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Abstract

The aim of process discovery, originating from the area of process min-
ing, is to discover a process model based on business process execution
data. A majority of process discovery techniques relies on an event log as
an input. An event log is a static source of historical data capturing the ex-
ecution of a business process. In this paper we focus on process discovery
relying on online streams of business process execution events. Learning
process models from event streams poses both challenges and opportuni-
ties, i.e. we need to handle unlimited amounts of data using finite memory
and, preferably, constant time. We propose a generic architecture that al-
lows for adopting several classes of existing process discovery techniques
in context of event streams. Moreover, we provide several instantiations of
the architecture, accompanied by implementations in the process mining
tool-kit ProM1. Using these instantiations, we evaluate several dimen-
sions of stream-based process discovery. The evaluation shows that the
proposed architecture allows us to lift process discovery to the streaming
domain.

1 Introduction

Process mining [2] aims at understanding and improving business processes.
The field consists of three main branches, i.e. process discovery, conformance
checking and process enhancement. Process discovery aims at discovering a
process model based on event data. Conformance checking is concerned with
assessing whether a process model and event data conform to each other in terms
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of possible behaviour. Process enhancement is concerned with improvement of
process models based on knowledge gained from event data, e.g. a process model
is extended with performance diagnostics based on event data.

Several process discovery algorithms exist [4, 5, 24, 30, 45, 48]. These algo-
rithms all use an event log as an input. An event log is a static data source
describing sequences of executed business process activities recorded over a his-
torical time-span. As the number of events recorded for operational processes
is growing tremendously every year, so does the average event log size. Con-
ventional process discovery techniques are not able to cope with such large data
sets, i.e. they fail when the data does not fit main memory. Moreover, events
are being generated at high rates, e.g. consider data originating from sensor
networks, mobile devices and e-business applications. Since existing process
discovery techniques use static data, they are not able to capture the dynamics
of such event streams in an adequate manner.

In this paper, we focus on process discovery using streams of business process
events, i.e. event streams, rather than event logs. Applying process discovery
on event streams allows us to gain insights in the underlying business process in
a live fashion. It furthermore allows us to deal with situations where: 1.) event
logs are too large to fit main memory, 2.) there is no time to access event data
continuously, i.e. real-time constraints and 3.) recent behaviour is more impor-
tant, i.e. concept drift. A large class of existing process discovery algorithms
transforms the event log into an abstract representation, i.e. an abstraction of
the event log, which is subsequently used to discover a process model. To adopt
these algorithms in a streaming context, it suffices to approximate the abstract
representation based on the event stream. Using abstract representations has
several advantages: 1.) Reusability; We reuse existing techniques by predom-
inantly focusing on learning abstract representations from event streams. 2.)
Extensibility; Once we design and implement a method for approximating a
certain abstract representation, any (future) algorithm using the same abstract
representation is automatically ported to event streams. 3.) Anonymity; In
some cases, laws and regulations dictate that we are not allowed to store all
event data. Some abstract representations ignore large parts of the data, ef-
fectively storing a summary of the actual event data, and therefore comply to
anonymity regulations.

We present the Stream-Based Abstract Representation (S-BAR) architecture
that describes this mechanism in a generic way (Fig. 1). An event stream S
represents an (in)finite sequence of events, emitted over time. An event is
represented by a (c, a)-pair, stating that activity a is executed in context of
case c. We maintain a data structure (DT ) that represents the past behaviour
emitted onto stream S. Each time a new event arrives the data structure is kept
up to date by updating its previous state based on the newly received event
(δDT ). From the data structure an algorithm-specific abstract representation

(AT) is deduced (λA
T

DT ). After learning the abstract representation, we reuse
existing translations borrowed from conventional process discovery algorithms

to return a process model (γA
T

).
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Figure 1: Schematic overview of the S-BAR architecture.

The S-BAR architecture is instantiated by designing a data structure, a
data structure update mechanism and a data structure translation function.
The actual implementation of the data structure and related update functions
influences the behaviour described by the discovered process model, e.g. using a
time-decaying data structure versus a data structure that approximates the most
frequent cases on the stream. Several instantiations of the architecture have
been implemented in the process mining toolkits ProM [19] and RapidProM [3,
10]. Using these implementations we conduct empirical experiments w.r.t. the
behaviour of these algorithms in an event stream setting. The experiments show
that the algorithms are able to capture the behaviour reflected by the event
stream. Moreover, the experiments show that memory usage and processing
times of the algorithms have non-increasing trends.

The remainder of this paper is organized as follows. In Section 2, we present
background information regarding business processes and process discovery. In
Section 3, we present event streams and the notion of event stream based process
discovery. In Section 4, we introduce the S-BAR architecture. In Section 5, we
provide several instantiations of the architecture. In Section 6, we present an
empirical evaluation of several instantiations of the architecture. In Section 7,
we present related work. In Section 8, we discuss general challenges in event
stream based process discovery. Section 9 concludes the paper.

2 Background

In this section we present general notation used throughout the paper and back-
ground concepts regarding business processes and process discovery.

N denotes the set of positive integers, N0 includes 0. A multiset B over set
X is a function B : X → N0. We write a multiset as [ek1

1 , ek2
2 , ..., ekn

n ], where
for 1 ≤ i ≤ n we have ei ∈ X , ki ∈ N and eki

i ≡ B(ei) = ki. If for element e,
B(e) = 1, we omit its superscript. If for element e, B(e) = 0, we omit e from
the multiset notation. An empty multiset is denoted as [ ]. Element inclusion
applies to multisets, i.e. if e ∈ X and B(e) > 0 then e ∈ B.

A sequence σ of length n relates positions to elements e ∈ X , i.e. σ : {1,
2, ..., n} → X . An empty sequence is denoted as ǫ. We write every non-empty
sequence as 〈e1, e2, ..., en〉. The set of all possible sequences over a set X is
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Figure 2: BPMN model of a loan application process (adopted from [21]).

denoted as X∗. We write concatenation of sequences σ1 and σ2 as σ1 · σ2.
Let X,Y, Z and Z ′ be sets and let f : X → Y and g : Y → Z. Function

composition of f and g is defined as g ◦f : X → Z, with x 7→ g(f(x)) for x ∈ X .
Moreover, given h : Z → Z ′ we write h◦g◦f for h◦(g◦f), i.e. h◦g◦f : X → Z ′,
with x 7→ h(g(f(x))) for x ∈ X .

2.1 Business Processes, Models and Event Logs

Business processes represent the execution of related business activities leading
to a business goal. Consider a bank offering loans to its customers. A business
goal of the bank is to accept, reject or cancel a loan application. The bank’s
employees and its enterprise information system execute activities to achieve
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this goal, e.g. by checking a client’s credit history and assessing the loan risk.
A business process P defines a set of sequences over a set of activities A, i.e.

P ⊆ A∗. If σ ∈ P then the sequence of business activities σ leads to a business
goal and belongs to the behaviour of P . In this paper, we assume the execution
of activities to be atomic and abstract from data attributes such as resource,
time-stamp etc. Hence, we only consider the sequential ordering of activities
(the control-flow perspective). UP denotes the universe of business processes.
A process model M represents a business process and, like a process, defines
a set of sequences over a set of activities A, i.e. M ⊆ A∗. UM denotes the
universe of process models. In this paper, we consider process models that de-
scribe behaviour in a deterministic manner, e.g. Petri nets [36], BPMN [38] and
workflow nets [1]. Consider the BPMN model of a loan application handling
process in Fig. 2. It describes that after an application is received, the first
activity to be executed is “Check application completeness”. Depending upon
the completeness of the application, the corresponding form is “Returned back
to the applicant”, or, the client’s “credit history is checked” and subsequently
a “loan risk assessment” is performed. The two aforementioned activities can
be executed concurrently with the “appraise property” activity. An “eligibility
assessment” of the loan is performed, eventually leading to a rejection, cancel-
lation or approval of the loan.

Today’s information systems track the execution of business processes within
a company. Such systems store the execution of activities in context of a case,
i.e. an instance of the process. The data stored by the information system is
often in the form of an event log. Consider Table 1 as an example. The execution

Table 1: Fragment of an event log.

