
The Imprecisions of Precision Measures in Process Mining

Niek Tax∗, Xixi Lu, Natalia Sidorova, Dirk Fahland, Wil M.P. van der Aalst

Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands

Abstract

In process mining, precision measures are used to quantify how much a process model overapproximates the behavior
seen in an event log. Although several measures have been proposed throughout the years, no research has been done
to validate whether these measures achieve the intended aim of quantifying over-approximation in a consistent way for
all models and logs. This paper fills this gap by postulating a number of axioms for quantifying precision consistently
for any log and any model. Further, we show through counter-examples that none of the existing measures consistently
quantifies precision.

Keywords: Process mining, Formal languages and automata, Petri nets, Design of algorithms

1. Introduction

Process mining [1] is a fast growing discipline that
is focused on the analysis of events logged during the
execution of a business process. Events contain infor-
mation on what was done, by whom, for whom, where,
when, etc. Such event data are often readily available
from information systems such as ERP, CRM, or BPM
systems. Process discovery, which plays a prominent
role in process mining, is the task of automatically
generating a process model that accurately describes
a business process based on such event data. Many
process discovery techniques have been developed over
the last decade (e.g. [2, 3, 4, 5]), producing process
models in various forms, such as Petri nets [6], process
trees [7], YAWL models [8], and BPMN models [9].

The process model that is pursued by process discov-
ery techniques ideally allows for all the behavior that
was observed in the event log (called fitness), while at
the same time it should not be too general by allowing
for much more behavior than what was seen in the event
log (called precision).

A range of measures have been proposed for quanti-
fying precision [10, 11, 12, 13, 14]. However, to the best
of our knowledge, there is currently no work on verify-
ing whether precision measures actually quantify what

∗Corresponding author
Email addresses: n.tax@tue.nl (Niek Tax), x.lu@tue.nl

(Xixi Lu), n.sidorova@tue.nl (Natalia Sidorova),
d.fahland@tue.nl (Dirk Fahland), w.m.p.v.d.aalst@tue.nl
(Wil M.P. van der Aalst)

they are supposed to measure in a consistent manner.
Conceptually, the precision of a process model in the
context of an event log should be high when the model
allows for few traces not seen in the log, and it should be
low when it allows for many traces not seen in the log.
In this paper we propose a set of axioms that formulate
desired properties of precision measures and systemat-
ically validate whether these axioms hold for existing
precision measures.

In Section 2 we introduce basic notation and defini-
tions. In Section 3 we formulate axioms for precision
measures. We then continue with Section 4, where we
describe existing precision measures in more detail and
validate the axioms for these measures. In Section 5 we
describe two contexts in which we are not able to de-
fine axioms for precision. In Section 6 we conclude this
paper and state several directions for future work.

2. Preliminaries

In this section we introduce concepts used in later
sections of this paper.

X = {a1, a2, . . . , an} denotes a finite set. P(X) denotes
the power set of X, i.e., the set of all possible subsets of
X. X∗ denotes the set of all sequences over a set X and
σ = 〈a1, a2, . . . , an〉 denotes a sequence of length n, with
〈〉 the empty sequence. X\Y denotes the set of elements
that are in set X but not in set Y , e.g., {a, b, c}\{a, c}={b}.
A multiset (or bag) over X is a function B : X→N which
we write as [aw1

1 , aw2
2 , . . . , awn

n], where for 1≤i≤n we have

Preprint submitted to Elsevier May 18, 2017

ar
X

iv
:1

70
5.

03
30

3v
2

 [
cs

.D
B

]
 1

6
M

ay
 2

01
7

ai∈X and wi∈N+. The set of all bags over X is denoted
B(X).

In the context of process mining, we assume the set of
all process activities Σ to be given. Event logs consist
of sequences of events where each event represents a
process activity.

Definition 1 (Event, Trace, and Event Log). An
event e in an event log is the occurrence of an activity
e∈Σ. We call a sequence of events σ∈Σ∗ a trace. An
event log L∈B(Σ∗) is a finite multiset of traces.

L=[〈a, b, c〉2, 〈b, a, c〉3] is an example event log over
process activities Σ={a, b, c}, consisting of 2 occur-
rences of trace 〈a, b, c〉 and three occurrences of trace
〈b, a, c〉.

Most precision measures have been implemented for
Petri nets, a process modeling formalism frequently
used in the context of process mining. A Petri net is
a directed bipartite graph consisting of places (depicted
as circles) and transitions (depicted as rectangles), con-
nected by arcs. A transition describes an activity, while
places represent the enabling conditions of transitions.
Labels of transitions indicate the type of activity that
they represent. Unlabeled transitions (τ-transitions) rep-
resent invisible transitions (depicted as gray rectangles),
which are only used for routing purposes and are not
recorded in the event log.

Definition 2 (Labeled Petri net). A labeled Petri net
N = 〈P,T, F, `〉 is a tuple where P is a finite set of
places, T is a finite set of transitions such that P∩T=∅,
F⊆(P×T)∪(T×P) is a set of directed arcs, called
the flow relation, and `:T9Σ is a partial labeling
function that assigns a label to a transition, or leaves it
unlabeled (the τ-transitions).

