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Mining Process Model Descriptions of Daily Life
through Event Abstraction

N. Tax, N. Sidorova, R. Haakma, W.M.P. van der Aalst

Abstract Process mining techniques focus on extracting insight in processes from

event logs. Process mining has the potential to provide valuable insights in (un)healthy

habits and to contribute to ambient assisted living solutions when applied on data

from smart home environments. However, events recorded in smart home environ-

ments are on the level of sensor triggers, at which process discovery algorithms

produce overgeneralizing process models that allow for too much behavior and that

are difficult to interpret for human experts. We show that abstracting the events to

a higher-level interpretation can enable discovery of more precise and more com-

prehensible models. We present a framework for the extraction of features that can

be used for abstraction with supervised learning methods that is based on the XES

IEEE standard for event logs. This framework can automatically abstract sensor-

level events to their interpretation at the human activity level, after training it on

training data for which both the sensor and human activity events are known. We

demonstrate our abstraction framework on three real-life smart home event logs and

show that the process models that can be discovered after abstraction are more pre-

cise indeed.
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1 Introduction

Process mining is a fast growing discipline that combines methods from compu-

tational intelligence, data mining, process modeling and process analysis [1]. Pro-

cess discovery, the task of extracting process models from logs, plays an impor-

tant role in process mining. There are many different process discovery algorithms

([2, 7, 37, 36, 18]), which can discover many different types of process models, in-

cluding BPMN models, Petri nets, process trees, UML activity diagrams, and state-

charts.

While originally the scope of process mining has been on business processes, it

has broadened in recent years towards other application areas, including the analysis

of human behavior [29, 31, 32]. Process model descriptions of human behavior can

be used amongst others to aid lifestyle coaching for healthy living, or to asses the

ability of independent living of elderly or people with illness.

Events in the event log are generated by e.g. motion sensors placed in the home,

power sensors placed on appliances, open/close sensors placed on closets and cabi-

nets, etc. This clearly distinguishes process mining for smart homes from the tradi-

tional application domain of business processes, where events in the log are logged

by IT systems when an business tasks are performed.

In event logs from business processes the event labels generally have a clear

semantic meaning, like register mortgage request. In the smart home domain the

events are on the sensor level, while the human expert is interested in analyzing the

behavior in terms of activities of daily life. Additionally, simply using the sensor that

generated the event as the event label has been shown to result in non-informative

process models that overgeneralize the event log and allow for too much behav-

ior [34]. In the field of process mining such overgeneralizing process models are

generally referred to as being imprecise.

In our earlier work [31] we showed how to discover more precise process models

by taking the name of the sensor as a starting point for the event label and then refine

the labels using the time of the day at which the event occurred. However, labels in

such process models still represent sensors, and they have no direct interpretation

on the human activity level. In this paper we leverage diary style annotations of

the activities performed on a human activity level and use them learn a mapping

from sensor-level events to human activity events. This enables discovery of process

models that describe the human activities directly, leading to more comprehensible

and more precise descriptions of human behavior. Often it is infeasible or simply too

expensive to obtain such diaries for periods of time longer than a couple of weeks.

To mine a process model of human behavior more than a couple of weeks of data is

needed. Therefore, there is a need to infer human level interpretations of behavior

from sensors.

With supervised learning techniques the mapping from sensor-level events to

human activity level events can be learned through examples, without requiring a

hand-made ontology of how human activities relate to sensors. Similar approaches

have been explored in the activity recognition field, where continuous-valued time

series from sensors are mapped to time series of human activity. Change points in
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these time series are triggered by sensor-level events like opening/closing the fridge

door, and the annotations of the higher level events (e.g. cooking) are often obtained

through manual activity diaries. However, in contrast to techniques from the activ-

ity recognition field, we operate on discrete events on the sensor-level instead of

continuous time series.

In this paper we extend the work started in [33]. We describe a framework for

supervised abstraction of events that enables the discovery of more precise process

models from smart home event logs. Additionally, the process models obtained rep-

resent human activity directly, thereby enabling direct analysis of human behavior

itself, instead of indirect analysis through sensor-level models. In Section 2 we give

an overview of the related work from the activity recognition field. Basic concepts,

notations, and definitions that we use throughout the rest of the paper are introduced

in Section 3. In Section 4 we explain conceptually why abstraction from sensor-level

to human activity level events can help to the process discovery step to find more

precise process models. In Section 5 we describe a framework for retrieving useful

features for abstraction from event logs using specific concepts of the IEEE XES

standard for event logs [12]. Section 6 demonstrates the added value of supervised

event abstraction for process mining in the smart home domain and show that it

enables discovery of more precise models on three real life smart home event logs.