Case Activity Resource Time-stamp
... ... ... ...
3 Approve application (a4) John 2015-05-08 08:45
4 Check application completeness (c1) Lucy 2015-05-08 09:13
5 Check application completeness (c1) John 2015-05-08 09:14
5 Return application to applicant (r1) Pete 2015-05-08 10:11
5 Receive updated application (r2) Pete 2015-05-08 10:28
6 Check application completeness (c1) Lucy 2015-05-08 10:33
4 Check credit history (c2) Rob 2015-05-08 10:43
5 Appraise property (a1) Pete 2015-05-08 11:00
4 Appraise property (a1) Rob 2015-05-08 11:14
4 Assess loan risk (a2) Rob 2015-05-08 11:35
4 Assess eligibility (a3) Lucy 2015-05-08 11:55
5 Check credit history (c2) John 2015-05-08 11:57
4 Prepare acceptance pack (p1) Lucy 2015-05-08 12:25
4 Check insurance quote request present (c3) Lucy 2015-05-08 12:23
4 Send acceptance pack (s2) Lucy 2015-05-08 12:28
5 Assess loan risk (a2) John 2015-05-08 12:37
4 Verify repayment agreement (v1) Lucy 2015-05-09 13:05
4 Approve application (a4) John 2015-05-09 14:15
... ... ... ...
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of an activity in context of a case, e.g. Approve application executed for case
3, is referred to as an event. A sequence of events, e.g. the sequence of events
related to case 4, 〈Check application form completeness, Check credit history,
..., Approve application〉, is referred to as a trace (written 〈c1, c2, ..., a4〉 when
using abbreviated activity names).

An event log L is a multiset of sequences over a set of activities A, i.e.
L : A∗ → N0, and describes the execution of some P ∈ UP . UL denotes the
universe of event logs. An event log is a sample of the underlying process.
Therefore, there might exist process behaviour that is not present in the event
log e.g., caused by parallelism. In such case an event log is incomplete. There
might also exist traces in the event log that are not part of the process, i.e.
noisy traces. Noisy traces can be caused by faulty execution of the process,
incomplete specifications or technical issues such as incorrect logging, system
errors and mixed time granularity.

2.2 Process Discovery

The goal of Process discovery is to discover a process model based on an event
log. Several process discovery algorithms exist [4, 5, 24, 30, 45, 48]. These algo-
rithms differ in terms of their underlying computational schemes and data struc-
tures as well as their resulting process modeling formalism. We refer to [2,20,44]
for a detailed overview of process discovery algorithms.

A process discovery algorithm γL discovers a process model based on an event
log, i.e. γL : UL → UM. The challenge is to design γL in such way that γL(L) is
an appropriate representation of the underlying process P . Appropriateness of
γ(L) depends on the aim of the process discovery analysis, e.g. ensuring that all
behaviour in the event log is present in the model versus ensuring that the most
frequent behaviour is present. Given the different aims of process discovery
analyses, several quality measures are defined in order to judge their resulting
model’s appropriateness. Ideally, P is used as a basis to compute these metrics,
however, as L is the only tangible sample of P , we typically compute the quality
of γL(L) using L. The four essential process mining quality dimensions are replay
fitness, precision, simplicity and generalization [2, 12]. Replay fitness describes
what fraction of the behaviour present in L is also described by γL(L). Precision
describes what fraction of the behaviour described by γL(L) is also present
in L. Simplicity describes the (perceived) complexity of the process model.
Since it is unlikely that the event log contains all behaviour (incompleteness),
generalization describes how well the process model generalizes for behaviour
not present in L. Due to noise, an algorithm guaranteeing perfect replay fitness,
i.e. all behaviour in the event log is present in the discovered model, captures
behaviour that is not part of the process. In practice this leads to very complex
models that are impossible to be interpreted by a human analyst. Hence, a
process discovery algorithm needs to strike an adequate balance between the
four essential quality dimensions.
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S1 ∞(3, a4), (4, c1), (5, c1), (5, r1), (5, r2)(6, c1), (4, c2), (5, a1), · · ·

Figure 3: Example event stream S1.

3 Event Stream Based Process Discovery

Existing process discovery techniques discover process models in an a-posteriori
fashion, i.e. they provide a historical view of the data. However, most infor-
mation systems allow us to capture the execution of activities at the moment
they occur. Discovering and analysing process models from such continuous
streams of events allows us to get a real-time view of the process under study.
Such view paves the way for new types of process mining analysis, i.e. we are
able to answer more advanced questions such as “What is the current status of
the process?” and “What running cases are likely to cause problems?”. It also
allows us to inspect and visualize recent behaviour and evolution of behaviour
in the process, i.e. concept drift.

There are several other advantages of studying streams of events rather than
event logs. Trends such as Big Data and Data Science signify the spectacular
growth and omnipresence of data. Typically, real event logs do not fit main
memory. Since we assume event streams to be potentially infinite, analysing
them enables us to handle event data of arbitrary size. In other cases we do not
have the time or are not allowed to access event data continuously and, hence,
need to analyse events at the moment they occur.

In this section we formalize event streams and event stream based process
discovery. Additionally we quantify high-level requirements for the design of
event stream based process discovery algorithms.

3.1 Event Streams

An event stream is a continuous stream of events executed in context of an
underlying business process. We represent an event stream as a sequence of
pairs consisting of a case-identifier and an activity. Hence, for each event we
know what activity was performed in context of what process instance. When
comparing event streams to event logs, we identify two main differences: 1.)
an event stream is potentially infinite and 2.) behaviour seen for a case is
incomplete, i.e. in the future new events may be executed in context of a case.

Definition 1 (Event stream) Let A be a set of activities and let C denote
the set of all possible case identifiers. An event stream S is a sequence over
C ×A, i.e. S ∈ (C ×A)∗.

A pair (c, a) ∈ C × A represents an event, i.e. activity a was executed in
context of case c. S(1) denotes the first event that we receive, whereas S(i)
denotes the ith event. Consider stream S1 in Fig. 3 as an example, where, event
(3, a4) is emitted first (S1(1) = (3, a4)), event (4, c1) is emitted second and event
(5, a1) is the eight and last event emitted onto the stream up until now. We
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receive multiple events related to the same case at different points in time, e.g.
the second and seventh event on S1 are related to case 4. Hence, handling such
type of data needs new types of data structures and event processing techniques
compared to conventional process discovery.

3.2 Process Discovery

The goal of event stream based process discovery is to discover a process model
using an event stream as an input. A first step is to approximate, based on S,
the presence of some σ ∈ P and possibly σ’s frequency w.r.t. S. Given such
approximation the next step is to deploy a process discovery algorithm onto the
approximation in order to obtain a process model.

A naive approach is to construct an event log based on the event stream
by using a data structure that stores case-sequence pairs (c, σ) ∈ C × A∗. For
every event (c, a) we receive, we check whether the data structure contains entry
(c, σ′). If so, we update this entry to (c, σ′ · 〈a〉). If not, we insert new entry (c,
〈a〉). Whenever we want to discover a new process model based on the current
state of the event stream, we transform the data structure into an event log
and provide it to any conventional process discovery algorithm. Observe that,
since the stream is potentially infinite, this procedure needs infinite memory.
Moreover, the approach includes redundancy, i.e. several (partial) traces that
where already analysed in a previous call to a discovery algorithm, and are
still in memory at the next call, are analysed twice. Hence, we want the data
structure to either represent, or be easily translatable to, some minimal form of
data needed in order to discover a process model.

An example of an algorithm using a minimal data representation is the
flower-miner. The flower-miner produces a process model that allows for every
possible sequence over the observed activities. Reconsider example stream S1

(Fig. 3) which consists of activities labelled a1, a4, c1, c2, r1 and r2. In Fig. 4 we
depict a flower model, in terms of a Petri net [36], that allows for all activities
on S1.

p

a1 a4

c1

c2r1

r2

Figure 4: Example “flower”
model.

To ensure that the flower miner uses fi-
nite memory, we just need to deploy any
finite memory based data structure that
keeps track of the activities seen on the
stream. A wide variety of such data struc-
tures exits, e.g. count-based frequent item
data structures [16], reservoirs [6, 43] and
time-decay based models [17]. Whenever
we receive a new event (c, a) we just add a

to the data structure. Translating the data
structure to a process model is trivial, i.e.
every activity present in the data-structure

is adopted in the flower model.
The flower miner works, yet it has deficiencies from a process discovery

perspective. It generalizes the behaviour represented by the event stream as
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much as possible. The resulting process model very likely allows for much more
behaviour than actually present in the underlying process. Hence, we need
techniques that are more precise.

The event log based approach and the flower miner represent two extremes.
Storing the event stream as an event log requires us to reuse a large part of
the data several times. The flower miner on the other hand neglects a large
quantity of information carried by the event stream and greatly over-generalizes
the stream’s behaviour. We therefore need a scheme that is in the middle of
both extremes, i.e. it does not store the complete event log, yet it stores enough
data to provide meaningful output.

4 The S-BAR Architecture

When analysing conventional process discovery algorithms, we observe that a
majority shares a common underlying algorithmic mechanism. The event log
is transformed into an abstract representation, which is subsequently used to
construct a resulting process model. Moreover, several algorithms use the same
abstract representation. In 1 we illustrate the directly follows abstraction, used
by the α-Miner [5].

Example 1 (The directly follows abstraction & the α-Miner) Consider
event log L = [〈a, b, c, d〉, 〈a, c, b, d〉]. The α-Miner computes a directly follows
abstraction based on the event log. Activity a is directly followed by b, written
as a > b, if there exists some sequence σ ∈ L of the form σ = σ′ · 〈a, b〉 · σ′′. In
case of event log L we deduce a > b, a > c, b > c, b > d, c > b, c > d. Using
these relations as a basis, the α-Miner constructs a Petri net.