We write •n and n• for the input and output nodes of
n ∈ P ∪ T (according to F). A state of a Petri net is de-
fined by its marking m∈B(P) being a multiset of places.
A marking is graphically denoted by putting m(p) to-
kens on each place p∈P. State changes occur through
transition firings. A transition t is enabled (can fire) in
a given marking m if each input place p∈•t contains
at least one token. Once t fires, one token is removed
from each input place p∈•t and one token is added
to each output place p′∈t•, leading to a new marking
m′=m− •t + t•.

A firing of a transition t leading from marking m
to marking m′ is denoted as step m

t
−→m′. Steps are

lifted to sequences of firing enabled transitions, written
m

γ
−→m′ and γ∈T ∗ is a firing sequence..

A partial function f∈X9Y with domain dom(f) can
be lifted to sequences over X using the following recur-
sive definition: (1) f (〈〉) = 〈〉; (2) for any σ∈X∗ and
x ∈ X:

f (σ · 〈x〉) =

{
f (σ) if x<dom(f),
f (σ) · 〈 f (x)〉 if x∈dom(f).

Defining an initial and final markings allows to define
the language accepted by a Petri net as a set of finite
sequences of activities.

Definition 3 (Accepting Petri Net). An accepting
Petri net is a triplet APN=(N,m0,MF), where N is
a labeled Petri net, m0∈B(P) is its initial marking,
and MF⊆B(P) is its set of possible final markings. A
sequence σ∈Σ∗ is a trace of an accepting Petri net APN
if there exists a firing sequence m0

γ
−→m f such that

m f∈MF, γ∈T ∗ and `(γ)=σ.

The language L(APN) is the set of all its traces, i.e.,
L(APN)={l(γ)|γ∈T ∗∧∃m f ∈MFm0

γ
−→m f }, which can be

of infinite size when APN contains loops. Even though
we define language for accepting Petri nets, in theory
L(M) can be defined for any process model M with for-
mal semantics. We denote the universe of process mod-
els asM. For each M∈M, L(M) is defined.

For an event log L, L̃={σ∈Σ∗|L(σ)>0} is the trace
set of L. For example, for log L=[〈a, b, c〉2, 〈b, a, c〉3],
L̃={〈a, b, c〉〈b, a, c〉}. For an event log L and a model M
we say that L is fitting on model M if L̃⊆L(M). Preci-
sion is related to the behavior that is allowed by a model
M that was not observed in the event log L, i.e., L(M)\L̃.

3. Axioms for Precision Metrics

The properties that are desired for precision measures
are not clearly defined in existing work, although they
are often discussed informally. Van der Aalst et al. [15],
describe the precision dimension as “Precision: mea-
sure determining whether the model prohibits behavior
very different from the behavior seen in the event log.
A model with low precision is underfitting.”. Vanden
Broucke et al. [13] describe precision as “precision (or:
appropriateness), i.e., the model’s ability to disallow un-
wanted behavior;”. Mũnoz-Gama and Carmona [12] de-
scribe it as “Precision: refers to overly general models,
preferring models with minimal behavior to represent as
closely as possible to the log.”. Buijs et al. [16] describe
precision as “... precision quantifies the fraction of the
behavior allowed by the model which is not seen in the
event log.”.

2

L̃ L(M1) L(M2)

=⇒ prec(L,M1)≥prec(L,M2)

(A2)

L̃1 L̃2 L(M)

=⇒ prec(L2,M)≥prec(L1,M)

(A5)

Figure 1: Two of the five axioms for precision measures visualized with Euler diagrams.

We consider precision to be a function prec(L,M)
which quantifies which part of the language of model
M is seen in event log L. Below we formalize the
desired properties of function prec through axioms to
consistently hold for any kind of model and any kind
of log.. Note that in the examples that we will show in
this paper all models M will be Petri nets, however the
formulated axioms are more general and apply to any
process model M∈M. Figure 1 visualizes two axioms
using Euler diagrams.

The first axiom states that precision is deterministic,
i.e., given a log and model always the same result is
returned.

Axiom A1. A precision measure is a function prec :
B(Σ∗) ×M → R, i.e., it is deterministic.

Existing precision measures normalize R to a [0, 1]-
interval.

The second axiom formulates the conceptual descrip-
tion of precision more formally: if a process model M2
allows for more behavior not seen in a log L than an-
other model M1 does, then M2 should have a lower pre-
cision than M1 regarding L.

Axiom A2. For models M1 and M2 and a log L,
L̃⊆L(M1)⊆L(M2) =⇒ prec(L,M1)≥prec(L,M2)

Note that A2 does allow L̃⊆L(M1)⊂L(M2) with
prec(L,M1)=prec(L,M2). Ideally, since L(M1) is
smaller than L(M2) we would like to see a higher preci-
sion for M1, but this requirement might be too strict.
However, for a process model M with L̃⊆L(M), we
would like the precision of M on L to be higher than
the precision of M on any flower model (i.e., a model
that allows for all behavior over its activities) on log L.

