
Log-based evaluation of label splits for process models

Tax, N.; Sidorova, N.; Haakma, R.; van der Aalst, W.M.P.

Published in:
Procedia Computer Science

DOI:
10.1016/j.procs.2016.08.096

Published: 01/01/2016

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences
between the submitted version and the official published version of record. People interested in the research are advised to contact the
author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Tax, N., Sidorova, N., Haakma, R., & van der Aalst, W. (2016). Log-based evaluation of label splits for process
models. Procedia Computer Science, 96, 63-72. DOI: 10.1016/j.procs.2016.08.096

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. Jan. 2018

http://dx.doi.org/10.1016/j.procs.2016.08.096
https://pure.tue.nl/en/publications/logbased-evaluation-of-label-splits-for-process-models(a8dfe18c-5362-48b4-acaa-9f5722aea96e).html

 Procedia Computer Science 96 (2016) 63 – 72

Available online at www.sciencedirect.com

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International
doi: 10.1016/j.procs.2016.08.096

ScienceDirect

20th International Conference on Knowledge Based and Intelligent Information and Engineering
Systems

Log-based Evaluation of Label Splits for Process Models

Niek Taxa,b,∗, Natalia Sidorovaa, Reinder Haakmab, Wil M. P. van der Aalsta

aEindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands
bPhilips Research, Prof. Holstlaan 4, 5665 AA Eindhoven, The Netherlands

Abstract

Process mining techniques aim to extract insights in processes from event logs. One of the challenges in process mining is

identifying interesting and meaningful event labels that contribute to a better understanding of the process. Our application area is

mining data from smart homes for elderly, where the ultimate goal is to signal deviations from usual behavior and provide timely

recommendations in order to extend the period of independent living. Extracting individual process models showing user behavior is

an important instrument in achieving this goal. However, the interpretation of sensor data at an appropriate abstraction level is not

straightforward. For example, a motion sensor in a bedroom can be triggered by tossing and turning in bed or by getting up. We try

to derive the actual activity depending on the context (time, previous events, etc.). In this paper we introduce the notion of label

refinements, which links more abstract event descriptions with their more refined counterparts. We present a statistical evaluation

method to determine the usefulness of a label refinement for a given event log from a process perspective. Based on data from smart

homes, we show how our statistical evaluation method for label refinements can be used in practice. Our method was able to select

two label refinements out of a set of candidate label refinements that both had a positive effect on model precision.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of KES International.

Keywords: Label refinement; Process Mining; Sensor Networks

1. Introduction

Process mining is a fast growing discipline that brings together knowledge and techniques from computational

intelligence, data mining, process modeling and process analysis15. The process mining task is the automatic or

semi-automatic analysis of events that are logged during process execution, where event records contain information on

what was done, by whom, for whom, where, when, etc. Events are grouped into cases (process instances), e.g. per

patient for a hospital log, or per insurance claim for an insurance company. An important task within process mining is

process discovery, which focuses on extracting interpretable models of processes from event logs. One of the attributes

of the events is usually used as its label. These event labels are then used as transition/activity labels in the process

models created by process discovery algorithms.

∗ Corresponding author. Tel.: +31-63-408-5760;

E-mail address: n.tax@tue.nl

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.096&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.096&domain=pdf

64 Niek Tax et al. / Procedia Computer Science 96 (2016) 63 – 72

p1

Tossing
& turning
in bed

t1

Getting
out o f
bed

t2
p2

Living
room
motion

t3
p3

Kitchen
motion

t4
p4

Open
close
f ridge

t5 p6

p5

Boil
water

t6 p7

Living
room
motion

t7
p8

Fig. 1: A Petri net derived from the event log in Table 1

Table 1: The corresponding smart home sensor event log with refined labels

Id Timestamp Address Sensor Heart rate Activity

1 03/11/2015 02:45 Mountain Rd. 7 Bedroom motion 74 Tossing & turning
2 03/11/2015 03:23 Mountain Rd. 7 Bedroom motion 72 Tossing & turning
3 03/11/2015 04:59 Mountain Rd. 7 Bedroom motion 71 Tossing & turning
4 03/11/2015 06:04 Mountain Rd. 7 Bedroom motion 73 Tossing & turning
5 03/11/2015 08:45 Mountain Rd. 7 Bedroom motion 85 Getting up
6 03/11/2015 09:10 Mountain Rd. 7 Living room motion 79 Living room motion

. . . 03/11/2015 . . . Mountain Rd. 7

7 03/12/2015 01:01 Mountain Rd. 7 Bedroom motion 73 Tossing & turning
8 03/12/2015 03:13 Mountain Rd. 7 Bedroom motion 75 Tossing & turning
9 03/12/2015 07:24 Mountain Rd. 7 Bedroom motion 74 Tossing & turning
10 03/12/2015 08:34 Mountain Rd. 7 Bedroom motion 79 Getting up
11 03/12/2015 09:12 Mountain Rd. 7 Living room motion 76 Living room motion
. . . 03/12/2015 . . . Mountain Rd. 7

12 03/13/2015 00:45 Mountain Rd. 7 Bedroom motion 75 Tossing & turning
13 03/13/2015 02:29 Mountain Rd. 7 Bedroom motion 75 Tossing & turning
14 03/13/2015 05:19 Mountain Rd. 7 Bedroom motion 74 Tossing & turning
15 03/13/2015 05:34 Mountain Rd. 7 Bedroom motion 79 Tossing & turning
16 03/13/2015 05:39 Mountain Rd. 7 Bedroom motion 77 Tossing & turning
17 03/13/2015 08:37 Mountain Rd. 7 Bedroom motion 79 Getting up
18 03/13/2015 08:52 Mountain Rd. 7 Living room motion 78 Living room motion
. . . 03/13/2015 . . . Mountain Rd. 7