As 1 shows, the event log is translated into a directly follows abstraction,
which is subsequently used to construct a process model. Other discovery al-
gorithms like the Inductive Miner [30] and the ILP Miner [48] use the same
mechanism to discover a process model. To adopt these algorithms to an event
stream context, it suffices to determine whether we are able to learn the corre-
sponding abstract representation from the event stream and, if possible, design
a data structure that supports this.

In the remainder of this section we formalize the notion of abstract represen-
tations. Subsequently we introduce the Stream-Based Abstract Representation
(S-BAR) architecture that captures the notion of event stream based abstract
representation computation in a generic manner.

4.1 Abstract Representations in Conventional Process Dis-

covery

We refine conventional process discovery by splitting γL into two steps. In the
first step, the event log is translated into the abstraction used by the discovery
algorithm. In the second step, the abstraction is translated into a process model.
In the remainder we let T denote an abstract representation type. AT denotes

9
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L ∈ UL

λA
T

L

c1

r1 · · ·r2

a1 · · ·

c2 · · ·

Directly Follows Abstraction

γA
T

Process Model

Figure 5: The α-Miner in terms of its abstract representation.

an abstract representation of type T and UAT denotes the universe of abstract
representations of type T.

Definition 2 (Abstraction Function - Event Log) Let T denote an abstract

representation type. An abstraction function λA
T

L is a function mapping an event
log to an abstract representation of type T.

λA
T

L : UL → UAT (1)

Using 2, we define process discovery in terms of abstract representations.

Definition 3 (Process Discovery Algorithm - Abstract Representation)
Let T denote an abstract representation type. An abstract representation based

process discovery algorithm γA
T

maps an abstract representation of type T to a
process model.

γA
T

: UAT → UM (2)

Every discovery algorithm that uses an abstract representation internally

can be expressed as a composition of λA
T

L and γA
T

. Thus, given event log

L ∈ UL and abstract representation type T, we obtain γL = (γA
T

◦ λA
T

L )(L).

For example, consider Fig. 5 depicting the α-Miner in terms of γA
T

and λA
T

L .

4.2 Abstract Representations in Event Stream Based Pro-

cess Discovery

In this section we present the S-BAR architecture which captures the use of
abstract representations in an event stream context in a generic manner. In
Fig. 6 the S-BAR architecture is depicted schematically. The S-BAR architec-
ture conceptually splits event-stream-based process discovery into three compo-
nents, highlighted in gray in Fig. 6. We explain the purpose of each component,

i.e. δDT , λA
T

DT and γA
T

, by means of an example.
Consider maintaining the directly follows abstraction, introduced in 1, on

a stream. To do this, we need a data structure that tracks the most recent
activity for each case. Given such data structure, if we receive new event (c, a),
we check whether we already received an activity a′ for case c or whether a is
the first activity received for case c. If we already received activity a′ for case
c, we deduce a′ > a. Subsequently we update our data structure such that it
now assigns a to be the last activity received for case c.

10
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Figure 6: Detailed overview of the S-BAR architecture.

The first component, i.e. δDT , maintains and updates a (collection of) data
structure(s) that together form a sufficient representation of the behaviour en-
tailed by the event stream. In context of our example, the first component is
mainly concerned with keeping track of pairs of activities that are in a a′ > a

relation. The second component, i.e. λA
T

DT , translates the data structure to an
abstract representation. In context of our example, this consists of translating
the pairs of activities that are in a a′ > a relation into the directly follows ab-

straction. The third component, i.e. γA
T

, translates the abstract representation
to a process model and is inherited from conventional process discovery.

In the remainder, given an arbitrary data structure type T , we let UDT

denote the universe of data structures of type T . A data type T might refer
to an array or a (collection of) hash table(s), yet it might also refer to some
implementation of a stream-based frequent-item approximation algorithm such
as Lossy Counting [33]. We assume any DT ∈ UDT to use finite memory.

Definition 4 (Data Structure Update Function) Let A be a set of activ-
ities and let C denote the set of all possible case identifiers. We define a data
structure update function δDT as:

δDT : UDT × C ×A → UDT (3)

The data structure update function δDT allows us to update a given data
structure DT ∈ UDT based on any newly arrived event. In practice the function
typically consists of two components. One component keeps track of the cases
that were already active before and maps them in some way to a second (col-
lection of) data structure(s). Such second component allows us to construct the
abstract representation. Thus, when abstracting this mechanism, given some
event stream based data structure, we need a mechanism to translate the data
structure, i.e. the range of δDT , to an abstract representation.

11



Definition 5 (Abstraction Function - Data Structure) An abstraction func-

tion λA
T

DT is a function mapping a data structure of type T to an abstract repre-
sentation of type T.

λA
T

DT : UDT → UAT (4)

Ideally, translating the data structure is computationally inexpensive. However,
in some cases translating the data structure to the intended abstract represen-
tation might be expensive. This is acceptable, as long as we (re)-compute the
abstraction in a periodic fashion or at the user’s request.

Assume that we have seen i ≥ 0 events on an event stream S and let DTi ∈
UDT denote the data structure that approximates the behaviour in the event
stream S after receiving i events. When new event (c, a) ∈ C×A arrives, we are

able to discover a new process model Mi+1 by applying (γA
T

◦λA
T

DT ◦δDT )(DTi , c,

a). In practice, δDT is applied continuously and whenever, after receiving a new

ith event, we are interested in finding a process model we apply (γA
T

◦λA
T

DT )(DTi )
to obtain the process model.

The main challenge in instantiating the framework is designing a data struc-
ture DT ∈ UDT that allows us to approximate an abstract representation to-

gether with accompanying δDT and λA
T

DT functions.

5 Instantiating S-BAR

In this section, we show the applicability of the S-BAR framework by presenting
several instantiations for different existing process discovery algorithms. A large
class of algorithms, e.g. the α-Miner [5], the Heuristics Miner [45, 47] and the
Inductive Miner [30], is based on the directly follows abstraction.Therefore, we
first present how to compute this abstraction. Subsequently we highlight, for
each algorithm using the directly follows abstraction as a basis, the main changes
and/or extensions that need to be applied w.r.t. the basic scheme. To illustrate
the generality of the architecture, we also show a completely different class of
discovery approaches, i.e. region-based techniques [4,48]. These techniques work
fundamentally different compared to the aforementioned class of algorithms and
use different abstract representations.

5.1 Directly Follows Abstraction

The directly follows abstraction describes pairs of activities (a, b), written as
a > b, if there exists some sequence σ ∈ L of the form σ = σ′ · 〈a, b〉 · σ′′.
To approximate the relation, we let data structure DT ∈ UDT consist of two
internal data structures DC and DA. Within DC we store (case,activity)-pairs,
i.e. (c, a) ∈ C×A, that represent the last activity a seen for case c. Within DA

we store (activity, activity)-pairs (a, a′) ∈ A×A, where (a, a′) ∈ DA ⇔ a > a′.
The basic scheme works as follows. When a new event (c, a) arrives, we check
whether DC already contains some pair (c, a′). If so, we add (a′, a) to DA,
remove (c, a′) from DC and add (c, a) to DC . If not, we just add (c, a) to DC .

12



Algorithm 1: DC (Space Saving)

input : k ∈ N, S ∈ (C × A)∗, DA

begin

1 X ← ∅; i← 0;
2 while true do

3 i← i + 1;
4 (c, a)← S(i);

5 if ∃(c′,a′)∈X (c′ = c) then

6 vc ← vc + 1;

7 DA ⊎ {(a′, a)};

8 X ← (X∪{(c, a)})\{(c, a′)};

9 else if |X| < k then

10 X ← X ∪ {(c, a)};
11 vc ← 1;

12 else

13 (c′, a′)← arg min
(c′,a′)∈X

(vc′ );

14 vc ← vc′ + 1;

15 X ← (X ∪ {(c, a)}) \ {(c′,

a′)};

Algorithm 2: DC (Lossy)

input : k ∈ N, S ∈ (C × A)∗, DA

begin

1 i,∆← 0; X ← ∅;
2 while true do

3 i← i+ 1;
4 (c, a)← S(i);

5 if ∃(c′,a′)∈X (c′ = c) then

6 vc ← vc + 1;

7 DA ⊎ {(a′, a)};

8 X ← (X∪{(c, a)})\{(c, a′)};

9 else

10 X ← X ∪ {(c, a)};
11 vc ← ∆;

12 if ⌊i/k⌋ 6= ∆ then

13 foreach (c′, a′) ∈ X do

14 if vc′ ≤ ∆ then

15 X ← X \ (c′, a′);

16 ∆← ⌊i/k⌋;

DA represents the directly follows abstraction by means of a collection of pairs,

thus, function λA
T

DT consists of translating DA to the appropriate underlying
data type used by the discovery algorithm of choice.