Section 7 concludes the paper and identifies some areas of future work.

2 Related Work

Event abstraction based on supervised learning is an unexplored problem in process

mining. Most related work for abstracting from sensor-level to human activity level

events can be found in the field of activity recognition, which focuses on the task

of detecting different types of human activity from either passive sensors [14, 30],

wearable sensors [3, 16], or cameras [22].

Activity recognition methods generally operate on discrete time windows over

the time series of continuous-valued sensor values and aim to map each time win-

dow onto the correct type of human activity, e.g. eating or sleeping. Activity recog-

nition methods can be classified into probabilistic approaches [14, 30, 3, 16] and on-

tological reasoning approaches [5, 25]. The advantage of probabilistic approaches

over ontological reasoning approaches is their ability to handle noisy, uncertain and

incomplete sensor data [5].

Tapia [30] was the first to explore supervised learning for inference of human

activities from passive sensors, using a naive Bayes classifier. Many more recent

activity recognition approaches use probabilistic graphical models [14, 13]: Van

Kasteren et al. [14] explored Conditional Random Fields [17] and Hidden Markov

Models [23], and Van Kasteren and Kröse [13] applied Bayesian Networks [10]

on the activity recognition task. Kim et al. [15] found Hidden Markov Models to

be unable to capture long-range or transitive dependencies between observations,
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which results in difficulties recognizing multiple interacting activities (concurrent

or interwoven). Conditional Random Fields do not possess these limitations.

Our work differentiates itself from existing activity recognition work in the form

of the input data on which they operate and in the goal that it aims to achieve. On the

input side, activity recognition techniques consider the data to be a multidimensional

time series of the sensor values over time, based on which time windows are mapped

onto human activities. An appropriate time window size is determined using domain

knowledge of the data set. Instead, we aim for a generic method that does not require

this domain knowledge, and that works in general for any event log. An approach

based on time windows contrasts with our aim for generality, as no single time

window size exists that is suitable for all event logs. The durations of the events

within a single event log might differ drastically (e.g. one event might take seconds,

while another event takes months), in which case time window based approaches

will either miss short events in case of larger time windows or resort to very large

numbers of time windows resulting in very long computational time. Therefore, we

map each individual sensor-level event to a human activity level event and do not

use time windows. In a smart home environment context with passive sensors, each

change in a binary sensor value can be considered to be a low-level event. A second

difference with existing activity recognition techniques is that our framework aims

to find an abstraction of the data that enables discovery of more precise process

models, where classical activity recognition methods do not have a link with the

application of process mining.

Other related work can be found in the area of process mining, where several

techniques address the challenge of abstracting low-level (e.g. sensor-level) events

to high level (e.g. human activity level) events ([4, 11, 9]). Most existing event

abstraction methods rely on clustering methods, where each cluster of low-level

events is interpreted as one single high-level event. However, using unsupervised

learning introduces two new problems. First, it is unclear how to label high-level

events that are obtained by clustering low-level events. Current techniques require

the user / process analyst to provide high-level event labels themselves based on

domain knowledge. Secondly, unsupervised learning gives no guidance with respect

to the desired level of abstraction. Many existing event abstraction methods contain

one or more parameters to control the size the clusters, and finding the right level of

abstraction providing meaningful results is often a matter of trial-and-error.

One abstraction technique from the process mining field that does not rely on

unsupervised learning is proposed by Mannhardt et al. [20]. This approach relies on

domain knowledge to abstract low-level events into high-level events, requiring the

user to specify a low-level process model for each high-level activity. However, in

the context of human behavior it is unreasonable to expect the user to provide the

process model in sensor terms for each human activity from domain knowledge.
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3 Preliminaries

In this section we introduce basic concepts and notation used throughout the paper.

We use the standard sequence definition, and denote a sequence by listing its

elements, e.g. we write 〈a1,a2, . . . ,an〉 for a (finite) sequence s : {1, . . . ,n} → S of

elements from some alphabet S, where s(i) = ai for any i ∈ {1, . . . ,n}.

3.1 Petri nets

A process modeling notation that is commonly used in process mining is the Petri

net. Petri nets are directed bipartite graphs consisting of transitions and places, con-

nected by arcs. Transitions represent activities, while places represent the state of

the system before and after execution of a transition. Labels are assigned to transi-

tions to indicate the type of activity that they represent. A special label τ is used to

represent invisible transitions, which are only used for routing purposes and do not

represent any real activity.