Axiom A3. For models M1 and M2 and a log L,
L(M1)⊂P(Σ∗)∧L(M2)=P(Σ∗) =⇒ prec(L,M1)>prec(L,M2)

The precision of a log on two language equivalent
models should be equal, i.e., precision should not de-
pend on the model structure.

Axiom A4. For models M1 and M2 and a log L,
L(M1)=L(M2) =⇒ prec(L,M1)=prec(L,M2)

A4 was stated before in an informal manner by Rozinat
and van der Aalst [11], who stated that precision should
be independent of structural properties of the model.

Adding fitting traces to a fitting log can only increase
the precision of a given model with respect to the log.

Axiom A5. For model M and logs L1 and L2,
L̃1⊆L̃2⊆L(M) =⇒ prec(L2,M)≥prec(L1,M)

From A5 it follows as a corollary that precision is
maximal when the log contains all the traces allowed
by the model, and minimal when it contains no traces
allowed by the model.

In the coming sections we will validate whether these
axioms hold for several precision measures. Some ar-
ticles that introduce precision measures explicitly men-
tion that the measure is intended to be used only with
a certain subclass of Petri nets. An example of such a
subclass of Petri nets are bounded Petri nets, which have
the restriction that all places most have a finite number
of tokens in all reachable markings. When an article
that introduces a precision measure states an explicit as-
sumption on the subclass of Petri nets, then we only val-
idate the axioms on this subclass of Petri nets. When no
explicit assumption on a subclass of Petri nets is stated,
we assume that the precision measure is intended for
Petri nets in general.

4. Precision Metrics

In this section we give an overview of the precision
measures that have been developed in the process min-
ing field, and validate the axioms for precision measures
introduced in Section 3 for each of those measures.

4.1. Soundness
Greco et al. [10] were the first to propose a precision

measure, defining it as the number of unique executions
of the process that were seen in the event log divided by
the number of unique paths through the process model.
This measure is not usable in practice, because it is zero
when the process model allows for an infinite number
of paths through the model. Any process model hav-
ing a loop has a precision of 0. More recent precision

3

measures are capable of calculating the precision of a
model for an event log even when the models allows for
infinite behavior.

4.2. Behavioral Appropriateness

Rozinat and Van der Aalst [11] proposed the simple
behavioral appropriateness precision measure, which
looks at the average number of enabled transitions dur-
ing replay. The authors observed themselves that simple
behavioral appropriateness is dependent on the structure
of the model, and not solely dependent on the behavior
that it allows, therefore A4 does not hold for this mea-
sure. Furthermore, for a process model that contains
silent transitions or duplicate labels it is possible that
a given trace can be replayed on this model in multi-
ple ways, where the average number of enabled transi-
tions can depend on the chosen replay path through the
model. This replay path through the model is chosen ar-
bitrarily from the possible ways in which the trace can
be replayed. This shows that A1 does not hold for sim-
ple behavioral appropriateness, as it is not deterministic.

In the same paper, Rozinat and van der Aalst [11]
propose advanced behavioral appropriateness, which
is independent of the model structure. Advanced be-
havioral appropriateness calculates the sets SF⊆Σ×Σ of
pairs of activities that sometimes, but not always, follow
each other. Likewise set SP⊆Σ×Σ is calculated as the
set of activities that sometimes, but not always, precede
each other. SL

F and SL
P denote the sometimes-follows

and sometimes-precedes relations on the log, and SM
F

and SM
P denotes the sometimes-follows and sometimes-

precedes relations according to the model. However,
to calculate SM

F and SM
P , exhaustive exploration of the

state space of the model is required, prohibiting the
application of this measure for large models or highly
concurrent models, where the state-space explosion
problem arises. Advanced behavioral appropriateness
precision is defined as a′b=(|S

L
F∩SM

F |

2·|SM
F |

+
|SL

P∩SM
P |

2·|SM
P |

). Because

SM
F and SM

P are obtained through exhaustive exploration
of the state space of the model, it is easy to see that they
depend only on the behavior of the model and not on its
structure, therefore A4 holds. A problem with advanced
behavioral appropriateness occurs for deterministic
models, where |SM

P |=|S
M
F |=0, leading to undefined preci-

sion. This shows that advanced behavioral appropriate-
ness is a partial function, which is in conflict with A1.

Rozinat and van der Aalst [11] state that simple be-
havioral appropriateness and advanced behavioral ap-
propriateness assume the Petri net to be in the class of
sound workflow (WF) nets [17]. A WF-net requires the
Petri net to have (i) a single Start place, (ii) a single

a

b

c

d

Figure 2: Model M.

End place, and (iii) every node must be on some path
from Start to End. The soundness property additionally
require that each transition can be potentially executed,
and that the process can always terminate properly, i.e.,
finish with only one token in the End place.