19 03/14/2015 03:41 Mountain Rd. 7 Bedroom motion 75 Tossing & turning
20 03/14/2015 05:00 Mountain Rd. 7 Bedroom motion 74 Tossing & turning
21 03/14/2015 08:52 Mountain Rd. 7 Bedroom motion 75 Getting up
22 03/14/2015 09:30 Mountain Rd. 7 Living room motion 74 Living room motion
. . . 03/14/2015 . . . Mountain Rd. 7

23 03/15/2015 02:11 Mountain Rd. 7 Bedroom motion 77 Tossing & turning
24 03/15/2015 02:34 Mountain Rd. 7 Bedroom motion 76 Tossing & turning
25 03/15/2015 08:35 Mountain Rd. 7 Bedroom motion 79 Getting up
26 03/15/2015 08:57 Mountain Rd. 7 Living room motion 77 Living room motion
. . . 03/15/2015 . . . Mountain Rd. 7

Process mining takes its roots in the field of busi-

ness process management, where the definition of

labels for events is considered to be rather straight-

forward. In recent years, the application domain of

process mining has broadened. A wide variety of

event types can be used as input and analysis may be

challenging. One of the most challenging application

areas is LifeLogging, which focuses on acquisition

and analysis of personal daily life data. LifeLogs

amongst others combine data collected through mo-

bile phones, wearable devices, and/or smart home

sensors. The emergence of LifeLogging tools and the

resulting increase in availability of activity data en-

able a process-centric analysis of human behavior14.

The aim of process mining analysis on LifeLogging

data is to find frequent activity patterns and represent

them in a human interpretable process model. Such

a process model could then also be used to detect de-

viations from one’s regular behavior. Process mining

in the human behavior application domain closely

relates to the field of activity recognition, which aims to detect human activities from sensors and finding patterns

between human activities2. Process mining, however, aims to produce interpretable models that can provide insights

by visually inspecting them. In contrast, most activity recognition techniques produce non-interpretable models.

Imagine an elderly person of whom we want to discover a process model describing his/her daily behavior. Events

are generated by sensors, either periodically (e.g. by a temperature sensor or heart rate monitor), or triggered by some

activity (e.g. motion). Table 1 shows an example log obtained by fusing data from such sensors. The dots indicate that

only a fraction of the logged events are shown. Assigning meaningful labels to these events is not straightforward. A

Bedroom motion event can be caused by different human activities, e.g. by Tossing & turning or by Getting up. In some

cases it is necessary to distinguish between Tossing & turning and Getting up, for example when we aim to generate

a timely reminder to take medication that needs to be taken before breakfast. Based on contextual information (e.g. a

specific increase in heart rate, a time stamp, etc.), the distinction between the two types of activities might be identified,

and each event with label Bedroom motion can be refined into either Tossing & turning or Getting up. The last column

in Table 1 shows the desired event labels. Figure 1 shows a process model that can be deduced from such a log using

existing process discovery techniques, like the ones from17,21.

Many relabelings of Bedroom motion events are possible. Expert knowledge, data mining or machine learning tech-

niques can be used to generate ideas for potential labeling functions. The goal of this labeling function is to give “similar”

events the same label. However, similarity is a relative notion, so the initially chosen labeling function can be too
abstract or too fine-grained to generate an informative process model. Once a process discovery algorithm has been ap-

plied and a process model is obtained, one can assess whether the labeling function used on the original event log allowed

the process discovery algorithm to discover an informative process model. However, it is computationally costly to apply

process mining algorithms to multiple event logs generated from a single original event log using different event labeling

functions with varying levels of abstraction. Therefore, we provide a statistical approach to evaluate label refinement use-

fulness in the context of process discovery that is based on significance testing of differences in event ordering relations.

65 Niek Tax et al. / Procedia Computer Science 96 (2016) 63 – 72

The Fodina20 and the α∗ 7 process discovery algorithms assume that there is one column in the event log that indicates

the activity and refine this label based on a threshold of differentness on the event labels occurring directly before and

after. In this paper we assume that the information what activity is performed is spread over multiple columns. We

choose one column as primary activity column and refine the activity labels based on the other columns and temporal in-

formation. We validate whether a refinement makes sense from a process perspective by taking into account all temporal

event information in the event log, using statistical testing and information gain. Evaluating splits based on information

gain is a well-known approach in the area of decision tree learning11, where ground truth labels are available in contrast

to the label refinement setting. Label refinements draw similarities with automatic learning of ontologies8 in the sense

that both are concerned with inferring multiple levels of semantic interpretations from data. Ontology quality evaluation

techniques1 can be used to evaluate (automatically inferred) ontologies, however these techniques are not process-

centric, i.e., they do not take into account ordering relations between elements of the ontology in execution sequences.

Section 2 gives formal definitions of label refinements, process models, and related concepts. In Section 3, we

discuss when a label refinement is useful from a process mining perspective. A statistical method to evaluate the

usefulness of a label refinement is described in Section 4. In Section 5 we discuss the results of the proposed method

on a real life smart home data set. We draw conclusions in Section 6.

2. Label Refinements & Process Models

In this section we introduce the notions related to event logs and relabeling functions for traces and then define the

notions of refinements and abstractions. We also introduce the Petri net process model notation.