As an example consider Algorithm 1 and Algorithm 2 describing a design of
DC based on the SpaceSaving algorithm [35] and Lossy Counting [33] respec-
tively. Both algorithms have three inputs, i.e. a maximum size k ∈ N, an event
stream S ∈ (C×A)∗ and a finite memory data structure implementing DA. The
algorithms maintain a set of (case,activity)-pairs X , initialized to ∅ (line 1). For
each case c present in X an associated counter vc is maintained which is used for
memory management. When a new event (c, a) appears on the event stream,
the algorithms check whether some pair (c′, a′) s.t. c = c′ is stored in X (line 5).
If this is the case, c’s counter is increased, (a′, a) is added to data structure DA

and (c, a′) is replaced by (c, a) in X (lines 6-8). The algorithms differ in the way
they process events (c, a) for which ∄(c′,a′)∈X(c′ = c). The Space Saving based
algorithm (Algorithm 1) either adds the element to X if |X | < k or replaces
pair (c′, a′) ∈ X with the lowest corresponding counter (vc′) value (Algorithm 1,
lines 9-15). The Lossy Counting based algorithm cleans up its X-set after each
block of k consecutive events and removes all those entries that have a counter
value lower than variable ∆ (lines 9-16).

Both algorithms insert a new element in data structure DA in line 7. Con-
ceptually, the algorithms generate a stream of (activity, activity)-pairs. Hence,
in Algorithm 3 we present a basic design for DA based on the Frequent Algo-
rithm [18, 28] which uses an activity pair stream SA ∈ (A × A)∗ as an input.
Thus, DA⊎{(a′, a)} in line 7 of Algorithms 1 and 2 represents adding pair (a, a′)
at the end of stream SA.

The algorithm stores pairs of activities in its internal set X . Whenever a
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new pair (a, a′) arrives, the algorithm checks if it is already present in X , if so,
it updates the corresponding counter v(a,a′). If the pair is not yet present in X ,
the size of X is evaluated. If |X | < k the new pair is added to X and a new
counter is created for the pair. If |X | ≥ k the new pair is not added, moreover,
each counter is decreased by one and if a counter gets value 0 the corresponding
pair is removed.

Algorithm 3: DA (Frequent)

input : k ∈ N, SA ∈ (A× A)∗

begin

1 X ← ∅, i← 0;
2 while true do

3 i← i + 1;

4 (a, a′)← SA(i);

5 if (a, a′) ∈ X then

6 v(a,a′) ← v(a,a′) + 1;

7 else if |X| < k then

8 X ← X ∪ {(a, a′)};
9 v(a,a′) ← 1;

10 else

11 foreach (x, y) ∈ X do

12 v(x,y) ← v(x,y) − 1;

13 if v(x,y) = 0 then

14 X ← X \ {(x, y)};

The general mechanism of Algorithm 3
is very similar to Algorithm 1. The
main difference consists of how to up-
date X when |X | ≥ k. All three algo-
rithms use a parameter k which, in a
way, represents the (maximum) size
of X . Hence, when we write |DC |,
|DA| respectively, we implicitly refer
to the value of k. It should be clear
that we are also able to implement
DC based on the Frequent Algorithm,
i.e. we just adopt a different updat-
ing mechanism for X . Likewise we
are also able to design DA based on
the Space Saving/Lossy Counting al-
gorithm. Moreover, for DC we are
able to use other types of stream-
aware data structures, i.e. techniques

adopting a different scheme to ensure finite memory. Examples of such types
of techniques are Reservoir Sampling [6], and/or Decay Based Schemes [17].
In the next sections we briefly explain how the α-Miner, Heuristics Miner and
Inductive Miner use the directly follows abstraction and what changes to the
base scheme must be applied in order to adopt them in a streaming setting.

5.1.1 The α-Miner

The α-Miner [5] transforms the directly follows abstraction into a Petri net.
When adopting the α-Miner to an event stream context, we directly adopt the
scheme described in the previous section. However, the algorithm explicitly
needs a set of start- and end activities.

Approximating the start activities seems rather simple, i.e. whenever we
receive a new case, the corresponding activity represents a start activity. How-
ever, given that we at some point remove (case,activity)-pairs fromDC , we might
designate some activities falsely as start activities, i.e. a new case may in fact
refer to a previously removed case. Approximating the end activities is more
complex, as we are often not aware when a case terminates. A potential solution
is to apply a warm-up period in which we try to observe cases that seem to be
terminated, e.g. by identifying cases that have long periods of inactivity or by
assuming that cases that are dropped out of DC are terminated. However, since
we approximate case termination, using this approach may lead to falsely select
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certain activities as end activities.
We can also deduce start- and end activities from the directly follows ab-

straction. A start activity is an a ∈ A with ∄a′∈A(a
′ 6= a | a′ > a) and an end

activity is an a ∈ A with ∄a′∈A(a
′ 6= a | a > a′). This works if these activities

are only executed once at the beginning, respectively the end, of the process. In
case of loops or multiple executions of start/end activities within the process,
we potentially falsely neglect certain activities as being either start and/or end
activities. In Section 8.2, we discuss this problem in depth.

5.1.2 The Heuristics Miner

The Heuristics Miner [45,46,47] is designed to cope with noise in event logs. To
do this, it effectively counts the number of occurrences of activities, as well as
the >-relation. Based on the directly follows abstraction it computes a derived

metric a ⇒ b = |a>b|−|b>a|
|a>b|+|b>a|+1 that describes the relative causality between two

tasks a and b (|a > b| denotes the number of occurrences of a > b). The basic
scheme presented in Section 5.1 suffices for computing a ⇒ b, as long as DA

explicitly tracks, or, approximates, the frequencies of its elements (in the scheme
this is achieved by the internal counters).

5.1.3 The Inductive Miner

The Inductive Miner [30], like the α-Miner, uses the directly follows abstraction
and start and end activities. It tries to find patterns within the directly fol-
lows abstraction that indicate certain behaviour, e.g. parallelism. Using these
patterns it splits the event log into several smaller logs and repeats the proce-
dure. Due to its iterative nature, the Inductive Miner guarantees to find sound
workflow nets [1]. The Inductive Miner has also been extended to handle noise
and/or infrequent behaviour [29]. This requires, like the Heuristics Miner, to
count the >-relation. In [31], a version of the Inductive Miner is presented in
which the inductive steps are directly performed on the directly follows abstrac-
tion. In context of event streams this is the most adequate version to use as we
only need to maintain a (counted) directly follows abstraction.

5.2 Region Theory

Several process discovery algorithms [4, 9, 15, 48, 50] are based on region theory
which solve the Petri net synthesis problem [8]. Classical region theory tech-
niques ensure strict formal properties for the resulting process models. Process
discovery algorithms based on region theory relax these properties. We iden-
tify two different region theory approaches, i.e. language-based and state-based
region theory, which use different forms of abstract representations.

5.2.1 Language-Based Approaches

Algorithms based on language-based region theory [9,48] rely on a prefix-closure
of the input event log, i.e. the set of all prefixes of all traces. It is trivial to adapt
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the scheme presented to compute the directly follows abstraction (Section 5.1)
to prefix-closures. In stead of storing (case,activity)-pairs in DC , we store pairs
(c, σ) ∈ C ×A∗. We additionally use a data structure Dpc which approximates
the prefix-closure. Whenever we receive an event (c, a), we look for a pair (c,
σ) ∈ DC . If such pair exist we subsequently add σ′ = σ · 〈a〉 to Dpc and update
(c, σ) to (c, σ′). If there is no such pair (c, σ), we add ǫ and 〈a〉 to Dpc and
(c, 〈a〉) to DC . In case of [48], which uses Integer Linear Programming where
(an abstraction of) the prefix-closure forms the constraint body, we simply store
the constraints in Dpc, rather than the prefix-closure.

5.2.2 State-Based Approaches

Within process discovery based on state-based regions [4], a transition system
is constructed based on a view of a trace. Examples of a view are the complete
prefix of the trace, the multiset projection of the prefix, etc. The future of a
trace can be used as well, i.e. given an event within a trace, the future of the
event are all events happening after the event. However, future-based views are
not applicable in an event stream setting, as the future is unknown.

As an example of a transition system based on a simple event log L = [〈a, b,
c, d〉, 〈a, c, b, d〉], consider Fig. 7. In Fig. 7a states are represented by a multiset
view of the prefixes of the traces, i.e. the state is determined by the multiset
of activities seen before. Activities make up the transitions within the system,
i.e. the first activity in both traces is a, thus the empty multiset is connected
to multiset [a] by means of a transition labelled a. In Fig. 7a we do not limit
the maximum size of the multisets. Fig. 7b shows a set view of the traces with
a maximum set size of 1. Again the empty set is connected with set {a} by
means of a transition labelled a. For trace 〈a, b, c, d〉 for example, the second
activity is a b and thus state {a} has an outgoing transition labelled b to state
{b}. This is the case, i.e. a connection to state {b} rather than {a, b}, due to
the size restriction of size 1.