Consider model M of Figure 2, which belongs to
the class of sound WF-nets, and any log L such that
L̃⊆L(M). The loop in model M causes SM

F and SM
P

to contain all pairs of activities of Σ. Therefore, |SM
F |

and |SM
P | are identical to the sometimes relations |SM′

F |

and |SM′
P | of any model M′ with L(M′)=P(Σ∗), leading

to prec(L,M)=prec(L,M′). As L(M)⊂P(Σ∗), this is in
conflict with A3.

4.3. Escaping Edges Precision
Escaping Edges Precision (ETC) [12] calculates pre-

cision by constructing a prefix automaton, which con-
sists of one state per unique prefix of the event log.
Figure 3b shows an example prefix automaton for an
event log L = [〈a, c〉, 〈a, d〉]. For each state in the pre-
fix automaton it is then determined which activities are
allowed as next activities by the process model. Activ-
ities that are allowed as next activities for some prefix
but that are never observed in the event log after this
prefix are referred to as escaping edges.

In later work [18, 19], alignments [20] are used to
calculate the prefix automaton on the aligned event log
instead of the original event log, making the precision
measure robust to non-fitting traces, i.e., traces that
are not in the language of the model. For a trace σ
from a log L that is fitting on an accepting Petri net
APN, alignments [20] give a sequence of transition
firings γ∈T ∗ such that m0

γ
−→m f with m0 the initial

marking and m f a final marking of APN and `(γ)=σ.
Note that for a given trace σ and model, multiple
possible alignments can exist. For non-fitting traces,
alignments search for a firing sequence γ∈T ∗ such that
`(γ) is as close as possible to σ. Adriansyah et al. [18]
describe two versions of the alignment-based escaping
edges precision: one-align ETC, which calculates
the precision based on one optimal alignment of log
and model, and all-align ETC, which calculates the
precision based on all optimal alignments between log
and model. In practice, it is often computationally
infeasible to calculate all optimal alignments. A later

4

a

b

c

d

(a)

2 2
1

1

a d

c
b

(b)

3 3 1

1

1

1 1 1 1 1 1 1 1 1 1
a b

d

c

a
d

a

b a
d

c

b a
d

c

b a
d

c

b a
d

b

c

(c)

Figure 3: (a) Model M, and the alignment automata on
Model M for (b) log L1=[〈a, c〉, 〈a, d〉], and for (c) log
L2=[〈a, c〉, 〈a, d〉, 〈a, b, a, b, a, b, a, b, a, b, a, c〉]. Red arcs corre-
spond to escaping edges.

precision measure, representative-align ETC [21],
calculates the escaping edges based on a sample of
optimal alignments, and can therefore be seen as
a trade-off between the computational efficiency of
one-align ETC and the reliability of all-align ETC. The
papers on ETC precision and its variants do not state an
assumption on a subclass of Petri nets. ETC, one-align
ETC, all-align, and representative-align ETC precision
are all implemented in the package ETConformance1

as part of the process mining framework ProM [22].
The one optimal alignment that is used by one-align

ETC is chosen arbitrarily from the set of optimal
alignments of a log on a model. However, different
optimal alignments result in different prefix automata,
which can potentially lead to different precision values.
This shows that A1 does not hold for one-align ETC.

Consider log L1=[〈a, c〉, 〈a, d〉], log L2=[〈a, c〉, 〈a, d〉,
〈a, c〉, 〈a, b, a, b, a, b, a, b, a, b, a, c〉] and model M be the
Petri net of Figure 3a. Note that L̃1⊂L̃2. The alignment
automata generated for the calculation of prec(L1,M)
and the calculation of prec(L2,M) are shown in Figure
3b and Figure 3c. The circles represent the states of the
automaton, and the arrows the transitions. The num-
bers in the states represent the weights of the states for
the precision calculation, i.e., the number of times that
states are visited in the alignment of log L on model
M [18]. In an alternative definition of one-align ETC
[19] the states are weighted by the number of times that
events occurred while being in this state according to
the alignment of L on M, instead of the number of times
that this state was reached according to this alignment.
Figure 3b shows that the initial state was visited twice,
activity a occurred twice at the start in log L1, resulting
in a state from which activities b, d, and c were enabled.

1https://svn.win.tue.nl/trac/prom/browser/Packages/ETConformance

a

b

c

(a)

c b a

(b)

a

b

c

(c)

Figure 4: (a) The flower-model, which allows for all behavior over its
set of activities, (b) an alternative representation of the flower-model,
and (c) a constrained model which always starts with activity a.

From this state, activities c and d were seen once, and
activity b was never seen, thus it is an escaping edge.
Escaping edges precision is then the (weighted) average
ratio of non-escaping edges from all outgoing edges,
where states are weighted by the number of times that
they are visited. Counting the weighted number of non-
escaping edges in the numerator and the weighted total
number of edges in the denominator in our example, we
find prec(L1,M)= 2×1+2×2+1×0+1×0

2×1+2×3+1×0+1×0 = 6
8 =0.75. One-align

ETC results in the following precision values for M on
L1 and L2: prec(L1,M)=0.75 and prec(L2,M)=0.7143.
This shows that A5 does not hold for one-align ETC.
By comparing the automata of Figures 3b and 3c it be-
comes clear that the single trace that is in L2 but not
in L1 brings the model to many states with three escap-
ing edges, reducing precision. The prefix automata and
the precision calculations for M on logs L1 and L2 were
performed manually following the procedure from the
paper and validation using the ETConformance plugin
in ProM.