We use the usual sequence definition, and denote a sequence by listing its elements, e.g. we write 〈a1, a2, . . . , an〉 for

a (finite) sequence s : {1, . . . , n} → A of elements from some alphabet A, where s(i) = ai for any i ∈ {1, . . . , n}. The

length of a sequence s : {1, . . . , n} → A is |s| = n; s1s2 denotes the concatenation of sequences s1 and s2. A language L
over an alphabet A is a set of sequences over A. Lp is the prefix closure of a language L (with L ⊆ Lp).

An event is the most elementary element of an event log. Let I be a set of event identifiers, T be a set of timestamps,

andA1 × · · · × An be an attribute domain consisting of n attributes (e.g. resource, activity name, cost, etc.), each of a

certain type. An event is a tuple e = (i, t, a1, . . . , an), with i ∈ I, t ∈ T , and (a1, . . . , an) ∈ A1×· · ·×An. The event label
of an event is the attribute set (a1 . . . , an); ei, et and ea respectively denote the identifier, the timestamp and label of event

e. E = I × T ×A1 × · · · × An is a universe of events overA1, . . . ,An. The lines of Table 1, where we do not consider

the activity column for now, are events from an event universe over the event attributes sensor, address, and heart rate.

Events are often considered in the context of other events. We call E ⊆ E an event set, if E does not contain any events

with the same event identifier. The events in Table 1 together form an event set. A trace σ is a finite sequence formed

by the events from an event set E ⊆ E that respects the time ordering of events, i.e. for all k,m ∈ N, 1 ≤ k < m ≤ |E|,
we have: σ(k)t ≤ σ(m)t. We define the universe of traces over event universe E, denoted Σ(E), as the set of all possible

traces over E. We omit E in Σ(E) and use the shorter notation Σ when the event universe is clear from the context.

Often it is useful to partition an event set into smaller sets in which events belong together according to some

criterion. We might for example be interested in discovering the typical behavior of households over the course of a

day. In order to do so, we can e.g. group together events with the same address and the same day-part of the timestamp,

as indicated by the horizontal lines in Table 1. For each of these event sets, we can construct a trace; time stamps define

the ordering of events within the trace. For events of a trace having the same time stamps, an arbitrary ordering can be

chosen within a trace.

An event partitioning function is a function ep : E → Tid that defines the partitioning of an arbitrary set of events

E ⊆ E from a given event universe E into event sets E1, . . . , E j, . . . where each E j is the maximal subset of E such that

for any e1, e2 ∈ E j, ep(e1) = ep(e2); the value of ep shared by all the elements of E j defines the value of the trace
attribute Tid. Note that complex, multidimensional trace attributes are also possible, i.e. a combination of the name of

the person performing the event activity and the date of the event, so that every trace contains activities of one person

during one day. The event sets obtained by applying an event partitioning can be transformed into traces (respecting the

time ordering of events).

An event log L is a finite set of traces L ⊆ Σ(E). AL ⊆ A1 × · · · × An denotes the alphabet of event labels that occur

in log L. The traces of a log are often transformed before doing further analysis: very detailed but not necessarily

informative event descriptions are transformed into some informative and repeatable labels. For the labels of the log in

66 Niek Tax et al. / Procedia Computer Science 96 (2016) 63 – 72

Table 1, the heart rate values can be abstracted to low, normal, and high or the label can be redefined to a subset of the

event attributes. Next to that, if the event partitioning function maps each event from Table 1 to its address and the

day-part of the timestamp, these attributes (indicated in gray) become the trace attribute and can safely be removed

from individual events. The new label is then defined as a combination of the sensor and abstracted heart rate values.

After this relabeling step, some traces of the log can become identically labeled (the event id’s would still be

different). The information about the number of occurrences of a sequence of labels in an event log is highly relevant

for process mining, since it allows differentiating between the main stream behavior of a process (frequently occurring

behavioral patterns) and exceptional behavior.

Let Σ(E) and Σ′(E′) be two universes of traces defined over event universes E,E′. A function l : Σ→ Σ′ is a trace
relabeling function if for all traces σ, γ ∈ Σ such that if σ is a prefix of γ, l(σ) is a prefix of or equal to l(γ). We lift l to

event logs: for L ⊆ Σ, the relabeling l(L) is defined as {l(σ)|σ ∈ L}.
Often, relabeling functions are defined using a more narrow approach: first defining an event relabeling function and

then lifting that function to traces. In the context of business processes, event relabeling functions are mostly mere pro-

jections of events on the values of a single attribute, such as activity name. We consider a more general definition to allow

for history-dependent interpretation of events, which is necessary in the context of LifeLogging. Prefix preservation

requirement is necessary to allow for logging, compliance checking and other forms of analysis performed at run time.

Let Σ, Σ1, and Σ2 be trace universes over E,E1,E2 respectively with E,E1,E2 being pairwise different. Let

l1 : Σ→ Σ1 and l2 : Σ→ Σ2 be trace relabeling functions. Relabeling function l1 is a refinement of relabeling function

l2, denoted by l1 � l2, iff ∀σ1,σ2∈Σ : l1(σ1) = l1(σ2) =⇒ l2(σ1) = l2(σ2); l2 is then called an abstraction of l1. We call

a refinement l1 of l2 a strict refinement, denoted by l1 ≺ l2, when ∃σ1,σ2∈Σ : l1(σ1) � l1(σ2) ∧ l2(σ1) = l2(σ2). We call

refinement l1 of l2 an equal length refinement, denoted by l1 �= l2,when ∀σ ∈ Σ : |l1(σ)| = |l2(σ)|.
Let Σ,Σ1 be trace universes over E,E1 respectively, l : Σ → Σ1 a trace relabeling function, and L1 be a language

L1 ⊆ Σ1 over E1. Trace concretization l−1 : Σ1 → 2Σ is a function defined as l−1(σ1) = {σ ∈ Σ|l(σ) = σ1}, for each

σ1 ∈ Σ1. Language concretization of L1 is language l−1(L1) = ∪σ1∈L1
l−1(σ′).