Definition 1 (Labeled Petri net). A labeled Petri net is a tuple N = (P,T,F,R, ℓ)
where P is a finite set of places, T is a finite set of transitions such that P∩T = /0,

and F ⊆ (P× T )∪ (T ×P) is a set of directed arcs, called the flow relation, R is

a finite set of labels representing event types, with τ /∈ R is a label representing an

invisible action, and ℓ : T → R∪{τ} is a labeling function that assigns a label to

each transition.

The state of a Petri net is defined w.r.t. the state that a process instance can be in

during its execution. A state of a Petri net is captured by the marking of its places

with tokens. In a given state, each place is either empty, or it contains a certain

number of tokens. A transition is enabled in a given marking if all places with an

outgoing arc to this transition contain at least one token. Once a transition fires (i.e.

is executed), a token is removed from all places with outgoing arcs to the firing tran-

sition and a token is put to all places with incoming arcs from the firing transition,

leading to a new state.

Definition 2 (Marking, Enabled transitions, and Firing). A marked Petri net is

a pair (N,M), where N = (P,T,F,L, ℓ) is a labeled Petri net and M ∈ N
P denotes

the marking of N. For n ∈ (P∪T ) we use •n and n• to denote the set of inputs and

outputs of n respectively. Let C(s,e) indicate the number of occurrences (count) of

element e in multiset s. A transition t ∈ T is enabled in a marking M of net N if

∀p ∈ •t : C(M, p) > 0. An enabled transition t may fire, removing one token from

each of the input places •t and producing one token for each of the output places t•.

Figure 1 shows four Petri nets, with the circles representing places, the squares

representing transitions. The gray rectangles represent (invisible) τ-transitions.

Places depicted as belong to the final marking, indicating that the process ex-

ecution can terminate in this marking.
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The Petri net shown in Figure 1c initially has one token in the place p1, indicated

by the dot. Firing the enabled silent transition takes the token from p1 and puts a

token in both p2 and p3, enabling both MC and DCC. When MC fires, it takes the

token from p2 and puts a token in p4. When DCC fires, it takes the token from p3

and puts a token in p5. After MC and DCC have both fired, resulting in a token in

both p4 and p5, W is enabled. Executing W takes the token from both p4 and p5,

and puts a token in p6, which is a place that belongs to the final marking, indicates

that the process execution can stop here. Alternatively, it can fire the silent transi-

tion, taking the token from p6 and placing a token in p2 and p5, which allows for

execution of MC and W to reach the marking consisting of p6 again. We refer the

interested reader to [24] for an extensive review of Petri nets.

3.2 Conditional Random Field

We consider the recognition of human activity level events as a sequence labeling

task in which each sensor-level event is classified into one of the human activity

level events. Linear-chain Conditional Random Fields (CRFs) [17] are a type of

probabilistic graphical model which has shown to perform well on many sequence

labeling tasks in the fields of language processing and computer vision. Conceptu-

ally CRFs can be regarded as a sequential version of multiclass logistic regression,

i.e., the predictions in the prediction sequence are dependent on each other. A CRF

models the conditional probability distribution of the label sequence given an ob-

servation sequence using a log-linear model. Linear-chain CRFs take the following

form:

p(y|x) =
1

Z(x)
exp(∑

t=1
∑
k

λk fk(t,yt−1,yt ,x)) (1)

where Z(x) is the normalization factor which makes sure that the values of the prob-

ability distribution range from zero to one. X = 〈x1, . . . ,xn〉 is an observation se-

quence (the sensor-level events), Y = 〈y1, . . . ,yn〉 is the associated label sequence

(the human activity level events), fk and λk respectively are feature functions and

their weights. Feature functions, which can be binary or real valued, are defined

on the observations and are used to compute label probabilities. In contrast to Hid-

den Markov Models [23], CRFs do not assume the feature functions to be mutually

independent.

4 Motivating Example

Figure 1 shows a simplistic example demonstrating how a process can seem unstruc-

tured at the sensor level of events, while being structured at a human behavior level.