Now consider log L = [〈a, b, c〉], and the three
Petri nets M1, M2, M3 in Figures 4a, 4b, and 4c
respectively. Note that M1 and M2 are language
equivalent, as L(M1)=L(M2)={a, b, c}∗. M3 is more
behaviorally constrained than M1 and M2, since all its
traces start with activity a. The one-align precision
of M1, M2, M3 on L are: prec(L,M1)=0.3333,
prec(L,M2)=0.5238, and prec(L,M3)=0.4444.
L(M3)⊂L(M1), but prec(L,M3)>prec(L,M1), implying
that A2 does not hold for one-align ETC. Furthermore,
L(M1)=L(M2), but prec(L,M1),prec(L,M2), implying
that A4 does not hold for one-align ETC.

Analyzing the ETConformance plugin in ProM we

5

found that the prefix automaton generated for one-align
precision for calculation of prec(L,M1) results in 6
states, belonging to 3 firings of observable transitions
and 2 firings of τ-transitions. In 3 of the 6 states, which
correspond to M1 being in the initial marking, there
are 4 possible next activities according to the model, of
which only one is observed for that prefix. Furthermore,
it shows that the alignment automaton generated for L
and M1 consists of 6 states, the automaton for L and M2
consists of 12 states, and the automaton for L and M3
consists of 5 states. This shows that the silent (τ) tran-
sitions in M2 generate additional states in the alignment
automaton, leading to a higher precision value.

Computing the precision of M1 or of M2 on L did
not finish with all-align ETC and representative-align
ETC after 8 hours of computation time. The long com-
putation time of all-align ETC and representative-align
ETC on models where many optimal alignments exist
is a known issue which hinders the application of those
measures in practice.

4.4. Negative Event Precision
Goedertier et al. [2] proposed a method to induce

negative events, i.e., sets of events that were prevented
from taking place. Negative events are induced for each
position in the event log, i.e., for each event e in each
trace of the log a set of events is induced that could
not have taken place instead of event e. De Weerdt et
al. [23] proposed a precision measure based on nega-
tive events, behavioral precision (pB), which is closely
linked to how precision is defined in the area of data
mining. Negative event precision regards a process
model as a binary classifier that determines whether a
certain event can take place given a certain prefix, and
then evaluates the precision of this classifier in data min-
ing terms taking the induced negative events as ground
truth. For a given trace prefix, true positive (TP) events
are defined as events that are possible according to both
the process model (i.e., a transition labeled with this
event is enabled) and log (i.e., this event is not a neg-
ative event). False positive events (FP) are negative
events induced for a given prefix that were possible ac-
cording to the model. Behavioral precision is defined
as pB = T P

T P+FP , which is in accordance to the definition
of precision in the data mining field. In later work [24]
induction of artificial negative events has been refined
based on frequent temporal patterns which are mined
from the event log. Finally, weighted artificial events,
where negative events are weighted according to their
confidence, are proposed in [13].

Weighted behavioral precision induces negative
events for an event e in the log by taking a window

a

b

c

d

e

f

g

Figure 5: A process model M1 and its behaviorally restricted variant
M2 which includes the dotted places and arcs.

of events w that directly precede e, then calculating all
subsequences of events in the log that exactly match w,
and finally negative events are identified by calculating
which events have never occurred in the log directly
after any subsequence matching w. This procedure is
repeated for different windows sizes, and the resulting
negative event are weighted by window size.

To induce the events that could not have happened
after e.g. trace prefix σ′ = 〈a, c, c, d, e, c, d, e, e〉, the
method to induce weighted negative events described in
[13] searches for subsequences of events in the log that
are identical to the latest k events of σ′ in the event log.
All the activities that have never succeeded such subse-
quences are considered to be negative events, further-
more, the confidence of these negative events is based
on the length k of those matching subsequences.

Negative event based precision measures, with the
different methods for negative event induction, are im-
plemented in the ProM package NEConformance2. In
this paper we evaluate the precision measure that uses
weighted negative events [13], which is the most re-
cent approach to induce negative events and the rec-
ommended approach for measuring precision [13]. No
assumption on a subclass of Petri nets is stated in the
papers on negative event precision.

Consider models M1 and M2 of Figure 5 respectively
excluding and including the arcs and places indicated in
dotted lines. L(M2)⊂L(M1), since M2 contains a long
term dependency between activities a and f and be-
tween activities b and g, which M1 does not have. Con-
sider an event log L which consists of 10 traces from
M2, leading to L being fitting on both M1 and M2. We
found the negative event precision of M1 and M2 on the
same L to be non-deterministic, resulting in slightly dif-
ferent values every time that it is calculated. This shows
that A1 does not hold for negative event precision.