The goal of process discovery is to discover a process model that represents the behavior seen in an event log. A

frequently used process modeling notation in the process mining field is the Petri net12. Petri nets are directed bipartite

graphs consisting of transitions and places, connected by arcs. Transitions represent activities, while places represent

the enabling conditions of transitions. Labels are assigned to transitions to indicate the type of activity that they model.

A special label τ is used to represent invisible transitions, which are only used for routing purposes and not recorded in

the execution log.

A labeled Petri net N = 〈P,T, F, AM , �〉 is a tuple where P is a finite set of places, T is a finite set of transitions such

that P ∩ T = ∅, F ⊆ (P × T) ∪ (T × P) is a set of directed arcs, called the flow relation, AM is an alphabet of labels

representing activities, with τ � AM being a label representing invisible events, and � : T → AM ∪ {τ} is a labeling

function that assigns a label to each transition. For a node n ∈ (P ∪ T) we use •n and n• to denote the set of input and

output nodes of n, defined as •n = {n′|(n′, n) ∈ F} and n• = {n|(n, n′) ∈ F}. An example of a Petri net can be seen in

Figure 1, where circles represent places and squares represent transitions.

A state of a Petri net is defined by its marking M ∈ N
P being a multiset of places. A marking is graphically

denoted by putting M(p) tokens on each place p ∈ P. A pair (N,M) is called a marked Petri net. State changes

occur through transition firings. A transition t is enabled (can fire) in a given marking M if each input place

p ∈ •t contains at least one token. Once a transition fires, one token is removed from each input place of t and

one token is added to each output place of t, leading to a new marking M′ defined as M′ = M − •t + t•. A

firing of a transition t leading from marking M to marking M′ is denoted as M
�(t)
−→ M′. M1

�(σ)
−→ M2 indicates

that M2 can be reached from M1 through a firing sequence σ′ ∈ AM
∗. Many process modeling notations have

formal executional semantics and define a language of accepting traces L. For Petri net N2 in Figure 2, L(N2) =

{〈Bedroom motion,Livingroom Motion〉, 〈Bedroom motion,Bedroom motion,Livingroom Motion〉, 〈Bedroom motion,
. . . ,Bedroom motion,Livingroom Motion〉}.

3. On the Quality of Label Refinements for Process Mining

Process discovery algorithms discover a process model based on an event log, where event labels are obtained by

applying an event relabeling function to an original log. The main quality metrics discovered process models are fitness,

67 Niek Tax et al. / Procedia Computer Science 96 (2016) 63 – 72

p1

Tossing
& turning
in bed

t1

Getting
out o f
bed

t2 p2

Living
room
motion

t3 p3

(a) Petri net N1

p1

Bedroom
motion

t1

Living
room
motion

t2
p2

(b) Petri net N2

Fig. 2: Petri nets discovered from two event logs obtained from the same event set with different relabeling functions.

precision, generalization and simplicity15. Fitness represents the share of the behavior seen in the log that is allowed by

the process model. Precision aims at narrowing the set of traces that belong to the language of the discovered process

model, but was not observed in the event log. Generalization aims at preventing overfitting, and simplicity measures

the “understandability” and “well-structuredness” of models.
Event Set E

Event Log L

Trace attribute

Event Log L1=l1(L)

Relabeling function l1

Event Log L2=l2(L)

Relabeling function l2

l1 � l2

Process Model N1

Process Discovery

Process Model N2

Process Discovery

Language L1

Generates

Language L2

Generates

Language l−1
1 (L1)

Language
Concretization

Fitness

Language l−1
2 (L2)

Language
Concretization

⊇

Fitness

Fig. 3: Comparing two event relabeling functions

Intuitively, an event relabeling function is better than another one

if it improves the quality of the discovered model along these quality

dimensions. However, the quality metrics are currently defined in

such a way that only results of discovery algorithms applied to

the very same log can be compared, while two different relabeling

functions produce logs with different event labels. The Petri net N1

in Figure 2 has perfect precision and fitness for the event log with

labels as shown in the refined label column of Table 1. At the same

time, Petri net N2 has perfect fitness and precision for the event log

with labels as in the sensor column of Table 1. However, Petri net

N1 is useful for the purpose of sending a reminder message to take

medicines after getting up, while Petri net N2 is not. This suggests

that Petri net N1 is more precise than N2, but only with respect to

the original log. Thus we have to make the comparison in the context of the original log. Suppose we have a set

of events E, which is part of some universe of events E. We choose a case identifier and build an event log L from

E. Then we choose relabeling functions l1 and l2 with l1 ≺ l2 and obtain L1 = l1(L) and L2 = l2(L) (see Figure 3).

Applying process discovery to L1 and L2 results in two process models, which respectively accept languages L1 and L2.

These languages cannot be compared directly, since they contain traces consisting of different event labels. Precision

metrics look at “redundant” traces in the mined models with respect to the log used as input for the discovery algorithm

(see e.g.10,13). Using the inverse functions l−1
1 , l−1

2 , every trace of L1 and L2 can be mapped to a set of traces built

from the events from E. Taking the union of the sets obtained with l−1
1 , l−1

2 over the traces of the languages, we obtain

comparable languages and can conclude whether the relabeling function results in a model that is more precise with

respect to the original log.

