmented with additional data coming from different
sources. For instance, if the process involves citizens, the
event data can be augmented with data from the municipal-
ity data source. If the level of performance of a process is
suspected to be influenced by the weather, event data can
incorporate weather data coming from a system storing such
a kind of data. If the event data contain a ZIP code, then
other data fields such as country or city can be added to the
event data from external data sources. This building block
represents the functionality of augmenting event data using
external data, represented as a generic data set in the figure.

Filter event data (FilterED) Several reasons may exist to
filter out part of the event data. For instance, the process
behavior may exhibit concept drifts over time. In those situa-
tions, the analysis needs to focus on certain parts of the event
data instead of all of it. One could filter the event data and
use only those events that occurred, e.g., in year 2015. As a
second example, the same process may run at different geo-
graphical locations. One may want to restrict the scope of the
analysis to a specific location by filtering out the event data
referring to different locations. Thismotivates the importance
of being able to filter event data in various ways.

Split event data (SplitED) Sometimes, the organization gen-
erating the event data is interested in comparing the process’

performances for different customers, offices, divisions,
involved employees, etc. To perform such comparison, the
event data need to be split according to a certain criterion,
e.g., according to organizational structures, and the analy-
sis needs to be iterated over each portion of the event data.
Finally, the results can be compared to highlight difference.
Alternatively, the splitting of the data may be motivated by
the size of the data. It may be intractable to analyze all data
without decomposition or distribution.Many process-mining
techniques are exponential in the number of different activi-
ties and linear in the size of the event log. If data are split in a
proper way, the results of applying the techniques to the dif-
ferent portions can be fused into a single result. For instance,
work [47] discusses how to split event data while preserv-
ing the correctness of results. This building block represents
the functionality of splitting event data into overlapping or
non-overlapping portions.

Merge event data (MergED) This process-mining building
block is the inverse of the previous: data sets from differ-
ent information systems are merged into a single event data
set. This process-mining building block can also tackle the
typical problems of data fusion, such as redundancy and
inconsistency.

3.3 Process model extraction

Process mining revolves around process models to represent
the behavior of a process. This category is concerned with
providing building blocks tomine a processmodel fromevent
data as well as to select or extract it from a process-model
collection. Figure 5 lists a number of process-mining building
blocks belonging to this category.

Import process model (ImportM) Process models can be
stored in some media for later retrieval to conduct some
analyses. This building block represents the functionality of
loading a process model from some repository.

Fig. 5 Process-miningbuildingblocks related to processmodel extrac-
tion
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Discover process model from event data (DiscM) Process
models can be manually designed to provide a normative
definition for a process. These models are usually intuitive
and understandable, but they might not describe accurately
what happens in reality. Event data represent the “real behav-
ior” of the process. Discovery techniques can be used tomine
a process model on the basis of the behavior observed in the
event data (cf. [45]).Here,we stay independent of the specific
notations and algorithms. Examples of algorithms are the
Alpha Miner [53], the Heuristics Miner [62] or, more recent
techniques like the InductiveMiner [29]. This building block
represents the functionality of discovering a process model
from event data. This block, as many others, can receive a
set of parameters as an input to customize the application of
the algorithms.

Select process model from collection (SelectM) Organiza-
tions can be viewed as a collection of processes and resources
that are interconnected to form a process ecosystem. This
collection of processes can be managed and supported by
different approaches, such as ARIS [36] or Apromore [28].
To conduct certain analyses, one needs to use some of these
models and not the whole collection. In addition, one can
give a criterion to retrieve a subset of the collection. This
building block represents the functionality of selecting one
or more process models from a process-model collection.

3.4 Process model and event analysis

Organizations normally use process models for the discus-
sion, configuration, and implementation of processes. In
recent years, many process mining techniques are also using
process models for analysis. This category groups process-
mining building blocks that can analyze process models or
event logs and provide analysis results. Figure 6 shows some
process-mining building blocks that belong to this category.

Analyze process model (AnalyzeM) Process models may
contain a number of structural problems. For instance, the
model may exhibit undesired deadlocks, activities that are
never enabled for execution, variables that are used to drive
decisions without previously taking on a value, etc. Sev-
eral techniques have been designed to verify the soundness
of process models against deadlocks and other problems
[52]. This building block refers to design-time properties:
the process model is analyzed without considering how the
process instances are actually being executed. The checking
of the conformance of the process model against real event
data is covered by the next building block (EvaluaM). Unde-
sired design-time properties happen for models designed by
hand but also for models automatically mined from event
data. Indeed, several discovery techniques do not guarantee
to mine process models without structural problems. This

Fig. 6 Process-mining building blocks related to process model and
event analysis

building block provides functionalities for analyzing process
models and detecting structural problems.

Evaluate process model using event data (EvaluaM) Besides
structural analysis, process models can also be analyzed
against event data. Compared with the previous building
block (AnalyzeM), this block is not concerned with a design-
time analysis. Conversely, it makes a-posteriori analysis
where the adherence of the process model is checked with
respect to the event data, namely how the process has actually
been executed. In this way, the expected or normative behav-
ior as represented by the process model is checked against
the actual behavior as recorded in the event data. In the liter-
ature, this is referred to as conformance checking (cf. [45]).
This can be used, for example, in fraud or anomaly detection.
Replaying event data on process models has many possible
uses: aligning observed behavior with modeled behavior is
key in many applications. For example, after aligning event
data and model, one can use the time and resource infor-
mation contained in the log for performance analysis. This
can be used for bottleneck identification or to gather infor-
mation for simulation analysis or predictive techniques. This
building block represents the functionality of analyzing or
evaluating process models using event data.