Petri net 1c shows the process at the human activity level. The Taking medicine hu-
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p1

p2

p3

MC

DCC

p4

p5

W

p6

DCC = Dishes & Cups Cabinet

MC = Medicine Cabinet

W = Water

(a)

CDDCC

DCD = Cutlery Drawer

D = Dishwasher

DCC = Dishes & Cups Cabinet

(b)

Taking Medicine

Eating

(c) (d)

Fig. 1 A human activity level process model (c) where the two transitions themselves are defined

as process models (shown in a and b), and the Inductive Miner result on the sensor-level traces

generated from this model (d).

man activity level activity is itself defined as a process, which is shown in Figures

1a to 1c. Eating is also defined as a process, which is shown in Figure 1b. When we

apply the Inductive Miner process discovery algorithm [18] to sensor-level traces

generated by the hierarchical process of Figure 1c, we obtain the process model

shown in Figure 1d. This process model allows for almost all possible sequences

over the alphabet {CD,D,DCC,MC,W}, with the only constraint introduced by the

model being that if a W occurs, then it has to be preceded by a DCC event. Firing

of all other transitions in the model can be skipped. Behaviorally this model is very

close to the so called ”flower” model [1], the model that allows for all behavior over

its alphabet. The alternating structure between Taking medicine and Eating that was

present in the human activity level process in Figure 1c cannot be observed in the

process model in Figure 1d. This is caused by high variance in start and end events

of the sensor-level subprocesses of Taking medicine and Eating as well as by the

overlap in types of activities between these two subprocesses. Both subprocesses

contain DCC, and the miner cannot see that there are actually two different contexts

for the DCC activity to split the label in the model. Abstracting the sensor-level

events to their respective human activity level events before applying process dis-

covery to the resulting human activity log unveils the alternating structure between

Eating and Taking medicine as shown in Figure 1c.
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Fig. 2 XES event log meta-model, as defined in [12].

5 Event Abstraction as a Sequence Labeling Task

In this section we describe the framework for supervised abstraction of events based

on Conditional Random Fields (CRFs). Additionally, we describe feature functions

for event logs in a general way by using the IEEE XES standard [12]. XES, which is

an abbreviation for eXtensible Event Stream, is the IEEE standard for process min-

ing event logs. An overview of the XES file structure which is shown in Figure 2.

An event log is defined as a set of traces, which in itself are a sequences of events.

The log, traces and events can all contain one or more attributes, which consist of

a key and a value of a certain type. Event or trace attributes may be global, which

indicates that the attribute needs to be defined for each event or trace respectively.

A log contains one or more classifiers, which can be seen as labeling functions on

the events of a log, defined on global event attributes. Extensions define a set of

attributes on log, trace, or event level, in such a way that the semantics of these

attributes are clearly defined. One can view XES extensions as a specification of at-

tributes that events, traces, or event logs themselves frequently contain. XES defines

the following standard extensions:
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Concept Specifies the generally understood name of the event/trace/log (attribute

’Concept:name’).

Lifecycle Specifies the lifecycle phase (attribute ’Lifecycle:transition’) that the

event represents in a transactional model of their generating activity. The Lifecy-

cle extension also specifies a standard transactional model for activities.

Organizational Specifies three attributes for events, which identify the actor hav-

ing caused the event (attribute ’Organizational:resource’), his role in the organi-

zation (attribute ’Organizational:role’), and the group or department within the

organization where he is located (attribute ’Organizational:group’).

Time Specifies the date and time at which an event occurred (attribute ’Time:timestamp’).

We introduce a special attribute of type String with key label, which represents

the human activity level activity. The concept name of an event is then considered to

be a sensor-level name of an event. The label attribute specifies the human activity

level label for each event individually, allowing for example one sensor-level event

of type Dishes & cups cabinet to be of human activity level type Taking medicine,

and another sensor-level event of the same type to be of human level activity type

Eating. Note that for some traces human level activity annotations might be avail-

able, in which case its events contain the label attribute, while other traces might not

be annotated. Human activity level interpretations of unannotated traces, obtained

by inferring the label attribute based on information that is present in the annotated

traces, allow the use of unannotated traces for process discovery and conformance

checking on a human activity level.

Figure 3 provides a conceptual overview of the supervised event abstraction

method. The approach takes two inputs: 1) a set of annotated traces, which are traces

where the human activity level event that each sensor level event belongs to (the la-

bel attribute of the sensor-level event) is known, and 2) a set of unannotated traces,

which are traces where only the sensor-level events known. Conditional Random

Fields (CRFs) are trained of the annotated traces to create a probabilistic mapping

from sensor-level events to human activity level events. This mapping, once ob-

tained, can be applied to the unannotated traces in order to estimate the correspond-

ing human activity level event for each sensor-level event (its label attribute). Often

multiple consecutive sensor-level events will have the same label attribute. We as-

sume that multiple human activity level events cannot occur in parallel. This enables

us to interpret a sequence of events with identical label values as a single human ac-

tivity level event. To obtain a final human activity level log, we collapse sequences

of events with the same value for the label attribute into two events with this value

as concept name, where the first event has a lifecycle ’start’ and the second has the

lifecycle ’complete’. Table 1 and Table 2 illustrate this collapsing procedure through

an input and output event log.