Consider the following scheme, similar to the scheme presented in Section 5.1.

s0 : [ ]

s1 : [a]

s2 : [a, b]s3 : [a, c]

s4 : [a, b, c]

s5 : [a, b, c, d]

a

b
c

cb

d

(a) Multiset abstraction (unbounded).

s0 : ∅

s1 : {a}

s2 : {b}s3 : {c}

s4 : {d}

a

b
c

c

b

dd

(b) Set abstraction (max. set size 1).

Figure 7: Example transition systems based on L = [〈a, b, c, d〉, 〈a, c, b, d〉].
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Given a view type V , e.g. a set view, we design DC to maintain pairs (c, vc), s.t.
vc is the last view constructed for case c. Moreover, we maintain a collection of
views DV . Updating DV is straightforward. Given new event (c, a), based on
vc we compute some new view v′c, add it to DV and update (c, vc) to (c, v′c) in
DC , e.g. updating the size-1 set view means that the new view based on new
event (c, a) is simply the set {a}. However, just maintaining size-1 sets in DV

does not suffice as the relations between those sets, i.e. the transitions in the
transition system, are not present in DV .

The problem is fixed by maintaining the transition system in memory, rather
than DV , and updating it directly when we receive new events. Given some
latest view vc for case c, i.e. (c, vc) ∈ DC , activity a of new event (c, a) represents
the transition from vc to the newly derived v′c. Without a limit on the view-
size, translating the transition system into a Petri net is rather slow. Hence,
in a streaming setting we limit the maximum size of the views. This, in turn,

causes some challenges w.r.t. DC and translation function λA
T

DT . Consider the
case where we maintain a multiset/set view of traces with some arbitrary finite
capacity k. Moreover, given k = 2, assume we receive event (c, a) and (c, {a′,
a′′}) ∈ DC . The question is whether the new view for c is {a, a′} or {a, a′′}?
Only if we store the last two events observed for c, in order, we are able to
answer this question, i.e. if (c, 〈a′, a′′〉) ∈ DC we deduce the new view to be
{a, a′′}. Finally note, that when we aim at removing paths from the transitions
system, for example when we remove cases from c from DC , we need to store the
whole trace for c in order to be able to reduce all states and transitions related
to case c.

6 Evaluation

In this section we present an evaluation of several instantiations of the archi-
tecture. We also consider performance aspects of the implementation. All five
algorithms, i.e. α-Miner, Heuristics Miner, Inductive Miner, ILP (language
based regions) and Transition System Miner (state based regions), have been
implemented using the schemes presented in Section 5 in the ProM [19] frame-
work (http://www.promtools.org). ProM is the de facto standard academic
tool-kit for process mining algorithms and is additionally used by practition-
ers in the field. Some of the implementations are ported to RapidProM [3]
(http://www.rapidprom.org), i.e. a plugin of RapidMiner (http://www.rapidminer.com),
which allows for designing large-scale repetitive experiments by means of sci-
entific workflows [10]. Source code of the implementations is available via the
Stream-related packages within the ProM code base, i.e. StreamAbstractRepre-
sentation, StreamAlphaMiner, StreamHeuristicsMiner, StreamILPMiner, Strea-
mInductiveMiner and StreamTransitionSystemsMiner (code for a package X
is located at http://svn.win.tue.nl/repos/prom/Packages/X). Experiment
results, event streams and generating process models used, are available at
https://github.com/s-j-v-zelst/research/releases/download/kais1/2016_kais1_experiments.tar.g
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Figure 8: Visual results of applying the Inductive Miner on a stream.

6.1 Structural Analysis

As a first visual experiment we investigate the steady-state behaviour of the
Inductive Miner [30]. For both DC and DA we use the Lossy Counting scheme
(Section 5.1). To create an event stream, we created a timed Coloured Petri
Net [26] in CPN-Tools [27] which simulates the BPMN model depicted in Fig. 2
and emits the corresponding events. The event stream, and all other event
streams used for experiments, are free of noise. The model is able to simu-
late multiple cases being executed simultaneously. The ProM streaming frame-
work [49, 51] is used to generate an event stream out of the process model.

In Fig. 8 we show the behaviour of the Inductive Miner over time, configured
with |DC | = 75, |DA| = 75, based on a random simulation of the CPN model.
Initially (Model 1) the Inductive Miner only observes a few directly follows re-
lations, all executed in sequence. After a while (Model 2) the Inductive Miner
observes that there is a choice between Prepare acceptance pack and Reject Ap-
plication. In Model 3, the first signs of parallel behaviour of activities Appraise
property, Check credit history and Assess loan risk become apparent. However,
not enough behaviour is emitted onto the stream to effectively observe the par-
allel behaviour yet. In Model 4, we identify a large block of activities within a
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choice construct. Moreover, an invisible transition loops back into this block.
The Inductive Miner tends to show this type of behaviour given an incomplete
directly follows abstraction. Finally, after enough behaviour is emitted onto the
stream, Model 5 shows a Petri net version of example process model of Fig. 2.

Fig. 8 shows that the Inductive Miner is able to find the original model
based on the event stream. We now focus on comparing the Inductive Miner
with other algorithms described in the paper. All discovery techniques discover
a Petri net or some alternative process model that we can convert to a Petri net.
The techniques however differ in terms of guarantees w.r.t. the resulting process
model. The Inductive Miner guarantees that the resulting Petri nets are sound,
whereas the ILP Miner and the Transition System Miner do not necessarily yield
sound process models. To perform a proper behavioural comparative analysis,
the soundness property is often a prerequisite. Hence, we perform a structural
analysis of all the algorithms by measuring structural properties of the resulting
Petri nets.

Using the off-line variant of each algorithm we first compute a reference Petri
net. We generated an event log L which contains enough behaviour such that the
discovered Petri nets describe all behaviour of the BPMNmodel of Fig. 2. Based
on the reference Petri net we create a 15-by-15 matrix in which each row/column
corresponds to an activity in the BPMN model. If, in the Petri net, two labelled
transitions are connected by means of a place, the corresponding cells in the
matrix get value 1. For example, given the first Petri net of Fig. 8, the labels
start and Check application completeness (in the figure this is “Check appl”)
are connected by means of a place. Hence, the distance between the two labels
is set to 1 in the corresponding matrix. If two transitions are not connected,
the corresponding value is set to 0.

Using an event stream based on the CPN-Model, after each newly received
event, we use each algorithm to discover a Petri net. For each Petri net we
construct the 15-by-15 matrix. We apply the same procedure as applied on
the reference model. However, if in a discovered Petri net a certain label is
not present, we set all cells in the corresponding row/column to −1, e.g. in
model 1 of Fig. 8 there is no transition labelled end, thus the corresponding row
and column consist of −1 values. Given a matrix M based on the streaming
variant of an algorithm, we compute the distance to the reference matrix MR

as: dM,MR
=

√

∑

i,j∈{1,2,...,15}((M(i, j)−MR(i, j))2. For all algorithms, the

internal data structures used where based on Lossy Counting, with size 100.
Since the Inductive Miner and the α-Miner are completely based on the

same abstraction, we expect them to behave similar. Hence, we plot their
corresponding results together in Fig. 9a. Interestingly, the distance metric
follows the same pattern for both algorithms. Initially, there is a steep decline
in the distance metric after which it becomes zero. This means that the reference
matrix equals the matrix based on the discovered Petri net. The distance shows
some peaks in the area between 400 until 1000 received events. Analyzing
the resulting Petri nets at these points in time showed that some activities
where not present in the resulting Petri nets at those points. The results for
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Figure 9: Distance measurements for the α-Miner, Inductive Miner (IM), ILP
Miner (ILP), Transition Systems Miner (TS) and Heuristics Miner.

the Transition Systems Miner (TS), the ILP Miner and the Heuristics Miner
are depicted in Fig. 9b. We observe that the algorithms behave similar to the
α- and Inductive Miner, which intuitively makes sense as the algorithms all
have the same data structure capacity. However, the peeks in the distance
metric occur at different locations. For the Heuristics Miner this is explained
by the fact that it takes frequency into account and thus uses the directly
follows abstraction differently. The Transition System Miner and the ILP Miner
use different abstract representations, and have a different update mechanism
than the directly follows abstraction, i.e. they always update their abstraction
whereas the directly follows abstraction only updates if, for a given case, we
already received a preceding activity.