Compare processmodels (CompareM) Processes are not sta-
tic as they dynamically evolve and adapt to the business
context and requirements. For example, processes can behave
differently over different years, or at different locations. Such
differences or similarities can be captured through the com-
parison of the corresponding process models. For example,
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the degree of similarity can be calculated. Approaches that
explicitly represent configuration or variation points [49]
directly benefit from such comparisons. Building blockCom-
pareM is often used in combination with SplitED that splits
the event data into sublogs andDiscM that discovers a model
per sublog.

Analyze event data (AnalyzeED) Instead of directly creating
a processmodel from event data, one can also first inspect the
data and look at basic statistics. Moreover, it often helps to
simply visualize the data. For example, one can create a so-
called dotted chart [45] exploiting the temporal dimension
of event data. Every event is plotted in a two-dimensional
space where one dimension represents the time (absolute or
relative) and the other dimension may be based on the case,
resource, activity or any other property of the event. The
color of the dot can be used as a third dimension. See [26]
for other approaches combining visualization with other ana-
lytical techniques.

Generate report (GenerR) To consolidate process models
and other results, one may create a structured report. The
goal is not to create new analysis results, but to present the
findings in an understandable and predictable manner. Gen-
erating standard reports helps to reduce the cognitive load
and helps users to focus on the things that matter most.

3.5 Process model transformations

Process models can be designed or, alternatively, discovered
fromevent data. Sometimes, thesemodels need to be adjusted
for follow-up analyses. This category groups process-mining
building blocks that provide functionality to change the struc-
ture of a processmodel. Figure 7 shows some process-mining
building blocks that belong to this category.

Repair process model (RepairM) Process models may need
to be repaired in case of consistency or conformance prob-
lems. Repairing can be regarded from two perspectives:

Fig. 7 Process-mining building blocks related to process model trans-
formations

repairing structural problems and repairing behavioral prob-
lems. The first case is related to the fact that models can
contain undesired design-time properties such as deadlocks
and livelocks (see also the Analyze process model building
block discussed in Sect. 3.4). Repairing involves modifying
the model to avoid those properties. Techniques for repair-
ing behavioral problems focus onmodels that are structurally
sound but that allow for undesired behavior or behavior that
does not reflect reality. See also the Evaluate process model
using event data building block discussed in Sect. 3.4, which
is concerned with discovering the conformance problems.
This building block provides functionality for both types of
repair.

Decompose process model (DecompM) Processes running
within organizations may be extremely large, in terms of
activities, resources, data variables, etc. As mentioned, many
techniques are exponential in the number of activities. The
computation may be improved by splitting the models into
fragments, analogously to what was mentioned for splitting
the event log. If the model is split according to certain crite-
ria, the results can be somehow amalgamated and, hence,
be meaningful for the entire model seen as a whole. For
instance, the work on decomposed conformance checking
[47] discusses how to split process model to make process
miningpossiblewithmodelswith hundreds of elements (such
as activities, resources, data variables), while preserving the
correctness of certain results (e.g., the fraction of deviat-
ing cases does not change because of decomposition). This
block provides functionalities for splitting process models
into smaller fragments.

Merge process models (MergeM) Process models may also
be created from the intersection (i.e., the common behavior)
or union of other models. This building block provides func-
tionalities for merging process models into a single process
model.When process discovery is decomposed, the resulting
models need to be merged into a single model.

3.6 Process model enhancement

Process models just describing the control-flow are usually
not thefinal result of processmining analysis. Processmodels
can be enriched or improved using additional data to provide
better insights into the real process behavior that it repre-
sents. This category groups process-mining building blocks
that are used to enhance process models. Figure 8 shows a
summary of the process-mining building blocks that belong
to this category.

Enrich process model using event data (EnrichM) The back-
bone of any process models contains basic structural infor-
mation relating to control-flow. However, the backbone can
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Fig. 8 Process-mining building blocks related to process model
enhancement

be enriched with additional perspectives derived from event
data to obtain better analysis results. For example, event fre-
quency can be annotated in a process model to identify the
most common paths followed by process instances. Timing
information can also be used to enrich a process model to
highlight bottlenecks or long waiting times. This enrichment
does not have an effect on the structure of the process model.
This building block represents the functionality of enrich-
ing process models with additional information contained in
event data.

Improve process model (ImproveM) Besides being enriched
with data, processmodels can also be improved. For example,
performance data can be used to suggest structural mod-
ifications to improve the overall process performance. It
is possible to automatically improve models using causal
dependencies and observed performance. The impact of
such modifications could be simulated in “what-if scenar-
ios” using performance data obtained in the previous steps.
This building block represents the functionality of improving
process models using data from other analysis results.

4 Analysis scenarios for process mining

This section identifies generic analysis scenarios that are not
domain-specific and, hence, that can be applied to different
contexts. The analysis scenarios compose the basic process-
mining building blocks and, hence, they remain independent
of any specific operationalization of a technique. In fact, as
mentioned before, the building blocks may employ different
concrete techniques, e.g., there are dozens of process discov-
ery techniques realizing instances of building block DiscM
(Fig. 5).