The method described in this section is implemented and available for use as

package AbstractEventsSupervised in the ProM 6 [35] process mining toolkit and

makes use of the GRMM [28] implementation of CRFs.

We now show for each XES extension how it can be translated into useful feature

functions for event abstraction. Note that we do not limit ourselves to XES logs that
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Table 1 A trace with predicted human activity level annotations (label)

Case Time:timestamp Concept:name label

1 03/11/2015 08:45:23 Medicine cabinet Taking medicine

1 03/11/2015 08:46:11 Dishes & cups cabinet Taking medicine

1 03/11/2015 08:46:45 Water Taking medicine

1 03/11/2015 08:47:59 Dishes & cups cabinet Eating

1 03/11/2015 08:47:89 Dishwasher Eating

1 03/11/2015 17:10:58 Dishes & cups cabinet Taking medicine

1 03/11/2015 17:10:69 Medicine cabinet Taking medicine

1 03/11/2015 17:11:18 Water Taking medicine

Table 2 The resulting human activity level log after collapsing the consecutive identical label

values of the trace in Table 1.

Case Time:timestamp Concept:name Lifecycle:transition

1 03/11/2015 08:45:23 Taking medicine Start

1 03/11/2015 08:46:45 Taking medicine Complete

1 03/11/2015 08:47:59 Eating Start

1 03/11/2015 08:47:89 Eating Complete

1 03/11/2015 17:10:58 Taking medicine Start

1 03/11/2015 17:11:18 Taking medicine Complete

Fig. 3 Conceptual overview

of Supervised Event Abstrac-

tion.

Annotated traces

Unannotated traces

Sensor-level to

Activity-level

Mapping

Apply

Learn

Traces with

predicted 

annotations

Activity-level

log

contain all XES extensions; when a log contains a subset of the extensions, a sub-

set of the feature functions will be available for the supervised learning step. This

approach leads to a feature space of unknown size, potentially causing problems re-

lated to the curse of dimensionality. To address this we use L1-regularized CRFs. In

the training phase we search for values of weight vector λ that minimize the cross

entropy between the ground truth target and the predicted label on the training data.

L1-regularization adds a λ penalty terms to this minimization function that is pro-

portionate to the size of the weight vector, giving the model an incentive not to use

all of the available features (i.e., setting some features to zero weight). This results

in prediction models that are sparse and therefore simpler, which helps to prevent

overfitting.
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Fig. 4 The histogram

representation and a Gaussian

Mixture Model fitted to

timestamps values of the

plates cupboard sensor in the

Van Kasteren data set.

5.1 From a XES Log to a Feature Space

We now discuss per XES extension how feature functions can be obtained.

Concept extension The sensor-level labels (concept names) of the preceding

events in a trace can contain useful contextual information for classification into

the correct human activity level event type. Based on the n-gram 〈a1,a2, . . . ,an〉
consisting of the sensor-level labels of the n last-seen events in a trace, we can

estimate a categorical probability distribution over the classes of human activity

level activities from the training log, such that the probability of class l is equal to the

number of times that the n-gram was observed while the n-th event was annotated

with class l, divided by the total number of times that the n-gram was observed.

The CRF model requires feature functions with numerical range. A feature function

based on the concept extension has two parameters, n and l, and is valued with the

estimated categorical probability density of the current sensor-level event having

human activity level label l given the n-gram with the last n sensor-level event labels.

It can be useful to combine multiple features that are based on the concept extension,

where the features have different values for n and l.

Organizational extension Similar to the concept extension feature functions,

categorical probability distributions can be estimated on the training set for n-

grams of resource, role, or group attributes of the last n events. Likewise, an or-

ganizational extension based feature function with three parameters, n-gram size

n, o ∈ {resource,role,group}, and label l, is valued with the probability density

according to the estimated categorical probability distribution of label l given the

n-gram of the last n event resources/roles/groups.

Time extension In terms of time, there are several potentially existing patterns.