6.2 Behavioral Analysis

Although the previous experiments provide interesting insights w.r.t. the func-
tioning of the algorithms in a streaming setting, they only consider structural
model quality. A distance value of 0 in Fig. 9 indicates that the resulting model
is very similar to the reference model. It does not guarantee that the model is in
fact equal, or, entails the same behaviour as the reference model. Hence, in this
section we focus on measuring quantifiable similarity in terms of behaviour. We
use the Inductive Miner as it provides formal guarantees w.r.t. initialization and
termination of the resulting process models. This in particular is a requirement
to measure behavioural similarity in a reliable manner. We adapt the Inductive
Miner to a streaming setting by instantiating the S-BAR framework, using the
scheme described in Section 5.1, combined with the modifications described in
Section 5.1.3. For finding start and end activities we traverse the directly fol-
lows abstraction and select activities that have no predecessor, or, successor,
respectively. We again use Lossy Counting [33] to implement both DC and DA

(Algorithm 2, Section 5.1).
We assess under what conditions the Inductive Miner instantiation is able

to discover a process model with the same behaviour as the BPMN model in
Fig. 2. In the experiment, after each received event, we query the miner for
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Figure 10: Replay fitness and Precision measures based on applying the Stream
Inductive Miner: Increasing memory helps to improve fitness and precision.

its current result and compute replay fitness and precision measures based on
a complete corresponding event log. In Fig. 10 the results are presented for
varying capacity sizes of the underlying data structure (Lossy Counting).

For the smallest data structure sizes, i.e. Fig. 10a, we identify that the replay
fitness does not stabilize. When the data structure size increases, i.e. Fig. 10b,
we identify the replay fitness to reach a value of 1 rapidly. The high variability
in the precision measurements present in Fig. 10c suggests that the algorithm is
not capable of storing the complete directly follows abstraction. As a result, the
Inductive Miner tends to create flower-like patterns, thus greatly under-fitting
the actual process. The stable pattern present in Fig. 10d suggest that the sizes
used within the experiment are sufficient to store the complete directly follows
abstraction. Given that the generating process model is within the class of re-
discoverable process models of the Inductive Miner, both a replay fitness and
a precision value of 1 indicates that the model is completely discovered by the
algorithm.

In the previous experimental setting, we chose to use the same capacity for
both DC and DA. Here we study the influence of the individual sizes of DC and
DA. In Fig. 11 we depict the results of two different experiments in which we
fixed the size of one of the two data structures and varied the size of the other
data structure. Fig. 11a depicts the results for a fixed value |DC | = 100 and
varying sizes |DA| = 10, 20, ..., 50. Fig. 11b depicts the results for a fixed value
|DA| = 100 and varying sizes |DC | = 10, 20, ..., 50. As the results show, the lack
of conversion to a replay fitness value of 1 mostly depends on the size of DA and
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Figure 11: Replay Fitness measures for the Stream Inductive Miner.

is relatively independent of the size of DC . Intuitively this makes sense as we
only need one entry (c, a) ∈ DC to deduce a > b, given that the newly received
event is (c, b). Even if case c is dropped at some point in time, and reinserted
later, still information regarding the directly follows abstraction can be deduced.
However, if not enough space is reserved for the DA data structure, then the
data structure is incapable of storing the complete directly follows abstraction.

6.3 Concept Drift

In the previous experiments we focused on a process model that describes ob-
served steady state behaviour, i.e. the process model from which events are
sampled does not change during the experiments. In this section we assess to
what extend the Inductive Miner based instantiation of the framework is able
to handle concept drift [11, 42]. We focus on gradual drift, i.e. the behaviour
of the process model changes at some point in time, though the change is only
applicable for new cases, already active cases follow the old behaviour. In order
to obtain a gradual drift, we manipulated the CPN simulation model of the pro-
cess model presented in Fig. 2. The first five hundred cases that are simulated
follow the original model. All later cases are routed to a model in which we
swap the parallel and choice structures within the model (Fig. 12).

Fig. 13 depicts the results of applying the Inductive Miner on the described
gradual drift. In Fig. 13a we depict the results using data structure sizes |DC | =
100 and |DA| = 50 (Lossy Counting). The blue solid line depicts the replay
fitness w.r.t. an event log containing behaviour prior to the drift, the red
dashed line represents replay fitness w.r.t. an event log containing behaviour
after the drift. We observe that the algorithm again needs some time to stabilize
in terms of behaviour w.r.t. the pre-drift model. Interestingly, at the moment
that the algorithm seems to be stabilized w.r.t. the pre-drift model, the replay
fitness w.r.t. the post-drift model fluctuates. This indicates that the algorithm
is not able to fully rediscover the pre-drift model, yet it produces a generalizing
model which includes more behaviour, i.e. even behaviour that is part of the
post-drift model. The first event in the stream related to the new execution
of the process, is the 6.415th event. Indeed, the blue solid line drops around
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(a) Parallel to choice. (b) Choice to Parallel.

Figure 12: Changes made to the business process model presented in Fig. 2.
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Figure 13: Replay Fitness measures for the Stream Inductive Miner, given an
event stream containing concept drift.

this point in Fig. 13a. Likewise, the red dashed line rapidly increase to value
1.0. Finally, around event 15.000 the replay fitness w.r.t. the pre-drift model
stabilizes completely, indicating that the prior knowledge related to the pre-drift
model is completely erased from the underlying data structure. In Fig. 13b we
depict results for the Inductive miner using sizes |DC | = 100 and |DA| = 100. In
this case we observe more stable behaviour, i.e. both the pre- and post-model
behaviour stabilizes quickly. Interestingly, due to the use of a bigger k-value of
the Lossy Counting Algorithm, the drift is reflected longer in the replay fitness
values. Only after roughly the 30.000th event the replay fitness w.r.t. the pre-
drift model stabilizes.

6.4 Performance Analysis

The main goal of the performance evaluation is to assess whether memory usage
and processing times of the implementations are acceptable. As the implemen-
tations are of a prototypical fashion, we focus on trends in processing time and
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Figure 14: Performance measurements based on the Stream Inductive Miner.

Table 2: Aggregate performance measures for the Stream Inductive Miner.

25x25 50x50 75x75
Avg. processing time (ns.): 4.7167,77 3.866,45 3.519,22
Stdev. processing time (ns.): 3.245,80 2.588,76 2.690,54

Avg. memory usage (byte): 75.391,75 81.013,60 84.695,86
Stdev. memory usage (byte): 762,55 1.229,60 1724,98

memory usage, rather than absolute performance measures. For both processing
time and memory usage, we expect stabilizing behaviour, i.e. over time we ex-
pect to observe some non-increasing asymptote. If the processing time/memory
usage keeps increasing over time this implies that we are potentially unable to
handle data on the stream or need infinite memory.

Within the experiment we measured the processing time and memory usage
for handling the first 25.000 events emitted onto the stream. We again use
the Inductive Miner with Lossy Counting and varying window sizes (parameter
k): |DC | = 25 and |DA| = 25, |DC | = 50 and |DA| = 50 and |DC | = 75,
|DA| = 75 (represented in the Figures as 25x25, 50x50 and 75x75 respectively).
We measured the time the algorithm needs to update both DC and DA. The
memory measured is the combined size of DC and DA in bytes. The results of
the experiments are depicted in Fig. 14. Both figures depict the total number of
events received on the x-axis. In Fig. 14a, the processing time in nanoseconds is
shown on the y-axis, whereas in Fig. 14b, the memory usage in bytes is depicted.
The aggregates of the experiments are depicted in Table 2.

As Fig. 14a shows, there is no observable increase in processing times as
more events have been processed. The average processing time seems to slightly
decrease when the window size of the Lossy Counting data structure increases
(see Table 2). Intuitively this makes sense as a bigger window size of the Lossy
Counting algorithm implies less frequent cleanup operations.

Like processing time, memory usage of the Lossy Counting data structures
does not show an increasing trend (Fig. 14b). In this case however, memory
usage seems to increase when the window size of the Lossy Counting algorithm
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is bigger. Again this makes sense, as less cleanup operations implies more active
members within the data structures, and hence, a higher memory usage.

7 Related Work

For a detailed overview of process mining we refer to [2]. For an overview of
models, techniques and algorithms in stream based mining and analysis, e.g.
frequency approximation algorithms, we refer to [7,23,37]. Little work has been
done on the topic of stream-based process discovery, and, stream-based process
mining in general. The notion of streams of events is not new, i.e. several fields
study aspects related to streams of (discrete) events. Compared to the field of
Complex Event Processing (CEP) [22], the S-BAR architecture can be seen as
an event consumer, i.e. a decoupled entity that processes the events produced
by the underlying system. However, whereas the premise of CEP is towards
the design of event based systems and architectures, this work focuses on the
behavioural analysis of such systems. The area of event mining [32], focuses
on gaining knowledge from historical event/log data. Although the input data
is similar, i.e. streams of system events, the assumptions on the data source
are different. Within event mining, data mining techniques such as pattern
mining [32, Chpt. 4] are used as opposed to techniques used within this paper,
i.e. techniques discovering end-to-end process models with associated execution
semantics. Also, event mining includes methods for system monitoring, whereas
the S-BAR architecture can serve as an enabler for business process monitoring
and prediction.

To the best of the author’s knowledge this paper is the first work that
presents a generic architecture for the purpose of event stream based process
discovery. As such the work may be regarded as a generalization and standard-
ization effort of some of the related work mentioned within this section.