As depicted in Fig. 1, we consider four analysis scenar-
ios: (a) result (sub-)optimality, (b) parameter sensitivity, (c)
large-scale experiments, and (d) repeating questions. These
are described in the remainder of this section.

As discussed in this section and validated in Sect. 6, the
same results could also be achieved without using scientific
workflows. However, the results would require a tedious and
error-prone work of repeating the same steps ad nauseam.

4.1 Result (sub-)optimality

This subsection discusses how process-mining building
blocks can be used to mine optimal process models accord-
ing to some optimality criteria. Often, in process discovery,
optimality is difficult (or even impossible) to achieve. Often
sub-optimal results are returned and it is no known what is
“optimal”.

Consider for example the process discovery task. The
quality of a discovered process model is generally defined
by four quality metrics [1,2,45,48]:

– Replay fitness quantifies the ability of the process model
to reproduce the execution of process instances as
recorded in event data.

– Simplicity captures the degree of complexity of a process
model, in terms of the numbers of activities, arcs, vari-
ables, gateways, etc.

– Precision quantifies the degree with which the model
allows for too much behavior compared to what was
observed in the event data.

– Generalization quantifies the degree with which the
process model is capable to reproduce behavior that is
not observed in the event data but that potentially should
be allowed. This is linked to the fact that event data often
are incomplete in the sense that only a fraction of the
possible behaviors can be observed.

Traditionally, these values are normalized between 0 and 1,
where 1 indicates the highest score and 0 the lowest.

The model of the highest value within a collection of (dis-
covered) models is such that it can mediate among those
criteria. Often, these criteria are in competing: higher score
for one criterion may lower the score of a second criterion.
For instance, to have a more precise model, it is necessary to
sacrifice the behavior observed in the event data that is less
frequent, thus partly hampering the replay-fitness score.

Figure 9 shows a suitable scientific workflow for min-
ing a process model from event data that is sub-optimal
with respect to a score defined by specific criteria. The opti-
mization is done by finding the parameters that returns a
sub-optimal model.

Event data are loaded from an information system and
used n times as input for a discovery technique using dif-
ferent parameter values. The n resulting process models are
evaluated using the original event data and themodel that has
the best score is returned. Please note that the result is likely
to be sub-optimal: n arbitrary parameter values are chosen
out of a much larger set of possibilities. If n is sufficiently
large, the result is sufficiently close to the optimal. This sci-
entific workflow is still independent of the specific algorithm
used for discovery; as such, the parameter settings are also
generic.
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Fig. 9 Result (sub-)optimality in process model discovery: process-
mining scientific workflow for mining an optimal model in terms of a
defined scoring criteria

Figure 10a illustrates a scientific workflow that tries to
account for generalization. For this purpose, a k-fold cross
validation approach is used. In this approach, the process
instances recorded in the event data are randomly split into
k folds, through building block Split event data (SplitED).
For each of the k times, a different fold is taken aside: the
other k − 1 folds are used for discovery and the “elected”
fold is used for evaluation through conformance checking.
This corresponds to block Fold(i) with 1 ≤ i ≤ k. Finally,
through the process-mining building block Select process
model from collection (SelectM), the model with the best
score is returned as output. Figure 10b enters inside the block
Fold(i) showing how fold Ei is used for evaluation and folds
E1, . . . , Ei−1, Ei+1, En are used for discovery (after being
merged).

Scientific workflows can also be hierarchically defined:
in turn, the discover process-mining building block (DiscM)
in Fig. 9 can be an entire scientific sub-workflow. The two
scientific workflows shown in Figs. 9 and 10 do not exclude
each other. Process-mining building block Discover process
model from event data (DiscM) can be replaced by the entire
workflow in Fig. 10a, thus including some generalization
aspects in the search for a sub-optimal process model.

4.2 Parameter sensitivity

Parameters are used by techniques to customize their behav-
ior, e.g., adapting to the noise level in the event log. These
parameters have different ways of affecting the results pro-
duced, depending on the specific implementation of the
technique or algorithm. Some parameters can have more rel-

Fig. 10 Process-miningmain scientificworkflowbasedonk-fold cross
validation. a Main workflow. b Process-mining sub-workflow for any
Fold(i)

evance than others (i.e., they have a more substantial effect
on the results). There are many ways to evaluate the sensi-
tivity of a certain parameter for a given algorithm. Figure 11
shows an example of this analysis scenario. Here the parame-
ter value is varied across the range. For each of the discovered
models, a score is computed. The results are finally plotted
on a Cartesian coordinate system where the X-axis is associ-
ated with the potential parameter’s values and the Y -axis is
associated with the model’s score.

Alternatively, the sensitivity analysis can also focus on the
filtering part, while keeping the same configuration of para-
meter(s) for discovery. In other words, we can study how the
discovered model is affected by different filtering, namely
different values of the parameter(s) that customize the appli-
cation of filtering.
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Fig. 11 Parameter sensitivity in process discovery techniques: process
miningworkflow for comparing the effects of different parameter values
for a given discovery technique

Fig. 12 Parameter sensitivity in event data filtering: process-mining
scientific workflow for comparing the effect of different event-data fil-
tering configurations on the discovered model

Figure 12 shows an example of this analysis scenario in the
processmining domain, using process-mining building block
to analyze the differences and similarities of results obtained
by discovery techniques from event data that were filtered
using different parameter values. In this example, event data
are loaded andfiltered several times using different parameter
settings, producing several filtered event data sets. Each of
these filtered event data sets is input for the same discovery
technique using the same configuration of parameter(s).