A certain type of human activity might for example be concentrated in a certain

parts of a day, of a week, or of a month. This concentration can however not be

modeled with a single Gaussian distribution, as it might be the case that a type of

human activity has high probability to occur in the morning or in the evening, but

low probability to occur in the afternoon in-between. A mixture distribution con-

sisting of multiple components is therefore needed to model the probability distri-
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bution over timestamps. The most well-known mixture distribution is the Gaussian

Mixture Model (GMM), where each component of the mixture is defined by a nor-

mal distribution. The circular, non-Euclidean, nature of the data space of time-of-

the-day, time-of-the-week, or time-of-the-month however introduces problems for

the GMM, as, using time-of-the-day as an example, 00:00 is actually very close

to 23:59. Figure 4 illustrates this problem. The Gaussian component with a mean

around 10 o’clock has a standard deviation that is much higher than what one would

expect when looking at the histogram, as the GMM tries to explain the data points

just after midnight with this component. These data points just after midnight would

however have been much better explained with the Gaussian component with the

mean around 20 o’clock, which is much closer in time. Alternatively, we use a

mixture model with components of the von Mises distribution, which is a close

approximation of a normal distribution wrapped around the circle. To determine the

correct number of components of such a von Mises Mixture Model (VMMM) we

use Bayesian Information Criterion (BIC) [27], choses the number of components

which explains the data with the highest likelihood, while adding a penalty for the

number of model parameters. A VMMM is estimated on training data, modeling the

probabilities of each type of human activity based on the time passed since the start

of the day, week or month. A time extension feature function with two parameters,

t ∈ {day,week,month, . . .} and label l, is valued with the VMMM-estimated proba-

bility of label l given the t view on the event timestamp. An alternative approach to

estimate the probability density on data that lies on a manifold, such as a circle, is

described by Cohen and Welling [6].

Lifecycle extension & Time extension The XES standard [12] defines several

lifecycle stages of process activities, which represent the transactional model of their

generating activity. Lifecycle values that are commonly found in real life logs are

start and complete which respectively represent when this activity started and ended

However, a larger set of lifecycle values is defined in the XES standard, including

schedule, suspend, and resume. The time differences between different stages of an

activity lifecycle can be calculated when an event log possesses both the lifecycle

extension and the time extension. For example, when observing the complete of an

activity, the time between this complete and the corresponding start of this activity

can contain useful information for predicting the correct human activity label. Find-

ing the associated start event becomes nontrivial when multiple instances of the

same activity are in parallel, as it is then unknown which complete event belongs

to which start event. We assume consecutive lifecycle steps of activities running

in parallel to occur in the same order as the preceding lifecycle step. For example,

when we observe two start events of an activity of type A in a row, followed by two

complete events of type A, we assume the first complete to belong to the first start,

and the second complete to belong to the second start.

The XES standard defines an ordering over the lifecycle values. For each type

of human activity, we fit a Gaussian Mixture Model (GMM) to the set of time dif-

ferences between each two consecutive lifecycle steps. A feature based on both the

combination of the lifecycle and the time extension with activity label parameter

l and lifecycle c is valued the probability density of activity l as estimated by the
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GMM given the time between the current event and lifecycle value c. Bayesian In-

formation Criterion (BIC) [27] is again used to determine the number of components

of the GMM. Note that while these features are time-based, regular GMMs can be

used instead of VMMMs since time duration is a Euclidean, non-circular, space.

5.2 Evaluating Human Activity Level Event Predictions for

Process Mining Applications

Existing approaches in the field of activity recognition take as input time windows

where each time window is represented by a feature vector that describes the sensor

activity or status during that time window. Hence, evaluation methods in the activity

recognition field are window-based, using evaluation metrics like the percentage of

correctly classified time slices [30, 13, 14]. There are two reasons to deviate from

this evaluation methodology in a process mining setting. First, our method operates

on events instead of time windows. Second, the accuracy of the resulting high level

sequences is much more important for many process mining techniques (e.g. process

discovery, conformance checking) than the accuracy of predicting each individual

minute of the day.

A well-known metric for the distance of two sequences is the Levenshtein dis-

tance [19]. However, Levenshtein distance is not suitable to compare sequences of

human actions, as human behavior sometimes includes branches in which it does

not matter in which order two activities are performed. For example, most people

shower and have breakfast after waking up, but people do not necessarily always

perform the two in the same order. Indeed, when 〈a,b〉 is the sequence of predicted

human activities, and 〈b,a〉 is the actual sequence of human activities, we consider

this to be only a minor error, since it is often not relevant in which order two parallel

activities are executed. Levenshtein distance would assign a cost of 2 to this abstrac-

tion, as transforming the predicted sequence into the ground truth sequence would

require one deletion and one insertion operation. For example, most people shower

and have breakfast after waking up, but people do not necessarily always perform

the two in the same order. An evaluation measure that better reflects the prediction

quality of event abstraction is the Damerau-Levenstein distance [8], which adds a

swapping operation to the set of operations used by Levenshtein distance. Damerau-

Levenshtein distance would assign a cost of 1 to transform 〈a,b〉 into 〈b,a〉. To ob-

tain comparable numbers for different numbers of predicted events we normalize the

Damerau-Levenshtein distance by the maximum of the length of the ground truth

trace and the length of the predicted trace and subtract the normalized Damerau-

Levenshtein distance from 1 to obtain Damerau-Levenshtein Similarity (DLS).
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6 Case Studies

In this section we evaluate the supervised event abstraction framework on three case

studies on real life smart home data sets.