Because negative event precision is non-
deterministic, we calculated the precision of M1

2http://processmining.be/neconformance/

6

and M2 on L both 20 times. The highest precision
found in 20 repetitions for M1 is 0.4876, while the
lowest precision found for M2 is 0.4545, showing that
the non-determinism has the effect that A2 does not
hold for negative event precision. We found an average
value of 0.4744 with a standard deviation of 0.0090 for
the precision of M1 on L and an average value of 0.4640
with a standard deviation of 0.0072 for the precision
of M2 on L. This shows that also in terms of average
precision value A2 does not hold.

To test whether the difference in mean precision be-
tween M1 and M2 is due to chance alone we formulate
a null hypothesis:
H0 : The average negative event precision of M2 on L
is higher than or equal to the average negative event
precision of M1 on L.

Testing this null hypothesis with a one-tailed Welch
t-test [25] we found a p-value of 0.0001801, indicating
that we can reject the null hypothesis with significance
level 0.01. This shows that, with statistical significance,
the precision of M1 on L is higher than the precision of
M2 on L, which is in disagreement with A2.

To see why A2 does not hold for negative event preci-
sion, consider the negative event inducing procure being
applied to trace prefix σ′ = 〈a, c, c, d, e, c, d, e, e〉 from
log L. Petri net M2 generates many different traces be-
cause of the parallel length-one-loops on activities c, d
and e, which allows for any sequence of any length over
these activities. Therefore, the matching subsequences
of σ′ in the log generated from M2 are the subsequences
that by chance ended in the same behavior over c, d,
and e. Because the sequences of c, d and e events can
be long and diverse, activity a and b are unlikely to
be present in the matching subsequences, which makes
it unlikely that the procedure can induce the negative
event g for σ′. Because the negative events that reflect
the constraint that M2 introduces compared to M1 can-
not be induced from the log, negative event precision is
not able to recognize that M2 is more precise than M1.

4.5. Projected Conformance Checking
Projected Conformance Checking (PCC) precision

was developed by Leemans et al. [14] as a computa-
tionally efficient precision measure that scales to event
logs with billions of events. PCC precision projects both
event log and model on all subsets of activities of size
k, and generates minimal deterministic finite automata
(DFA) for the behavior over these subsets of activities
in the log (i.e., log automaton) and for the behavior over
these events allowed by the model (i.e., model automa-
ton). Based on the log automaton and model automaton
it then builds a conjunction automaton which allows the

a

b

(a)
a a

b b b

(b)

Figure 6: (a) A model with a length-one-loop, (b) the same model
with the loop unrolled up to two executions.

behavior that was allowed both in log and model au-
tomaton. It then iterates over the states of the model au-
tomaton, and calculates over the share of transitions of
this state that is also possible in the corresponding state
in the conjunction automaton. It defines precision as the
average of this share over the model automaton states.

PCC precision is implemented in the ProM package
ProjectedRecallAndPrecision3. PCC precision assumes
the Petri net to be of the class of bounded Petri nets, i.e.,
the Petri net for which precision is calculated must have
a finite number of tokens in every place for all reachable
markings.

Consider log L = [〈a, b〉] and Petri nets M1 and M2 of
Figures 6a and 6b respectively. M1 starts with a length-
one-loop on activity a, followed by activity b. M2 un-
rolls the length-one-loop on activity a of M1 to at most
two executions, thereby limiting the behavior as it only
allows at most two executions of activity a. It is easy to
see that M1 and M2 both belong to the class of bounded
Petri nets, as in both models each place can have at most
one token. For this log and these models, PCC precision
results in prec(L,M1)=0.6, and prec(L,M2)=0.5. How-
ever, since L(M2)⊂L(M1), A2 states that the precision
of M2 for fitting log L should be higher or equal to its
precision of M1. This shows that A2 does not hold for
PCC precision.

This drop in precision is an effect of the additional
states that are created in the model DFA as an effect of
unrolling the length-one-loop. The model DFA created
from Petri net M2 (Figure 6b) for example contains a
state s that is reached after firing 〈a, a〉. This state how-
ever is never reached based on event log L, which only
contains a trace 〈a, b〉, which has the effect that none
of the enabled transitions from state s were observed in
the log, bringing down the precision. In the DFA gener-
ated from Petri net M1 (Figure 6a), this state s is merged
with the state that one reaches after observing a single a

3https://svn.win.tue.nl/trac/prom/browser/
Packages/ProjectedRecallAndPrecision/

7

b

c

a

Figure 7: A flower model over activities a, b and c.

Table 1: Overview of the precision axioms and whether they hold for
each precision measure.

Metric A1 A2 A3 A4 A5

Simple behavioral appropriateness 7 7
Advanced behavioral appropriateness 7 7 3
One-align ETC 7 7 7 7
Negative Event Precision 7 7
PCC precision 7 7

event, as future behavior allowed by the model does not
depend on the number of a-events seen.