4.3 Large-scale experiments

Empirical evaluation is often needed (and certainly recom-
mended) when testing new process mining algorithms. In
case of process mining, many experiments need to be con-
ducted to prove that these algorithms or techniques can be

applied in reality and that the results are as expected. This
is due to the richness of the domain. Process models can
have a wide variety of routing behaviors, timing behavior,
and second-order dynamics (e.g., concept drift). Event logs
can be large or small and contain infrequent behavior (some-
times called noise) or not. Hence this type of evaluation has
to be conducted on a large scale. The execution and evalu-
ation of such large-scale experiment results is a tedious and
time-consuming task: it requires intensive human assistance
by configuring each experiment’s run and waiting for the
results at the end of each run.

This can be greatly improved by using process mining
workflows, as only one initial configuration is required. There
are many examples for this analysis scenario within the
process mining domain. Two of them are presented next.

4.3.1 Assessment of discovery techniques through massive
testing

When developing new process discovery techniques, several
experiments have to be conducted to test the robustness of
the approach. As mentioned, many discovery techniques use
parameters that can affect the result produced. It is extremely
time-consuming and error prone to assess the discovery tech-
niques using several different combinations of parameter
values and, at the same time, testing on a dozen of differ-
ent event-data sets.

Figure 13 shows the result of a large-scale experiment
using n event data sets and m different parameter settings
that produces n ×m resulting process models. In this exam-
ple, the same discovery technique with different parameters
is used. However, one can consider the discovery algorithm
to employ as an additional parameter. Therefore, the m dif-
ferent parameter settings can indicate m different discovery
algorithms. After mining n × m models, the best model is
considered.

Fig. 13 Exhaustive testing of a discovery technique: large-scale exper-
iments using different types of event data and parameter combinations
are needed to evaluate a discovery technique
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Fig. 14 Decomposedprocess discovery: a generic example using event
data splitting, model composition and a specified discovery technique

4.3.2 Decomposed process discovery

Existing process mining techniques are often unable to han-
dle “big event data” adequately. Decomposed processmining
aims to solve this problem by decomposing the process
mining problem into many smaller problems, which can be
solved in less time and using less resources.

In decomposed process discovery, large event data sets are
decomposed in sublogs, each of which refers to a subset of
the process’ activities. Once an appropriate decomposition is
performed, the discovery can be applied to each cluster. This
results in as many process models as the number of clusters;
these models are finally merged to obtain a single process
model. See for example the decomposed process mining
technique described in [59] which presents an approach that
clusters the event data, applies discovery techniques to each
cluster, and merges the process models.

Figure 14 shows a process-mining workflow that splits the
event data into n subsets, then uses a discovery algorithm to
discover models for each of these subsets, and finally merges
them into a single process model.

4.4 Repeating questions

Whereas the previous scenarios are aimed at (data) scien-
tists, process mining workflows can also be used to lower the
threshold for processmining. After the processminingwork-
flow has been created and tested, the same analysis can be
repeated easily using different subsets of data and different
time-periods. Without workflow support this implies repeat-
ing the analysis steps manually or using hardcoded scripts
that perform them over some input data. The use of scientific
workflows is clearly beneficial: the same workflow can be

replayed many times using different inputs where no further
configuration is required.

There are many examples of this analysis scenario within
the process-mining domain. Two representative examples are
described next.

4.4.1 Periodic benchmarking

Modern organizations make large investments to improve
their own processes for better performance in terms of costs,
time, or quality. In order to measure these improvements,
organizations have to evaluate their performance periodi-
cally. This requires them to evaluate performance of the new
time-period and compare it with the previous periods. Per-
formance can improve or degrade in different time-periods.
Obviously, the returned results require human judgments and,
hence, cannot be fully automated by the scientific workflow.

Figure 15 shows an example of this analysis scenario using
different process-mining building blocks. Let us assume that
we want to compare period τk with period τk−1. For period
τk , the entire event data are loaded and, then, filtered so as
to only keep portion Eτk that refers to the period τk . Using
portion Eτk , a process model Mτk is discovered. For period
τk−1, the entire event data are loaded and, then, filtered so as
to only keep the portion Eτk−1 that refers to the period τk−1.
Finally, an evaluation is computed about the conformance
between model Mτk and event-data portion Eτk and between
Mτk and Eτk−1 . Each evaluation will return valuable results,
which are compared to find significant changes.

Fig. 15 Periodic performance benchmark: process mining workflow
for comparing the performance of the process in two different time-
periods (t and t − 1)
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4.4.2 Report generation over collections of data sets

Scientific workflows are useful when generating several
reports for different portions of event data, e.g., different
groups of patients or customers. Since the steps are the same
and the only difference is concerned with using different
portions of events, this can be easily automated, even when
dozens of subsets need to be taken into consideration.

From this, it follows that this scenario shares common
points with large-scale experiments. However, some differ-
ences exist. The report-generation scenario is characterized
by a stable workflow with a defined set of parameters,
whereas in the large-scale experiments scenario, parame-
ters may change significantly in the different iterations. In
addition, the input elements used in report-generation sce-
narios are similar and comparable event data sets. This can
be explained by the desire that reports should have the same
structure. In case of large-scale experiments, event data sets
may be heterogenous. It is thus worthwhile repeating the
experiments using diverse and dissimilar event data sets as
input.