6.1 Experimental setup

We include three real life smart home event logs in the evaluation: the Van Kasteren

event log [14], and two event logs from a smart home experiment conducted by MIT

[30]. All three event logs used in for the evaluation consist of multidimensional time

series data with all dimensions binary, where each binary dimension represents the

state of one in-home sensor. These sensors include motion sensors, open/close sen-

sors, and power sensors (discretized to 0/1 states). We transform the multidimen-

sional time series data from sensors into events by regarding each sensor change

point as an event. Cases are created by grouping events together that occurred in the

same day, with a cut-off point at midnight. High-level labels are provided for the

event logs.

The following XES extensions can be used for these event logs:

Concept The sensor that generated the event.

Time The time stamp of the sensor change point.

Lifecycle Start when the event represents a sensor value change from 0 to 1 and

Complete when it represents a sensor value change from 1 to 0.

Note that human activity level annotations are provided for all traces in the three

event logs. To evaluate how well the supervised event abstraction method general-

ized to unannotated traces, we artificially use a part of the traces to train the ab-

straction model and apply them on a test set where we regard the annotations to

be non-existent. We evaluate the obtained human activity labels against the ground

truth labels in a Leave-One-Trace-Out-Cross-Validation setup where we iteratively

leave out one trace to evaluate how well this mapping generalizes to unseen events

and cases. We measure the accuracy of the human activity level traces compared

to the ground truth human activity level traces in terms of Damerau-Levenshtein

similarity [8].

Additionally, we evaluate the quality of the process model that can be discov-

ered from the human activity level traces. To discover a process model from the

human activity level event log we use the Inductive Miner [18]. There are several

criteria to express the fit between a process model and an event log in the area of

process mining. Two of those criteria are fitness [26], which measures the degree to

which the behavior that is observed in the event log can be replayed on the process

model, and precision [21], which measures the degree to which the behavior that

was never observed in the event log cannot be replayed on the process model. Low

precision typically is indicates an overly general process model, that allows for too
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much behavior. We compare the fitness and precision of the models produced by the

Inductive Miner on the sensor-level log and the human activity level log.

6.2 Case Study 1: Van Kasteren Event Log

For the first case study we use the smart home environment log described in Van

Kasteren et al. [14]. The Van Kasteren log contains 1285 events divided over four-

teen different sensors. The log contains 23 days of data.

The average Damerau-Levenshtein similarity between the predicted human ac-

tivity level traces in the Leave-One-Trace-Out-Cross-Validation experimental setup

and the ground truth human activity level traces is 0.7516, which shows that the

supervised event abstraction method produces traces which are fairly similar to the

ground truth.

Figure 5 shows the result of the Inductive Miner [18] for the sensor-level events

in the Van Kasteren data set. The resulting process model starts with a choice be-

tween four activities: hall-toilet door, hall-bedroom door, hall-bathroom door, and

frontdoor. After this choice the model branches into three parallel blocks, where the

upper block consists of a large choice between eight different activities. The other

two parallel blocks respectively contain a loop of the cups cupboard and the fridge.

This model closely resembles the flower model, which allows for all behavior in any

arbitrary order. There seems to be very little structure on this sensor level of event

granularity.

Figure 6 shows the result of the Inductive Miner on the aggregated set of pre-

dicted test traces. We can see that the main daily routine starts with breakfast, after

which the subject leaves the house to go to work. After work the subject prepares

dinner and goes to bed. The activities use toilet and take shower are put in parallel

to this sequence of activities, indicating that they occur at different places in the

sequences of activities.

Table 3 shows the effect of the abstraction on the fitness and precision of the

models discovered by the Inductive Miner. It shows that the precision of the model

discovered on the abstracted log is much higher than the precision of the model

discovered on the sensor data, indicating that the abstraction helps discovering a

model that is more behaviorally constrained and more specific.