Consider Petri net M of Figure 7,
and event logs L1=[〈b, a, c〉, 〈a, a, c〉], and
L2=[〈b, a, c〉, 〈a, a, c〉, 〈a, b, b, b, b, b, b, b, b, b, b, b, b, b,
b, b〉, 〈b, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a〉]. The sin-
gle place of M is bounded to one token, therefore M
belongs to the class of bounded Petri nets. It is easy to
see that L̃1⊂L̃2, since the first two traces of log L2 form
log L1. PCC precision results in prec(L1,M)=0.3125
and prec(L2,M)=0.2727, violating A5. The two traces
of L2 that are not in L1 are very long traces to the traces
that are in L1, leading to additional states in the log
automaton and the conjunction automaton. The addi-
tional states of the conjunction automaton have a low
precision of 1

4 , since for each state the model allows for
four options (firing activity a, b, c, or stopping), while
only one is seen in the log. Therefore, if we would
expand trace 〈b, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a〉
with more events of activity a, then prec(L2,M) would
approach 1

4 .

4.6. Overview of Precision Metric Properties

We formulated five axioms that describe desirable
properties for precision measures. Table 1 gives an
overview of that axioms that we showed that do hold
(3) and that do not hold (7) for each precision mea-
sure. We found that none of the existing precision mea-
sures fulfills all five axioms. Empty cells in the table are
currently unknown, and no formal proof nor a counter
example has been found that proves or disproves the ax-
iom for the respective precision measure.

L̃ L(M2)L(M1)

(a)

L̃
L(M1) L(M2)

(b)

Figure 8: Two situations in which the desired properties of precision
measures are unclear: (a) two models on which log L fits, with both
models allowing for behavior that is not allowed by the other model,
and (b) two models and a log on which the models do not fit.

5. Contexts With Unclear Requirements for Preci-
sion Metrics

The axioms introduced in Section 3 can be regarded
as necessary conditions for precision measures, but they
leave precision unspecified in some contexts. Figure
8a shows a situation in which L̃⊆L(M1), L̃⊆L(M2), but
L(M1)\L(M2),∅ and L(M2)\L(M1),∅. In this setting,
both M1 and M2 allow for (a possibly infinite amount of)
different behavior that was not seen in L. Precision mea-
sures deal with this situation by quantifying the amount
of behavior of M1 and M2. However, there are no ob-
vious formal properties telling how the precision of M1
and M2 on L should relate.

Furthermore, all axioms define desired properties of
precision measures when the event log L fits the behav-
ior of the model M, i.e., L̃ ⊆ L(M). In practice, process
discovery techniques will return process models with
fitness below 1, i.e., there exists σ∈L : σ<L(M). The
discovery algorithm may deliberately abstract from in-
frequent behavior. In this paper we do not formulate ax-
ioms for precision measures in the context of event logs
that do not fit the process model, since we feel that there
is not enough agreement in the process mining commu-
nity on how a precision measure should behave in this
context. Figure 8b shows an Euler diagram of a log L
and two models M1 and M2 such that L(M1)⊂L(M2) and
L̃*L(M1), which is a non-fitting equivalent of A2. A2
prescribes prec(L,M1)≥prec(L,M2), however, when the
log does not fit the models, the behavior that fits M2
but not M1, (L̃\L(M1))∩L(M2), makes it unclear how
the precision of M1 and M2 should relate. Furthermore,
even when (L̃\L(M1))∩L(M2)=∅, it can be the case that
the behavior in L that does not fit the models is behav-
iorally similar to behavior of M2.

6. Conclusions & Future Work

In this paper provides a set of minimal requirements
for precision measures through axioms. We validated
these axioms for existing measures. Surprisingly, we

8

discovered that none of the existing precision measures
fulfills all formulated requirements.

In future work, we would like fill the empty cells
of Table 1 and get a complete overview of the axioms
that hold for each precision measure. Furthermore, we
would like to use the insights learned from evaluating
the axioms on the measures to either repair one of the
existing measures or come up with a completely new
measure that fulfills all five axioms.

Reproducibility. The event logs and process models
that are used as part of a counterexample for a combina-
tion of an axiom and a precision measure can be found
at [26].

References

[1] W. M. P. van der Aalst, Process mining: Data science in action,
Springer, 2016.

[2] S. Goedertier, D. Martens, J. Vanthienen, B. Baesens, Robust
process discovery with artificial negative events, Journal of Ma-
chine Learning Research 10 (2009) 1305–1340.

[3] S. J. J. Leemans, D. Fahland, W. M. P. van der Aalst, Discover-
ing block-structured process models from event logs-a construc-
tive approach, in: International Conference on Applications and
Theory of Petri Nets and Concurrency, Springer Berlin Heidel-
berg, 2013, pp. 311–329.

[4] R. Conforti, M. Dumas, L. Garcı́a-Bañuelos, M. La Rosa,
BPMN miner: automated discovery of BPMN process models
with hierarchical structure, Information Systems 56 (2016) 284–
303.

[5] S. J. van Zelst, B. F. van Dongen, W. M. P. van der Aalst, Avoid-
ing over-fitting in ILP-based process discovery, in: International
Conference on Business Process Management, Springer Inter-
national Publishing, 2015, pp. 163–171.

[6] T. Murata, Petri nets: Properties, analysis and applications, Pro-
ceedings of the IEEE 77 (4) (1989) 541–580.