Figure 16 illustrates a potential scientificworkflow to gen-
erate reports that contain process-mining results. For the sake
of explanation, the process mining workflow is kept simple.
The report is assumed to contain three objects: the results
RED of the analysis of the input event data, the discovered
process model M , and the results RM of the evaluation of
such a model against the input event data. Process-mining
building block Generate report takes these three objects as
input and combines them into a reporting document R.

5 Implementation

Our framework to support process mining workflows shown
in Fig. 1 is supported by RapidProM. RapidProMwas imple-

Fig. 16 Report generation workflow

mented using ProM [58] and RapidMiner [22]. The building
blocks defined in Sect. 3 have been implemented in Rapid-
ProM as Operators. Most of the building blocks have been
realized using RapidMiner-specific wrappers of plug-ins of
the ProM Framework [58]. ProM is a framework that allows
researchers to implement process mining algorithms in a
standardized environment, which provides a number of facil-
ities to support programmers. Nowadays, it has become the
de-facto standard for process mining. ProM can be freely
downloaded from http://www.promtools.org. The extension
of RapidMiner to provide process-mining blocks for scien-
tific workflows using ProM is also freely available. At the
timeofwriting,RapidProMprovides 37processminingoper-
ators, including several process-discovery algorithms and
filters as well as importers and exporters from/to different
process-modeling notations. The operators are defined as
atomic steps; however, they can be composed into (sub)
processes natively in RapidMiner. A (sub) process is the
equivalent of a collapsed group of operators, but it can also
be executed as an atomic block itself. This is allowed by
RapidMiner’s native concurrency management, which sepa-
rates input fromoutput object representations (i.e., amodified
input does not affect any other parallel operators that use the
same input).

The first version of RapidProM was presented during
the BPM 2014 demo session [34]. This initial version suc-
cessfully implemented basic process-mining functionalities
and has been downloaded 4020 times since its release in
July 2014 until April 2015 (on average, over 400 monthly
downloads). However, processmining is a relatively new dis-
cipline, which is developing and evolving rapidly. Therefore,
various changes and extensions were needed to keep up with
the state-of-the-art. The new version incorporates implemen-
tations of various new algorithms, which did not exist in the
first version.

The RapidProM extension is hosted both at http://www.
rapidprom.org and in the RapidProM extension manager
server, which can be directly accessed through the Rapid-
MinerMarketplace. After installation, theRapidProMopera-
tors are available for use in any RapidMiner workflow, which
allows to combine process-mining with other data-mining
techniques. Figure 17 shows an example of a process-mining
scientific workflow implemented using RapidProM opera-
tors. Many of these operators implement a process-mining
building block. The process mining workflow shown in
Fig. 17 is used in Sect. 6.1 to obtain a sub-optimal process
model from event data.

Readers are referred to http://www.rapidprom.org for
detailed installation, setup and troubleshooting instructions.

Table 1 shows the ProM import plugins implemented
in RapidProM Version 2. These five operators are comple-
mented with RapidMiner native operators to export visual
results and data tables, in a way that most final results of
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Fig. 17 Example of a process-mining workflow in RapidMiner through the RapidProM extension: the workflow transforms Event data (Input)
into a Sub-optimal Process Model (Output)

Table 1 Import/export operators

Building block Operator name Operator description

ImportED Read Log (path) Imports an event log from a
specified path

ImportED Read Log (file) Takes a file object (usually
obtained from a “loop
files” operator) and
transforms it to an Event
Log

ImportM Read PNML Imports a Petri Net in a
Petri Net Modeling
Language (PNML) format
from a specified path

– Export Event Log Exports an Event Log in
different formats

– Export PNML Exports a Petri Net in
PNML format

process mining workflows can be exported and saved out-
side RapidMiner.

Table 2 shows a list of ProM Discovery plugins imple-
mented in RapidProM as Discovery Operators. These nine
operators (usually referred to as miners) are the most com-
monly used discovery techniques for process mining. These
discovery operators produce different models using different
techniques and parameters to fine-tune the resulting model.

Table 3 shows a list of ProM visualization plugins imple-
mented in RapidProM as visualization operators. These four

visualization plugins are accompanied by renderers that
allowone to inspect both intermediate and final results during
and after the execution of process mining workflows.

Table 4 shows a list of ProM conversion plugins imple-
mented in RapidProM as conversion operators. These four
conversion plugins are intended for converting models into
other model formats. This way we improve the chances that
a produced model can be used by other operators. For exam-
ple, if a heuristics net is discovered from an Event Log using
the Heuristics Miner, then the Replay Log on Petri Net (Con-
formance) operator cannot be executed unless a conversion
to Petri Net is performed (which is supported).

Table 5 shows a list of log processing operators imple-
mented in RapidProM. Some of these eight operators use
ProM functionalities to perform their tasks, but others were
developed specifically for RapidProM, as the ProM frame-
work generally does not use flat data tables to represent event
data. These operators are used to modify an event log by
adding attributes, events, or converting it to data tables, and
vice versa.

Table 6 shows a list of ProM plugins implemented in
RapidProM as analysis operators.