Fitness and simplicity of the models depend mostly on the performance of the process discovery algorithm, and

not on the choice of the relabeling function. Precision defined in terms of events of the original universe E of events

is however highly dependent on the appropriateness of the relabeling function: choosing a more refined relabeling

function can increase the precision by eliminating the behavior that would be allowed in the model discovered with a

more abstract relabeling function. Generalization can potentially suffer as the result of a higher precision.

3.1. Label Refinement Quality

The comparison of the languages generated by models is not feasible due to its complexity; for many classes of

process models, including Petri nets, the problem of language inclusion is just not decidable. Therefore, we need a

different, practical approach to deciding on the usefulness of a relabeling function refinement. We start with discussing

the usefulness by comparing the discovered models.

Consider event log L, relabeling functions l1, l2, l3 such that l2 ≺ l1 ∧ l3 ≺ l1, and event logs L1 = l1(L), L2 =

l2(L), L3 = l3(L). Let the N1,N2,N3 in Figure 4 be the Petri nets obtained by applying process discovery to L1, L2, L3

respectively. The square inside the transition between places p3 and p4 indicates that it is a subprocess.

We can see that refinement l2 does not lead to a meaningful interpretation of b as b1 and b2, since the behavior of the

model is not related to the choice between b1 and b2: transitions labeled with b1 and b2 have the same input and output

places. Refinement l2 does not provide new insight and unnecessarily harms the understandability of the Petri net by cre-

68 Niek Tax et al. / Procedia Computer Science 96 (2016) 63 – 72

p1

N1

a p2 b p3

�
p4

d

e
p5

p1

N2

a p2

b1

b2

p3

�
p4

d

e
p5

p1

N3

a p2

b1

b2

p3

�
p4

d

e
p5

p6

p7

Fig. 4: N2 is a non-useful refinement and N3 is a useful refinement of N1.

Table 2: Log-based ordering relations and their use by process discovery algorithms

Ordering relation Miners using the relation

Direct successor a miner 17, a++ miner 22, Multi-phase miner 18, Heuristics miner 21

Length-two loop a++ miner 22, Multi-phase miner 18, Heuristics miner 21

Direct/indirect successor a++ miner 22, Heuristics miner 21

Table 3: A Log statistic in contingency table form

a1 a2 a

+ #+L2,s
(a1, b) #+L2,s

(a2, b) #+L1,s
(a, b)

− #−L2,s
(a1, b) #−L2,s

(a2, b) #−L1,s
(a, b)

ating more transitions then needed. On the other hand, l3 results in gain of precision, as L(N3), does not contain 〈a, b1, e〉
and 〈a, b2, d〉, while N1 does not distinguish between b1 and b2, which suggests that both types of traces are possible.

4. Evaluation Method for Label Refinements for Process Models

In the previous section we showed that we can compare the usefulness of a label refinement by inspecting the Petri

net obtained with process discovery. A naive way to evaluate label refinement would be to apply process discovery

to all possible label refinements. The number of possible label refinements to consider can however be large and

process discovery is a computationally expensive task. Therefore, this naive approach quickly becomes computationally

infeasible. We now present a way to estimate the usefulness of a label refinement based on statistics and log relations.

Algorithm 1 shows the steps of the label refinements evaluation method. The evaluation method consists of an

entropy-based component that measures whether a label refinement makes the log statistics more unbalanced, and a

statistical test that tests whether there is a label statistic that tests whether the label refinement makes a statistically

significant difference to at least one of the log statistics. In the following two sections we described the entropy-based

measure and the statistical testing respectively.

4.1. Log Statistics

Event ordering patterns are crucial to most process discovery algorithms. Table 2 provides an overview of well-

known log-based ordering relations described in process discovery literature17,18,22,21 and provides examples. Let L be

an event log. Let b, c ∈ AL. Formal definitions of these log-based ordering statistics are as follows:

• #+L,>(b, c) is the number of occurrences of b in the traces of L that are directly followed by c, i.e. in some

σ ∈ L, i ∈ {1, . . . , |σ|} we have [σ(i)]a = b and [σ(i + 1)]a = c (direct successor), #−L,>(b, c) is the number of

occurrences of b which are not directly followed by c;

• #+L,>>(b, c) and #−L,>>(b, c) is the number of occurrences of b that are, respectively, are not, followed by c: for a

trace σ ∈ L and i ∈ {1, . . . , |σ|}, and [σ(i)]a = [σ(i + 2)]a = b and [σ(i + 1)]a = c and b � c (length-two loops);

• #+L,>>>(b, c) and #−L,>>>(b, c) is the number of occurrences of b that are, respectively are not, eventually followed

by c: for a trace σ ∈ L, i, j ∈ N with i < j, [σ(i)]a = b and [σ(j)]a = c (direct or indirect successor).

In the general sense, let #+L,s(b, c) and #−L,s(b, c) be the count of the number of b’s that do, respectively do not, satisfy

relation s in log L with respect to c.

Let L be an event log. Let l1 and l2 be two relabeling functions that are to be compared, such that l2 ≺= l1. Let

L1 = l1(L) and L2 = l2(L). Let l1 and l2 have the property {a1, a2 ∈ AL2
)|∃σ1,σ2∈L : l1(σ1) = λa∧ l1(σ2) = λ′a∧ l2(σ1) =

ζa1 ∧ l2(σ2) = ζ′a2} � ∅, that is, l2 refines activity a into distinct activities a1 and a2. The difference in control flow

between a1 and a2 can be expressed as the dissimilarity in log-based ordering statistics between event label a1 and

b ∈ AL2
\ {a1, a2} on the one hand, and a2 and b on the other hand. Each log-based ordering statistics of a1 and a2 with

regard to any other activity b can be formulated in the form of a contingency table, as shown in Table 3.