[7] J. C. A. M. Buijs, B. F. van Dongen, W. M. P. van der Aalst,
A genetic algorithm for discovering process trees, in: Proceed-
ings of the 2012 IEEE Congress on Evolutionary Computation,
IEEE, 2012, pp. 1–8.

[8] W. M. P. van der Aalst, A. H. M. ter Hofstede, YAWL: yet an-
other workflow language, Information systems 30 (4) (2005)
245–275.

[9] Object Management Group, Notation (BPMN) version 2.0,
OMG Specification.

[10] G. Greco, A. Guzzo, L. Pontieri, D. Sacca, Discovering expres-
sive process models by clustering log traces, IEEE Transactions
on Knowledge and Data Engineering 18 (8) (2006) 1010–1027.

[11] A. Rozinat, W. M. P. van der Aalst, Conformance checking of
processes based on monitoring real behavior, Information Sys-
tems 33 (1) (2008) 64–95.

[12] J. Muñoz-Gama, J. Carmona, A fresh look at precision in pro-
cess conformance, in: International Conference on Business
Process Management, Springer, 2010, pp. 211–226.

[13] S. K. L. M. vanden Broucke, J. De Weerdt, J. Vanthienen,
B. Baesens, Determining process model precision and general-
ization with weighted artificial negative events, IEEE Transac-
tions on Knowledge and Data Engineering 26 (8) (2014) 1877–
1889.

[14] S. J. J. Leemans, D. Fahland, W. M. P. van der Aalst, Scalable
process discovery and conformance checking, Software & Sys-
tems Modeling (2016) 1–33.

[15] W. M. P. van der Aalst, A. Adriansyah, A. K. A. De Medeiros,
F. Arcieri, T. Baier, T. Blickle, J. C. Bose, P. van den Brand,
R. Brandtjen, J. Buijs, et al., Process mining manifesto, in:
International Conference on Business Process Management,
Springer, 2011, pp. 169–194.

[16] J. C. A. M. Buijs, B. F. van Dongen, W. M. P. van der Aalst,
Quality dimensions in process discovery: The importance of
fitness, precision, generalization and simplicity, International
Journal of Cooperative Information Systems 23 (01) (2014)
1440001.

[17] W. M. P. van der Aalst, Verification of workflow nets, in: Inter-
national Conference on Application and Theory of Petri Nets,
Springer, 1997, pp. 407–426.

[18] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen,
W. M. P. van der Aalst, Alignment based precision checking,
in: International Conference on Business Process Management,
Springer, 2012, pp. 137–149.

[19] W. M. P. Van der Aalst, A. Adriansyah, B. F. van Dongen,
Replaying history on process models for conformance check-
ing and performance analysis, Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 2 (2) (2012) 182–192.

[20] A. Adriansyah, B. F. van Dongen, W. M. P. van der Aalst, Con-
formance checking using cost-based fitness analysis, in: Pro-
ceedings of the 15th IEEE International Enterprise Distributed
Object Computing Conference, IEEE, 2011, pp. 55–64.

[21] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen,
W. M. P. van der Aalst, Measuring precision of modeled be-
havior, Information Systems and e-Business Management 13 (1)
(2015) 37–67.

[22] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J.
M. M. Weijters, W. M. P. van der Aalst, The ProM framework:
A new era in process mining tool support, in: International Con-
ference on Application and Theory of Petri Nets, Springer, 2005,
pp. 444–454.

[23] J. De Weerdt, M. De Backer, J. Vanthienen, B. Baesens, A ro-
bust F-measure for evaluating discovered process models, in:
Proceedings of the IEEE Symposium on Computational Intelli-
gence and Data Mining, IEEE, 2011, pp. 148–155.

[24] S. K. L. M. vanden Broucke, J. De Weerdt, B. Baesens, J. Van-
thienen, Improved artificial negative event generation to enhance
process event logs, in: International Conference on Advanced
Information Systems Engineering, Springer, 2012, pp. 254–269.

[25] B. L. Welch, The generalization of student’s’ problem when
several different population variances are involved, Biometrika
34 (1/2) (1947) 28–35.

[26] N. Tax, Validation of precision measures - event logs and
process models, Eindhoven University of Technology. Dataset,
http://dx.doi.org/10.4121/uuid:991753f7-a240-
4ba6-a8a8-67174a08c51b (2017).

9

http://dx.doi.org/10.4121/uuid:991753f7-a240-4ba6-a8a8-67174a08c51b
http://dx.doi.org/10.4121/uuid:991753f7-a240-4ba6-a8a8-67174a08c51b

	1 Introduction
	2 Preliminaries
	3 Axioms for Precision Metrics
	4 Precision Metrics
	4.1 Soundness
	4.2 Behavioral Appropriateness
	4.3 Escaping Edges Precision
	4.4 Negative Event Precision
	4.5 Projected Conformance Checking
	4.6 Overview of Precision Metric Properties

	5 Contexts With Unclear Requirements for Precision Metrics
	6 Conclusions & Future Work