In [14] an event stream based variant of the Heuristics Miner is presented.
The algorithm uses three internal data structures using both Lossy Counting [33]
and Lossy Counting with Budget [41]. The authors use these structures to
approximate a causal graph based on an event stream. The authors additionally
present a sliding window based approach. Recently an alternative data structure
has been proposed based on prefix-trees [25]. In this work the authors deduce
the directly follows abstraction directly from a prefix tree which is maintained in
memory. The main advantage of using the prefix-trees is the reduced processing
time and usage of memory. In [40], Redlich et al. design an event stream based
variant of the CCM algorithm [39]. The authors identify the need to compute
dynamic footprint information based on the event stream, which can be seen as
the abstract representation used by CCM. The dynamic footprint is translated
to a process model using a translation step called Footprint Interpretation. The
authors additionally apply an ageing factor to the collected trace information
to fade out the behaviour extracted from older traces. Although the authors
define event streams similarly to this paper the evaluation relies heavily on the
concept of completed traces. In [13] Burattin et al. propose an event stream
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based process discovery algorithm to discover declarative process models. The
structure described to maintain events and their relation to cases is comparable
with the one used in [14]. The authors present several declarative constraints
that can be updated on the basis of newly arriving events instead of an event
log consisting of full traces.

8 Discussion

In this section we discuss interesting phenomena observed during experimenta-
tion which should be taken into account when adopting the architecture pre-
sented in this paper, and, in event stream based process discovery in general.
We discuss limitations w.r.t. the complexity of abstract representation computa-
tion and discuss the impact of the absence of trace initialization and termination
information.

8.1 Complexity of Abstract Representation Computation

There are limitations w.r.t. the algorithms we are able to adopt using abstract
representations as basis. This is mainly related to the computation of the ab-
stract representation within the conventional algorithm.

As an example, consider the α+-algorithm [34] which extends the original α-
Miner such that it is able to handle self-loops and length-1-loops. For handling
self-loops, the α+-algorithm traverses the event log and identifies activities that
are within a self-loop. Subsequently it removes these from the log and after
that calculates the directly follows abstraction. For example, if L = [〈a, b, c〉, 〈a,
b, b, c〉], the algorithm will construct L′ = [〈a, c〉] and compute directly follows
metrics based on L′.

In a streaming setting we are able to handle this as follows. Whenever we
observe some activity a to be in a self-loop and want to generate the directly
follows abstraction, then for every (a′, a) ∈ DA and (a, a′′) ∈ DA, s.t. a 6= a′

and a 6= a′′, we deduce that (a′, a′′) is part of the directly follows abstraction
whereas (a, a), (a′, a) and (a, a′′) are not. Although this procedure approximates
the directly follows relation on the event stream, a simple example shows that
the relation is not always equal.

a c

e d

(a) Event log

a c

e d

(b) Event stream

Figure 15: Two Abstract Representa-
tions.

Imagine a process P = {〈a, b, b,
c〉, 〈a, e, b, d〉}. Clearly any noise-free
event log over this process is just
a multi-set over the two traces in
P . In case of the conventional α+-
algorithm, removing the b-activity
leads to the two traces 〈a, c〉 and 〈a,
e, d〉. Consider the corresponding di-
rectly follows abstraction, depicted in
Fig. 15a. Observe that all possible di-
rectly follows pairs that we are able to
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observe on any stream over P are: (a, b), (a, e), (b, b), (b, c), (b, d), (e, b). Apply-
ing the described procedure yields the abstraction depicted in Fig. 15b. Due
to the information that is lost by only maintaining directly follows pairs, we
deduce non-existing relations (a, d) and (e, c).

In general it is preferable to adopt an abstraction-based algorithm that con-
structs the abstract representation in one pass over the event log.

8.2 Initialization and Termination

For the definitions presented in this paper, we abstract from trace initialization
and/or termination, i.e. we do not assume the existence of explicit start/end
events. Apart from the technical challenges related to finding these events, i.e.
as described in Section 5.1.1 regarding start/end activity sets used by the α-
Miner and Inductive Miner, this can have a severe impact on computing the
abstract representation as well.

If we assume the existence and knowledge of unique start and end activities,
adopting any algorithm to cope with this type of knowledge is trivial. We only
consider cases of which we identify a start event and we only remove knowledge
related to cases of which we have seen the end event. The only challenge is to
cope with the need to remove an unfinished case due to memory issues, i.e. how
to incorporate this deletion into the data structure/abstract representation that
is approximated.

If we do not assume and/or know of the existence of start/end activities,
whenever we encounter a case for which our data structure indicates that we
have not seen it before, this case is identified as being a “new case”. Similarly,
whenever we decide to drop a case from a data structure, we implicitly assume
that this case has terminated. Clearly, when there is a long period of inactivity,
a case might be falsely assumed to be terminated. If the case becomes active
again, it is treated as a new case again. The experiments reported on in Fig. 11
show that in case of the directly follows abstraction, this type of behaviour
has limited impact on the results. However, in a more general sense, e.g. when
approximating a prefix-closure on an event stream, this type of behaviour might
be of greater influence w.r.t. resulting model. The ILP Miner likely suffers from
such errors and as a result produces models of inferior quality.

In fact, for the ILP Miner the concept of termination is of particular im-
portance. To guarantee a single final state of a process model, the ILP Miner
needs to be aware of completed traces. This corresponds to explicit knowledge
of when a case is terminated in an event stream setting. Like in the case of
initialization, the resulting models of the ILP miner are greatly influenced by a
faulty assumption on case termination.

9 Conclusion

In this paper, we presented a generic architecture that allows for adopting ex-
isting process discovery algorithms in an event stream setting. The architecture
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is based on the observation that many existing process discovery algorithms
translate a given event log into some abstract representation and subsequently
use this representation to discover a process model. Thus, in an event stream
based setting, it suffices to approximate the abstract representation using the
event stream in order to apply existing process discovery algorithms to streams
of events. The exact behaviour present in the resulting process model greatly
depends on the instantiation of the underlying techniques that approximate the
abstract representation.

Several instantiations of the architecture have been implemented in the pro-
cess mining tool-kits ProM and RapidProM. We primarily focused on abstract
representation approximations using algorithms designed for the purpose of fre-
quent item mining on data streams. We structurally evaluated and compared
five different instantiations of the framework. From a behavioural perspective
we focused on the Inductive Miner as it grantees to produce sound workflow
nets. The experiments show that the instantiation is able to capture process
behaviour originating from a steady state-based process. Moreover, convergence
of replay fitness to a stable value depends on parametrization of the internal data
structure. In case of concept drift, the size of the internal data structure of use
impacts both model quality and the drift detection point. We additionally stud-
ied the performance of the Inductive Miner instantiation. The experiments show
that both processing time of new events and memory usage are non-increasing
as more data is received.

Future Work Within the experiments we chose to limit the use of internal
data structure to the Lossy Counting based approach. However, more instantia-
tions, i.e. Frequent / Space Saving, are presented and implemented. We plan to
investigate the impact of several different designs of the internal data structures
w.r.t. both behaviour and performance.

The architecture presented in this work focuses on approximating abstract
representations and exploiting existing algorithms to discover a process model.
However, bulk of the work might be performed multiple times, i.e. several new
events emitted to the stream might not change the abstract representation. We
therefore plan to conduct a study towards a completely incremental instantiation
of the architecture, i.e. can we immediately identify whether new data changes
the abstraction or even the resulting model?

Another interesting direction for future work is to go beyond control-flow
discovery, i.e. can we lift conformance checking, performance analysis, etc. to
the domain of event streams? Moreover, in such cases we might need to store
more information, i.e. store all attributes related to events within cases seen
so far. We plan to investigate the application of lossless/lossy compression of
the data seen so far, i.e. using frequency distributions of activities/attributes
to encode sequences in a compact manner.
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man, R. (ed.) Algorithms - ESA 2002, 10th Annual European Sympo-
sium, Rome, Italy, September 17-21, 2002, Proceedings, Lecture Notes
in Computer Science, vol. 2461, pp. 348–360. Springer (2002). DOI
10.1007/3-540-45749-6 33

[19] Dongen, B.F. van, Medeiros, A.K.A. de, Verbeek, H.M.W., Weijters,
A.J.M.M., Aalst, W.M.P. van der: The ProM Framework: A New Era in
Process Mining Tool Support. In: Applications and Theory of Petri Nets
2005, 26th International Conference, ICATPN 2005, Miami, USA, June
20-25, 2005, Proceedings, pp. 444–454 (2005). DOI 10.1007/11494744\ 25

[20] Dongen, B.F. van, Medeiros, A.K.A. de, Wen, L.: Process Mining:
Overview and Outlook of Petri Net Discovery Algorithms. T. Petri Nets
and Other Models of Concurrency 2, 225–242 (2009)

[21] Dumas, M., Rosa, M. La, Mendling, J., Reijers, H.A.: Fundamen-
tals of Business Process Management. Springer (2013). DOI 10.1007/
978-3-642-33143-5