6.3 Case Study 2: MIT Household A Event Log

For the second case study we use the data of household A of a smart home experi-

ment conducted by MIT [30]. Household A contains data of 16 days of living, 2701

sensor-level events registered by 26 different sensors. The human level activities are

provided in the form of a taxonomy of activities on three levels, called heading, cat-

egory and subcategory. On the heading level the human activities are very general in
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Fig. 5 Inductive Miner result on the sensor-level events of the Van Kasteren event log.

Fig. 6 Inductive Miner result on the human activity level events discovered from the Van Kasteren

event log.

Table 3 Effect of abstraction on fitness and precision of the process model discovered by the

Inductive Miner.

Event log Abstraction Fitness precision

Van Kasteren No (Figure 5) 0.9111 0.3308

Van Kasteren Yes (Figure 6) 0.7918 0.7804

MIT household A No (Figure 7) 0.9916 0.2289

MIT household A Yes (Figure 8) 0.9880 0.3711

MIT household B No (Figure 9) 1.0 0.2389

MIT household B Yes (Figure 10) 0.9305 0.4319

nature, such as the activity personal needs. The eight different activities on the head-

ing level branch into 19 different activities on the category level, where personal

needs branches into e.g. eating, sleeping, and personal hygiene. The 19 categories

are divided over 34 subcategories, which contain very specific human activities. At

the subcategory level the category meal cleanup is for example divided into wash-

ing dishes and putting away dishes. At the subcategory level there are more types of
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Fig. 7 Inductive Miner result on the sensor-level MIT household A event log.

Fig. 8 Inductive Miner result on the discovered human activity level events on the MIT household

A log.

human activities than there are sensors-level activities, which makes the abstraction

task very hard. Therefore, we set the target label to the category level.

Figure 7 shows the model discovered with the Inductive Miner on the sensor-level

events of the MIT household A log. The model obtained allows for too much behav-

ior, as it contains two large choice blocks. We found a Damerau-Levenshtein sim-

ilarity of 0.6348 in the Leave-One-Trace-Out-Cross-Validation experiment. Note

that the abstraction accuracy on this log is lower than the abstraction accuracy on

the Van Kasteren event log. However, the MIT household A log contains more dif-

ferent types of human activity, resulting in a more difficult prediction task with a

higher number of possible target classes. Figure 10 shows the process model dis-

covered from the human activity level traces that we predicted from the sensor-level

events. Even though the model is too large to print in a readable way, from its shape

it is clear that the abstracted model is much more behaviorally constrained than the

sensor-level model. The precision and fitness values in Table 3 show that indeed the

process model after abstraction has become behaviorally more specific while the

portion of behavior of the data that fits the process model remains more or less the

same.
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Fig. 9 Inductive Miner result on the sensor-level MIT household B event log.

Fig. 10 Inductive Miner result on the discovered human activity level events on the MIT household

B log

6.4 Case Study 3: MIT Household B Event Log

For the third case study we use the data of household B of the MIT smart home

experiment [30]. Household B contains data of 17 days of living, 1962 sensor-

level events registered by 20 different sensors. Identically to MIT household A the

human-level activities are provided as a three-level taxonomy. Again, we use the

subcategory level of this taxonomy as target activity label.

The model discovered with the Inductive Miner [18] from the sensor-level events

is shown in Figure 9. The model obtained allows for too much behavior, as it

contains two large choice blocks. We found a Damerau-Levenshtein similarity of

0.5865 in the Leave-One-Trace-Out-Cross-Validation experiment, which is lower

than the similarity found on the MIT A data set while the target classes of the ab-

straction are the same for the two data sets. This can be explained by the fact that

there is less training data for this event log, as household B contains 1932 sensor-

level events where household A contains 2701 sensor-level events. Figure 10 shows

the process model discovered from abstracted log. Again this model is not readable

due to its size, but its shape shows it to be behaviorally quite specific. The precision

and fitness values in Table 3 also that process model after abstraction has indeed
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become behaviorally more specific while the portion of behavior of the data that fits

the process model decreased only slightly.

7 Conclusion

In this paper we presented a framework to abstract events using supervised learning

which has been implemented in the ProM process mining toolkit. An important

part of the framework is a generic way to extract useful features for abstraction

from the extensions defined in the XES IEEE standard for event logs. We propose

the Damerau-Levenshtein Similarity for evaluation of the abstraction results, and

motivate why it fits the application of process mining. Finally, we showed on three

real life smart home data sets that application of the supervised event abstraction

framework enables us to mine more precise process model description of human

life compared to what could be mined from the original data on the sensor-level.

Additionally, these process models contain interpretable event labels on the human

behavior activity level.
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