69 Niek Tax et al. / Procedia Computer Science 96 (2016) 63 – 72

Table 4: Contingency tables for comparing the behavior of the two refined labels

Directly follows

Tossing
&
turn-
ing

Getting
up

Bed-
room
motion

+
→ 0 0 0
−
→ 16 5 21

Directly precedes

Tossing
&
turn-
ing

Getting
up

Bed-
room
motion

+
→ 0 5 5
−
→ 16 0 16

Eventually follows

Tossing
&
turn-
ing

Getting
up

Bed-
room
motion

+
→ 0 0 0
−
→ 16 5 21

Eventually precedes

Tossing
&
turn-
ing

Getting
up

Bed-
room
motion

+
→ 16 5 21
−
→ 0 0 0

4.2. Information Gain

The binary entropy function, Hb(p) = −p log2 p− (1− p) log2(1− p), where 0 log2 0 = 0, is a measure of uncertainty.

Applied on a log statistic, the binary entropy function represents a degree of nondeterminism. Nondeterministic,

unbalanced, log statistics are a helpful to process discovery algorithms that operate of log statistics, as it provides low

uncertainty to the mining algorithm. Low entropy in the log statistics indicate high predictability of the process, making

it easier for process discovery algorithms to return a sensible process model.

Consider the contingency tables in Table 4, based on log statistics obtained from Table 1 between the events labeled

Tossing & turning and Getting up and the events labeled Living room motion. On the right hand side of the table,

separated by the bar, are the log statistics of the before-split label in the before-split log. All five events with label

Getting up directly precede an event with label Living room motion, while all sixteen events with label Tossing &
turning are not directly preceded by Living room motion. Furthermore, all events with refined labels do not directly or

eventually follow an event with label Living room motion, and all events with refined labels do eventually precede an

event with label Living room motion.

Log statistics with a high degree of non-determinism, like the directly precedes statistic of the bedroom motion events

before the split, might confuse a mining algorithm as there is no clear structure here: the Bedroom motion event might

directly precede Livingroom motion, but most of the time it does not. After the split we see a completely deterministic

directly precedes statistic, where Tossing & turning never and Getting up always directly precedes Livingroom motion.

This increased determinism is reflected by the entropy of the directly precedes statistic before and after the split. Before

the split we have − 5
5+16

log2
5

5+16
− 16

5+16
log2

16
5+16
= 0.7919 bit of entropy in the directly precedes statistic, compared to

− 0
0+16

log2
0

0+16
− 16

0+16
log2

16
0+16
= 0 bit of entropy for Tossing & turning and − 0

0+5
log2

0
0+5
− 5

0+5
log2

5
0+5
= 0 bit of

entropy for Getting up. The conditional entropy of the log statistic after the split is the weighted average of the entropy

of the labels created in the split, which is − 16
21

0 × 5
21

0 = 0. The information gain of this label split with regard to the

directly precedes Livingroom motion statistic is equal to the total entropy of the log statistic prior to the split, minus

the conditional entropy after the split, this 0.7919 − 0 = 0.7919. Relative information gain6 is a metric that provides

insight in the ratio of bits of entropy reduced by a refinement, and can be calculated by dividing the information gain by

the before-split entropy. The relative information gain of the directly precedes Livingroom motion statistic is 0.7919
0.7919

= 1.

Figure 2 shows the effect of this label refinement on the resulting Petri net obtained by process discovery.

So far we have calculated the Relative information gain for a single log statistic. A label refinement however can

have impact on multiple log statistics at once. We need a measure that integrates the information gain values of all log

statistics to express the quality of a label refinement with respect to the determinism of the log statistics. We therefore

sum over the entropy of all log statistics before the label split to obtain the total before-split entropy. We sum over the

conditional entropies of all log statistics after the label split to obtain the total after-split entropy. Information Gain

and Relative information gain are calculated as before. We let relative in f ormation gain(L1, L2) be the function that

returns the Relative information gain based on the pre-split log L1 and post-split log L2, where the set of refined label

pairs in L2 from which the log statistics are used corresponds to {a1, a2 ∈ AL2
|∃σ1,σ2∈L : l1(σ1) = λa ∧ l1(σ2) = λ

′
a∧,

with the a the corresponding label in L1.

4.3. Statistical Testing

Relative information gain can be high by chance for a refinement when the generated refined labels are infrequent.

Statistical testing of log statistic differences in addition to calculating relative information gain enables us to distinguish

70 Niek Tax et al. / Procedia Computer Science 96 (2016) 63 – 72

Algorithm 1 Algorithm of the label refinement statistical evaluation method
Input: Event log L, Relabeling functions l1 and l2 such that l2 ≺= l1,
Output: the Relative information gain of l1 w.r.t l2,
Parameters: Set of log-based ordering statistics S,
Significance level α.

all significant different = true; L1=l1(L); L2=l2(L);

split set = {a1, a2 ∈ A(L2)|∃σ1 ,σ2∈L : l1(σ1) = λa ∧ l1(σ2) = λ
′
a∧ l2(σ1) = ζa1 ∧ l2(σ2) = ζ

′
a2};

For each a1, a2 ∈ split set:
pair signi f icant di f f erent = false;
For each {b ∈ A(L2) \ {a1, a2}}:

For each s ∈ S:
p = f isher test(#+L2 ,s

(a1, b), #−L2 ,s
(a1, b), #+L2 ,s

(a2, b), #−L2 ,s
(a2, b));

If(p < α) pair significant different = true;
If(!pair signi f icant di f f erent)

all signi f icant di f f erent = false;
If(all signi f icant di f f erent)

return relative in f ormation gain(L1, L2);
Else return 0.0;

between information gain obtained by chance and actual information gain. Fisher’s exact test5 is a statistical significance

test for the analysis of contingency tables. When applied to the table above, it calculates a p-value for the null hypothesis

that a1 and a2 events are equally likely to hold log relation s with regard to label b. Fisher’s exact test assumes individual

observations to be independent and row and column totals to be fixed. Independence of individual observations might

be affected by the grouping of events in traces. In this paper we consider individual observations independence to be

working assumption. The test was designed for experiments where both the row and column totals where conditioned.

In our setting, the column totals are conditioned by the relabeling function, as the number of events of each label

depends on the relabeling. The row totals however, are not conditioned and are an observation. Fisher’s exact test is not

strictly speaking exact when one or both of the row or column totals are unconditioned, but will instead be slightly

conservative9, meaning that the probability of the p-value being less than or equal to the significance level when the

null hypothesis is true is less than the significance level. Fisher’s exact test is computationally expensive for large

numbers of observations. For large sample sizes, either the χ2 test of independence or the G-test of independence can

be used, which are both found to be inaccurate for small sample sizes. A popular guideline is to not use the χ2 test of

independence or the G-test for samples sizes less than one thousand9. The computational complexity of the evaluation

procedure is O(|S | × |A(L)| × |split set|). Many process discovery algorithms are exponential in the number of labels16.

Based on this we can conclude that statistical evaluation of label refinements is computationally less expensive than

checking label refinement usefulness through process discovery.

4.4. Correcting for Multiple Testing

The computational complexity indicates the number of hypothesis tests performed. When a large set of potential

label refinements is evaluated, the evaluation method described is susceptible to the repeated testing problem. The

larger the set of hypotheses tested, the higher the probability of incorrectly rejecting the null hypothesis in at least

one of the hypothesis tests. Applying a Bonferroni correction3,4 to the hypothesis tests performed in the statistical

evaluation method of label refinements keeps the familywise error rate constant.

4.5. Example Case

Consider the event log in Table 1 and imagine a scenario where a home care worker knows from experience that

the elderly always sets his alarm clock at 8:30 AM. Based on such expert knowledge we are able to define a label

refinement such that all bedroom movements after 8:30 AM are considered as Getting up events, while all other

bedroom movements are considered to be Tossing & turning events. The rightmost column shows the refined labels

obtained through this expert relabeling function. To evaluate the usefulness of this label refinement from a process

model point of view, we apply the statistical evaluation method described in Section 4. As parameters we set the

significance level threshold to the frequently used value of 0.01.

71 Niek Tax et al. / Procedia Computer Science 96 (2016) 63 – 72

Table 5: Results of the statisti-

cal tests for the evaluation of

label refinement usefulness

Log statistic P-value

Directly follows 1

Directly precedes 4.91 × 10−5

Eventually follows 1
Eventually precedes 1

Table 5 shows the outcome of the statistical tests performed as part of the label refine-

ment usefulness evaluation. Four hypothesis tests have been performed, after Bonferroni

correction each hypothesis test is tested at significance level 0.01
4
= 0.0025. The direct

following statistic of Tossing & turning and Getting up with Living room motion is sta-

tistically significantly given this significance level. The label refinement constructed with

expert knowledge is found to be a useful label refinement through statistical evaluation.

5. Real life evaluation

We apply our label refinement evaluation method to a set of candidate label refinements on the Van Kasteren smart

home environment data set19 in order to illustrate the effects of label splits in the context of process mining of real

life processes. The van Kasteren data set consists of 1285 events divided over fourteen different sensors. Events are

segmented in days from midnight to midnight, to define cases in the event log. The candidate set of label refinements

consists of splitting each of the fourteen event types t into two event types based on the their time in the day, such that t
events where the time since the start of the day is smaller than the median for t are separated from t events where it is

equal to or larger than the median. Figure 5 shows the dependency graph obtained with the Heuristics Miner21. A

dependency graph depicts causal relations between activities that meet a certainty threshold. A dependency graph can

be directly converted into a Petri net21, however, for the sake of readability we included the dependency graphs instead

of the Petri nets. The precision10 of the Petri net corresponding to Figure 5 is 0.56 on a scale from 0 to 1.

Out of the fourteen candidate label refinements, two label refinements are selected by our approach. The first label

refinement found is the split of Hall-bathroom door into Hall-bathroom door 1 and Hall-bathroom door 2, with a times-

tamp below, respectively above or equal to the median time in the day of Hall-bathroom door events. The resulting labels

of this refinement are statistically significantly different in terms of their eventually follows relation with Front door
(p-value: 3.06×10−26) and their eventually follows relation with Plates cupboard (p-value: 3.66×10−23) and Microwave

1.85 × 1024. The relative information gain on the whole event log caused by this label refinement is 3.47%. Figure 6

shows a Heuristics Net mined with the Heuristics Miner21 on the van Kasteren log with the refined Hall-bathroom door
label. The model discovered on the log with this label refinement (Figure 6) has a precision of 0.69, up from 0.53 without

the refinement. The increased precision shows that the label refinement helps restricting the share of behavior allowed