[22] Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications
Company (2010)

[23] Gama, J.: Knowledge Discovery from Data Streams, 1st edn. Chapman &
Hall/CRC (2010). DOI 10.1201/EBK1439826119

30



[24] Günther, C.W., Aalst, W.M.P. van der: Fuzzy Mining - Adaptive Process
Simplification Based on Multi-perspective Metrics. In: Business Process
Management, 5th International Conference, BPM 2007, Brisbane, Aus-
tralia, September 24-28, 2007, Proceedings, pp. 328–343 (2007). DOI
10.1007/978-3-540-75183-0\ 24

[25] Hassani, M., Siccha, S., Richter, F., Seidl, T.: Efficient Process Discovery
From Event Streams Using Sequential Pattern Mining. In: Computational
Intelligence, 2015 IEEE Symposium Series on, pp. 1366–1373 (2015). DOI
10.1109/SSCI.2015.195

[26] Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Valida-
tion of Concurrent Systems. Springer (2009). DOI 10.1007/b95112

[27] Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN
Tools for Modelling and Validation of Concurrent Systems. STTT 9(3-4),
213–254 (2007). DOI 10.1007/s10009-007-0038-x

[28] Karp, R.M., Shenker S., Papadimitriou, C.H.: A Simple Algorithm for
Finding Frequent Elements in Streams and Bags. ACM Trans. Database
Syst. 28, 51–55 (2003). DOI 10.1145/762471.762473

[29] Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-
structured process models from event logs containing infrequent behaviour.
In: Business Process Management Workshops - BPM 2013 International
Workshops, Beijing, China, August 26, 2013, Revised Papers, pp. 66–78
(2013). DOI 10.1007/978-3-319-06257-0\ 6

[30] Leemans, S.J.J., Fahland, D., Aalst, W.M.P. van der: Discovering Block-
Structured Process Models from Event Logs - A Constructive Approach.
In: Application and Theory of Petri Nets and Concurrency - 34th Inter-
national Conference, PETRI NETS 2013, Milan, Italy, June 24-28, 2013.
Proceedings, pp. 311–329 (2013)

[31] Leemans, S.J.J., Fahland, D., Aalst, W.M.P. van der: Scalable Process Dis-
covery with Guarantees. In: Enterprise, Business-Process and Information
Systems Modeling - 16th International Conference, BPMDS 2015, 20th
International Conference, EMMSAD 2015, Held at CAiSE 2015, Stock-
holm, Sweden, June 8-9, 2015, Proceedings, pp. 85–101 (2015). DOI
10.1007/978-3-319-19237-6\ 6

[32] Li, T.: Event Mining: Algorithms and Applications. Chapman and
Hall/CRC (2015)

[33] Manku, G.S., Motwani, R.: Approximate Frequency Counts over Data
Streams. In: Proceedings of the 28th International Conference on Very
Large Data Bases, VLDB ’02, pp. 346–357. VLDB Endowment (2002)

31



[34] Medeiros, A.K.A. de, Dongen, B.F. van, Aalst, W.M.P. van der, Weijters,
A.J.M.M.: Process Mining for Ubiquitous Mobile Systems: An Overview
and a Concrete Algorithm. In: Baresi, L., Dustdar, S.m Gall, H.C., Mat-
era, M. (ed.) Ubiquitous Mobile Information and Collaboration Systems,
Lecture Notes in Computer Science, vol. 3272, pp. 151–165. Springer Berlin
Heidelberg (2005)

[35] Metwally, A., Agrawal, D., Abbadi, A.: Efficient Computation of Fre-
quent and Top-k Elements in Data Streams. In: Eiter, T., Libkin, L.
(ed.) Proceedings of the 10th International Conference on Database Theory,
ICDT’05, pp. 398–412. Springer-Verlag, Berlin, Heidelberg (2005). DOI
10.1007/978-3-540-30570-5\ 27

[36] Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceed-
ings of the IEEE 77(4), 541–580 (1989)

[37] Muthukrishnan, S.: Data Streams: Algorithms and Applications. Foun-
dations and Trends in Theoretical Computer Science 1(2) (2005). DOI
10.1561/0400000002

[38] Object Management Group: Business Process Model and Notation
(BPMN). Formal Specification formal/2011-01-03, Object Management
Group (2011)

[39] Redlich, D., Molka, T., Gilani, W., Blair, G., Rashid, A.: Constructs Com-
petition Miner: Process Control-Flow Discovery of BP-Domain Constructs
pp. 134–150 (2014). DOI 10.1007/978-3-319-10172-9\ 9

[40] Redlich, D., Molka, T., Gilani, W., Blair, G., Rashid, A.: Scalable Dynamic
Business Process Discovery with the Constructs Competition Miner pp. 91–
107 (2014)

[41] San Martino, G. Da, Navarin, N., Sperduti, A.: A Lossy Counting Based
Approach for Learning on Streams of Graphs on a Budget. In: IJCAI
2013, Proceedings of the 23rd International Joint Conference on Artificial
Intelligence, Beijing, China, August 3-9, 2013 (2013)

[42] Schlimmer, J.C., Granger, R.H.: Beyond Incremental Processing: Tracking
Concept Drift. In: Proceedings of the 5th National Conference on Artificial
Intelligence. Philadelphia, PA, August 11-15, 1986. Volume 1: Science., pp.
502–507 (1986)

[43] Vitter, J.S.: Random Sampling with a Reservoir. ACM Trans. Math. Softw.
11(1), 37–57 (1985). DOI 10.1145/3147.3165

[44] Weerdt, J. de, Backer, M. de, Vanthienen, J., Baesens, B.: A Multi-
Dimensional Quality Assessment of State-Of-The-Art Process Discovery
Algorithms using Real-Life Event Logs. Inf. Syst. 37(7), 654–676 (2012).
DOI 10.1016/j.is.2012.02.004

32



[45] Weijters, A.J.M.M., Aalst, W.M.P. van der: Rediscovering Workflow Mod-
els from Event-Based Data Using Little Thumb. Integrated Computer-
Aided Engineering 10(2), 151–162 (2003)

[46] Weijters, A.J.M.M., Aalst, W.M.P. van der, Medeiros, A.K.A. de: Process
Mining with the HeuristicsMiner-Algorithm. BETA Working Paper Series
WP 166, Eindhoven University of Technology (2006)

[47] Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible Heuristics Miner (FHM). In:
Computational Intelligence and Data Mining (CIDM), 2011 IEEE Sympo-
sium on, pp. 310–317 (2011). DOI 10.1109/CIDM.2011.5949453

[48] Werf, J.M.E.M. van der, Dongen, B.F. van, Hurkens, C.A.J., Serebrenik,
A.: Process Discovery using Integer Linear Programming. Fundam. Inform.
94(3-4), 387–412 (2009)

[49] Zelst, S.J. van, Burattin, A., Dongen, B.F. van, Verbeek, H.M.W.: Data
Streams in ProM 6: A Single-node Architecture. In: Proceedings of the
BPM Demo Sessions 2014 Co-located with the 12th International Con-
ference on Business Process Management (BPM 2014), Eindhoven, The
Netherlands, September 10, 2014., p. 81 (2014)

[50] Zelst, S.J. van, Dongen, B.F. van, Aalst, W.M.P. van der: Avoiding Over-
Fitting in ILP-Based Process Discovery. In: Business Process Management
- 13th International Conference, BPM 2015, Innsbruck, Austria, August
31 - September 3, 2015, Proceedings, pp. 163–171 (2015). DOI 10.1007/
978-3-319-23063-4\ 10

[51] Zelst, S.J. van, Dongen, B.F. van, Aalst, W.M.P. van der: Know What
You Stream: Generating Event Streams from CPN Models in ProM 6.
In: Proceedings of the BPM Demo Session 2015 Co-located with the 13th
International Conference on Business Process Management (BPM 2015),
Innsbruck, Austria, September 2, 2015., pp. 85–89 (2015)

33


	1 Introduction
	2 Background
	2.1 Business Processes, Models and Event Logs
	2.2 Process Discovery

	3 Event Stream Based Process Discovery
	3.1 Event Streams
	3.2 Process Discovery

	4 The S-BAR Architecture
	4.1 Abstract Representations in Conventional Process Discovery
	4.2 Abstract Representations in Event Stream Based Process Discovery

	5 Instantiating S-BAR
	5.1 Directly Follows Abstraction
	5.1.1 The -Miner
	5.1.2 The Heuristics Miner
	5.1.3 The Inductive Miner

	5.2 Region Theory
	5.2.1 Language-Based Approaches
	5.2.2 State-Based Approaches


	6 Evaluation
	6.1 Structural Analysis
	6.2 Behavioral Analysis
	6.3 Concept Drift
	6.4 Performance Analysis

	7 Related Work
	8 Discussion
	8.1 Complexity of Abstract Representation Computation
	8.2 Initialization and Termination

	9 Conclusion