6 Evaluation

This section shows a number of instantiations of scientific
workflows in RapidProM, highlighting the benefits of using
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Table 2 Discovery operators
Building block Operator name Operator description

DiscM Alpha Miner [53] Discovers a Petri Net. Fast but results are not always
reliable because of overfitting issues

DiscM ILP Miner [54] Discovers a Petri Net by solving Integer Linear
Programming (ILP) problems. Result have perfect
fitness but generally poor precision. Slow on large
Logs

DiscM Genetic Miner [43] Discovers a Heuristics Net using genetic algorithms.
Depending on the parameter settings it can be slow
or fast

DiscM Evolutionary Tree Miner [11] Discovers a Process Tree using a guided genetic
algorithms based on model quality dimensions.
Guarantees soundness but cannot represent all
possible behavior due to its block-structured nature

DiscM Heuristics Miner [62] Discovers a Heuristics Net using a probabilistic
approach. Good when dealing with noise. Fast

DiscM Inductive Miner [29] Discovers a Process Tree or Petri Net. Good when
dealing with infrequent behavior and large Logs.
Soundness is guaranteed

DiscM Social Network Miner [50] Discovers a Social Network from the Event Log
resources. Different Social Networks can be
obtained: similar task, handover of work, etc.

DiscM Transition System Miner [44] Discovers a Transition System using parameters to
simplify the space-state exploration

DiscM Fuzzy Miner [18] Discovers a Fuzzy Model. Good when dealing with
unstructured behavior. Fast

Table 3 Visualization operators
Building block Operator name Operator description

AnalyzeED Dotted Chart [37] Shows the temporal distribution of events
within traces

EnrichM Inductive Visual Miner [30] Process exploration tool that shows an
annotated interactive model for quick
exploration of a Log

EnrichM Animate Log in Fuzzy Instance [17] Shows an animated replay of a Log
projected over a Fuzzy Instance

EnrichM PomPom Petri Net visualizer that emphasizes those
parts of the process that correspond to
high-frequent events in a given Log

Table 4 Conversion operators
Building block Operator name Operator description

– Reachability Graph to Petri Net Converts a Reachability
Graph into a Petri Net

– Petri Net to Reachability Graph Converts a Petri Net into a
Reachability Graph

– Heuristics Net to Petri Net Converts a Heuristics Net
into a Petri Net

– Process Tree to Petri Net Converts a Process Tree
into a Petri Net
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Table 5 Log processing operators

Building block Operator name Operator description

AddED Add Table Column to Event Log Adds a single Data Table column as trace attribute to a given Event Log

AddED Add Trace Attributes to Event Log Adds all columns of a Data Table (except case id) as trace attributes to
a given Event Log

AddED Add Event Attributes to Event Log Adds all columns of a Data Table (except case id and event id) as event
attributes to a given Event Log

AddED Add Events to Event Log Adds Events to a given Event Log from selected columns on a Data
Table

MergeED Merge Event Logs Merges two Event Logs

AddED Add Artificial Start and End Event Adds an artificial Start Event to the beginning, and an artificial End
Event to the ending of each trace

– Event Log to ExampleSet Converts an Event Log into a Data Table (ExampleSet)

– ExampleSet to Event Log Converts a Data Table (ExampleSet) into an Event Log

Table 6 Analysis operators

Building block Operator name Operator description

AnalyzeM WOFLAN [60] Analyzes the soundness of a Petri Net using the Woflan software
(www.swmath.org/software/7028)

– Select fuzzy instance Selects the best fuzzy instance from a Fuzzy Model

RepairM Repair Model [15] Replays an Event Log in a Petri Net and repairs this net to improve
fitness

RepairM Reduce Silent Transitions Reduces a Petri Net by removing invisible transitions (and places) that
are not used

AnalyzeED Feature Prediction [13] Produces predictions of business process features using decision trees

EnrichM Replay Log on Petri Net (Performance) [48] Replays a Log on a Petri Net and generates performance metrics such
as throughput time, waiting time, etc.

EnrichM Replay Log on Petri Net (Conformance) [48] Replays a Log on a Petri Net and generates conformance metrics such
as fitness

scientific workflows for process mining. They are specific
examples of the analysis scenarios discussed in Sect. 4

6.1 Evaluating result optimality

The first experiment is related to theResult Optimality analy-
sis scenario described in Sect. 4.1. In this experiment, we
implemented a process mining workflow using RapidProM
to extract the model that scores higher with respect to the
geometric average of precision and replay fitness.2 The geo-
metric average of replay fitness and precision seems to be
better than the arithmetic average since it is necessary to
have a strong penalty if one of the criteria is low.

For this experiment, we employed the Inductive Miner -
Infrequent discovery technique [29] and used different values
for the noise threshold parameter. This parameter is defined
in a range of values between 0 and 1. This parameter allows
for filtering out infrequent behavior contained in event data

2 The geometric average of a and b used in this article is defined as
2*a*b/(a+b) and it is meant to penalize very low scores.

in order to produce a simpler model: the lower the value is
for this parameter (i.e., close to 0), the larger the fraction of
behavior observed in the event data that the model allows. To
measure fitness and precision, we employ the conformance-
checking techniques reported in [1,2]. All techniques are
available as part of the RapidProM extension. A summary
of the concrete operators used for each building block is pre-
sented in Table 7.