Fig. 5: Heuristics net showing original van Kasteren data set

Fig. 6: Heuristics net showing the label refinement on hall-bathroom door on the van Kasteren data set

Fig. 7: Heuristics net showing the label refinement on cups cupboard on the van Kasteren data set

72 Niek Tax et al. / Procedia Computer Science 96 (2016) 63 – 72

by the model that is not covered by the event log. The second label refinement found is the split of Cups cupboard into

Cups cupboard 1 and Cups cupboard 2. The resulting labels of this refinement are statistically significantly different in

terms of their eventually precedes relation with Groceries cupboard (p-value: 2.53× 10−34) and their eventually follows

relation with Fridge (p-value: 2.2 × 10−22). The relative information gain on the whole event log caused by this label

refinement is 0.53%. Figure 7 shows a Heuristics Net mined with the Heuristics Miner on the van Kasteren log with

the refined Cups cupboard label, of which the precision is 0.61, up to 0.53 without the refinement. The label refinement

with higher information gain also results in a higher improvement in terms of precision, which is in agreement with

the intuition that more deterministic log statistics help the miner in mining structured, non-flower-like, models.

6. Conclusion & Future Work

We have provided a theoretical and conceptual notion of when label refinements and abstractions are useful from a

process discovery point of view. Based on this notion of usefulness, we have shown a framework based on statistics

and information theory to evaluate the usefulness of a label refinement or abstraction. In addition, we have shown

the applicability of this statistical framework through a real life smart home case, where our method selected two

label refinements out of a larger candidate set that increased the precision of the resulting process model. Methods

for automatic inference of useful label refinements from event attributes are still to be explored. Such methods may

generate a set of candidate label refinements, after which the statistical evaluation method described in this paper can

be used to select the most promising label refinement from a set of candidate label refinements.

References

1. J. Brank, M. Grobelnik, and D. Mladenic. A survey of ontology evaluation techniques. In Proceedings of the conference on data mining and
data warehouses, pages 166–170, 2005.

2. L. Chen, J. Hoey, C. Nugent, D. Cook, and Z. Yu. Sensor-based activity recognition. IEEE Transactions on Systems, Man and Cybernetics
Part C: Applications and Reviews, 42(6):790–808, 2012.

3. O. J. Dunn. Estimation of the medians for dependent variables. The Annals of Mathematical Statistics, 30(1):192–197, 1959.

4. O. J. Dunn. Multiple comparisons among means. Journal of the American Statistical Association, 56(293):52–64, 1961.

5. R. A. Fisher. Statistical methods for research workers. Number 5. Genesis Publishing Pvt Ltd, 1934.

6. S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathematical Statistics, 22(1):79–86, 1951.

7. J. Li, D. Liu, and B. Yang. Process mining: Extending α-algorithm to mine duplicate tasks in process logs. In Advances in Web and Network
Technologies, and Information Management, volume 4537 of LNCS, pages 396–407. Springer Berlin Heidelberg, 2007.

8. A. Maedche. Ontology learning for the semantic web, volume 665. Springer Science & Business Media, 2012.

9. J. H. McDonald. Handbook of biological statistics, volume 2. Sparky House Publishing Baltimore, MD, 2009.

10. J. Muñoz Gama and J. Carmona. A fresh look at precision in process conformance. In Business Process Management, volume 6336 of LNCS,

pages 211–226. Springer Berlin Heidelberg, 2010.

11. J. R. Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

12. W. Reisig and G. Rozenberg. Lectures on Petri nets I: basic models: advances in Petri nets, volume 1491. Springer Science & Business

Media, 1998.

13. A. Rozinat and W. M. P. van der Aalst. Conformance checking of processes based on monitoring real behavior. Information Systems,

33(1):64–95, 2008.

14. T. Sztyler, J. Völker, J. Carmona, O. Meier, and H. Stuckenschmidt. Discovery of personal processes from labeled sensor data–an application

of process mining to personalized health care. In Proceedings of the International Workshop on Algorithms & Theories for the Analysis of
Event Data, ATAED, pages 22–23, 2015.

15. W. M. P. van der Aalst. Process mining: discovery, conformance and enhancement of business processes. Springer Science & Business Media,

2011.

16. W. M. P. van der Aalst. Distributed process discovery and conformance checking. In Fundamental Approaches to Software Engineering,

LNCS, pages 1–25. Springer, 2012.

17. W. M. P. van der Aalst, A. J. M. M. Weijters, and L. Maruster. Workflow mining: Discovering process models from event logs. IEEE
Transactions on Knowledge and Data Engineering, 16(9):1128–1142, 2004.

18. B. F. van Dongen and W. M. P. van der Aalst. Multi-phase process mining: Building instance graphs. In Conceptual Modeling–ER 2004,

volume 3288 of LNCS, pages 362–376. Springer, 2004.

19. T. van Kasteren, A. Noulas, G. Englebienne, and B. Kröse. Accurate activity recognition in a home setting. In Proceedings of the 10th
International Conference on Ubiquitous Computing, pages 1–9. ACM, 2008.

20. S. K. Vanden Broucke. Advanced in Process Mining: Artificial Negative Events and Other Techniques. PhD thesis, KU Leuven, 2014.

21. A. J. M. M. Weijters and J. T. S. Ribeiro. Flexible heuristics miner (fhm). In Proceedings of the 2011 IEEE Symposium on Computational
Intelligence and Data Mining, pages 310–317. IEEE, 2011.

22. L. Wen, J. Wang, and J. Sun. Detecting implicit dependencies between tasks from event logs. Frontiers of WWW Research and Development-
APWeb 2006, pages 591–603, 2006.