This experiment instantiates the analysis scenario
described in Sect. 4.1 and depicted in Fig. 9. The model

Table 7 Operators used in the result (sub) optimality experiment

Building block Operator name

ImportED Read Log (file)

DiscM Inductive Miner

EvaluaM Replay Log on Petri Net

SelectM Optimize Parameter
(RapidMiner native operator)
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Fig. 18 Comparison of process models that are mined with the default
parameters and with the parameters that maximize the geometric aver-
age of replay fitness and precision. The process is concerned with
road-traffic fine management and models are represented using the
BPMN notation. aModel mined using the Inductive Miner with default

value of the noise-threshold parameter, which is 0.2. The geometric
averageoffitness andprecision is 0.708.bModelminedusing the Induc-
tive Miner with one of the best values of the noise-threshold parameter,
which is 0.7. This value was obtained as a result of this experiment. The
geometric average of fitness and precision is 0.912

obtained with the default value of the parameter is com-
pared with the model that (almost) maximizes the geometric
average of fitness and precision. To obtain this result, we
designed a scientific workflow where several models are
discovered with different values of the noise threshold para-
meter. Finally, the workflow selects the model with the
highest value of the geometric average among those dis-
covered. As input, we used an event-data log that records
real-life executions of a process for road-traffic fine manage-
ment, which is employed by a local-police force in Italy [12].
This event data refer to 150,370 process-instance executions
and record the execution of around 560,000 activities.

Figure 18b shows the model generated using the opti-
mal parameters obtained through our scientific workflow,
whereas Fig. 18a illustrates themodel generated using default
parameters.

There are clear differences between the models. For
example, in the default model, parallel behavior dominates
the beginning of the process. Instead, the “optimal model”
presents simpler choices. Another example concerns the final
part of the model. In the default model, the latest process
activities can be skipped through. However, in the optimal
model, this is not possible. The optimal model has a replay
fitness and precision of 0.921 and 0.903 respectively, with
geometric average 0.912. It scores better than the model
obtained through default parameters, where the replay fitness
and precision is 1 and 0.548, respectively, with geometric

average 0.708. The optimal model was generated with value
0.7 for the noise threshold parameter.

6.2 Evaluating parameter sensitivity

As second experiment illustrating the benefits of using scien-
tific workflows for process mining, we conducted an analysis
of the sensitivity of the noise threshold parameter of the
Inductive Miner-infrequent. We used again the event data
of the road-traffic fine management process also used in
Sect. 6.1. This experiment operationalizes the analysis sce-
nario discussed in Sect. 4.2 and depicted in Fig. 11. In this
experiment, we implemented a process mining workflow
using RapidProM to explore the effect of this parameter in
the final quality of the produced model. In order to do so,
we discovered 41 models using different parameter values
between 0 and 1 (i.e., a step-size 0.025) and evaluated their
quality through the geometric average of replay fitness and
precision used before. A summary of the concrete operators
used for each building block is presented in Table 8.

Figure 19 shows the results of these evaluations, showing
the variation of the geometric average for different values of
the noise threshold parameter.

By analyzing the graph, the models with higher geometric
average are produced when the parameter takes on a value
between 0.675 and 0.875. The worst model is obtained when
value 1 is assigned to the parameter.
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Table 8 Operators used in the result (sub) optimality experiment

Building block Operator name

ImportED Read Log (file)

DiscM Inductive Miner

CompareM Replay Event Log on Petri Net, Create
chart from value array
(RapidMiner native operator)

Fig. 19 Parameter sensitivity analysis: variation of the geometric aver-
age of fitness andprecisionwhenvarying the value of thenoise threshold
parameter

6.3 Performing large scale experiments

As mentioned before, the use of scientific workflows is
very beneficial for conducting large-scale experiments with
many event logs. When assessing a certain process-mining
technique one cannot rely on a single event log to draw con-
clusions.

For instance, here we want to study how the noise thresh-
old parameter influences the quality of the discoveredmodel,
in terms of geometric average of fitness and precision. In

Sect. 4.2, the experiment was conducted using a single event
log, but RapidProM allows us to do this for any number of
event logs using the same operators. To illustrate this, we use
11 real-life event logs and produce the corresponding process
models using different parameter settings.

Table 9 shows the results of this evaluation, where each
cell shows the geometric average of the replay fitness and the
precision of the model obtained using a specific parameter
value (column) and event data (row). Every event log used
in this experiment is publicly available through the Digital
Object Identifiers (DOIs) of the included references. To use
someof them for discovery,wehad to conduct pre-processing
steps in the following cases: the hospital event data set [55]
was extremely unstructured. To provide reasonable results
and to allow for conformance checking using alignments,
we filtered the event log to retain the 80% most frequent
behavior before applying the mining algorithm. The same
filtering was done for the five CoSeLog event logs [5–9].

The actual results in Table 9 are not very relevant for this
paper. It just shows that techniques can be evaluated on a
large scale by using scientific workflows.

6.4 Automatic report generation

To illustrate the fourth analysis scenario we used event data
related to the study behavior and actual performance of stu-
dents of the Faculty ofMathematics andComputer Science at
Eindhoven University of Technology (TU/e). TU/e provides
video lectures for many courses to support students who are
unable to attend face-to-face lectures for various reasons. The
event data record the views of video lectures and the exam
attempts of all TU/e courses.

First of all, students generate events when they watch lec-
tures. It is known how long and when they watch a particular

Table 9 Summary of a few large-scale experimental results: evaluating the geometric average of replay fitness and precision of models discovered
with the Inductive Miner using different values of the noise threshold parameter (columns) and different real-life sets of event data (rows)

Event data nt = 0 nt = 0.1 nt = 0.2 nt = 0.3 nt = 0.4 nt = 0.5 nt = 0.6 nt = 0.7 nt = 0.8 nt = 0.9 nt = 1 Average

BPI2012 [56] 0.314 0.730 0.430 0.450 0.508 0.474 0.675 0.683 0.674 0.679 0.644 0.569

BPI2013 [39] 0.847 0.826 0.778 0.863 0.458 0.458 0.458 0.458 0.458 0.458 0.453 0.592

BPI2014 [57] 0.566 0.720 0.708 0.613 0.616 0.654 0.626 0.414 0.530 0.527 0.490 0.588

Hospital [55] 0.153 0.111 0.546 0.473 0.338 0.172 0.280 0.342 0.392 0.515 0.517 0.349

Road Fines [12] 0.689 0.633 0.708 0.721 0.909 0.909 0.744 0.912 0.912 0.710 0.498 0.758

CoSeLoG 1 [5] 0.143 0.366 0.389 0.576 0.687 0.710 0.737 0.668 0.673 0.649 0.594 0.563

CoSeLoG 2 [6] 0.095 0.191 0.146 0.233 0.127 0.167 0.250 0.177 0.218 0.180 0.362 0.195

CoSeLoG 3 [7] 0.182 0.352 0.573 0.640 0.170 0.209 0.628 0.632 0.585 0.732 0.657 0.487

CoSeLoG 4 [8] 0.190 0.448 0.488 0.640 0.623 0.163 0.553 0.621 0.546 0.518 0.670 0.496

CoSeLoG 5 [9] 0.160 0.199 0.445 0.517 0.522 0.628 0.634 0.145 0.246 0.222 0.602 0.393

CoSeLoG R. [10] 0.520 0.860 0.838 0.869 0.859 0.377 0.868 0.868 0.883 0.861 0.656 0.769

Average 0.350 0.494 0.549 0.599 0.528 0.447 0.586 0.538 0.556 0.550 0.558

We use nt to indicate the value of the noise threshold parameter of application of the algorithm
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lecture of a particular course. These data can be preprocessed
so that low-level events are collapsed into lecture views. Sec-
ond, students generate events when they take exams and the
result is added to the event.

For each course, we have generated a report that includes
the results of the application of various data-mining and
process-mining techniques. This generation is automatic in
the sense that the scientific workflow takes a list of courses as
input and produces as many reports as the number of courses
in the list.

The report contains three sections: course information,
core statistics and advanced analysis.

Figure 20 shows a small part of the report generated
for the course on Business Information Systems (2II05). In
the first section, the report provides information about the
course, the bachelor or master programs which it belongs
to, as well as the information about the overall number of
views of the course’s video lectures. In the second section
(only a small fragment is shown), some basic distributions
are calculated. For example, statistics are reported about the
division per gender, nationality, and final grade. The third

section is devoted to process-mining results. The results of
applying conformance checking using the event data and the
ideal process model where a student watches every video
lecture and in the right order, namely he/she watches the
i th video lecture only after watching the (i − 1)th video
lecture. As expected, the results show a positive correlation
between higher grades and higher compliance with the nor-
mative process justmentioned: themore a studentwatches all
video lectures in the right order, the higher the corresponding
grade will be. In addition to showing the conformance infor-
mation, the report always embeds a dotted chart. The dotted
chart is similar to a Gantt chart (see building block Ana-
lyzeED). The dotted chart shows the distribution of events
for the different students over time. This way one can see
the patterns and frequency with which students watch video
lectures.

Note that reports like the one shown in Fig. 20 are very
informative for both professors and students. ByusingRapid-
ProM we are able to automatically generate reports for all
courses (after data conversion and modeling the desired
process mining workflow).

Fig. 20 Fragments of the automatically generated report using RapidProM
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7 Conclusions

This paper presented a framework for supporting the design
and execution of process mining workflows. As argued, sci-
entificworkflow systems are not tailored towards the analysis
of processes based on models and logs. Tools like Rapid-
Miner and KNIME can model analysis workflows but do
not provide any process mining capabilities. The focus of
these tools is mostly on traditional data mining and reporting
capabilities that tend to use tabular data. Also more classi-
cal Scientific Workflow Management (SWFM) systems like
Kepler and Taverna do not provide dedicated support for
artifacts like process models and event logs. Process min-
ing tools like ProM, Disco, Perceptive, Celonis, QPR, etc.
do not provide any workflow support. The inability to model
and execute processminingworkflowswas the primarymoti-
vation for developing the framework presented in this paper.

We proposed generic process mining building blocks
grouped into six categories. These can be chained together to
create process mining workflows. We identified four broader
analysis scenarios and provided conceptual workflows for
these. The whole approach is supported using RapidProM
which is based on ProM and RapidMiner. RapidProM has
been tested in various situations and in this paper we demon-
strated this using concrete instances of the four analysis
scenarios. RapidProM is freely available via http://www.
rapidprom.org and the RapidMiner Market place.

Future work aims at extending the set of process mining
building blocks and evaluating RapidProM in various case
studies. We continue to apply RapidProM in all four areas
described. Moreover, we would like to make standard work-
flows available via infrastructures like myExperiment and
OpenML.We are also interested a further cross-fertilizations
between process mining and other analysis techniques avail-
able in tools like RapidMiner and KNIME (text mining,
clustering, predictive analytics, etc.).
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