
Process querying

Polyvyanyy, A.; Ouyang, C.; Barros, A.; van der Aalst, W.M.P.

Published in:
Decision Support Systems

DOI:
10.1016/j.dss.2017.04.011

Published: 01/08/2017

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences
between the submitted version and the official published version of record. People interested in the research are advised to contact the
author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Polyvyanyy, A., Ouyang, C., Barros, A., & van der Aalst, W. M. P. (2017). Process querying: enabling business
intelligence through query-based process analytics. Decision Support Systems, 100, 41-56. DOI:
10.1016/j.dss.2017.04.011

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. Jan. 2018

http://dx.doi.org/10.1016/j.dss.2017.04.011
https://pure.tue.nl/en/publications/process-querying(e0b6fc0a-18f0-4b82-956e-06b25354622f).html

Decision Support Systems 100 (2017) 41–56

Contents lists available at ScienceDirect

Decision Support Systems

j ourna l homepage: www.e lsev ie r .com/ locate /dss

Process querying: Enabling business intelligence through query-based
process analytics

Artem Polyvyanyya,*, Chun Ouyanga, Alistair Barrosa, Wil M. P. van der Aalsta, b

a Queensland University of Technology, Brisbane, Australia
b Eindhoven University of Technology, Eindhoven, The Netherlands

A R T I C L E I N F O

Article history:
Received 11 July 2016
Received in revised form 21 April 2017
Accepted 28 April 2017
Available online 2 May 2017

Keywords:
Process querying
Process management
Process analytics
Process intelligence
Process science
Business intelligence

A B S T R A C T

The volume of process-related data is growing rapidly: more and more business operations are being sup-
ported and monitored by information systems. Industry 4.0 and the corresponding industrial Internet of
Things are about to generate new waves of process-related data, next to the abundance of event data already
present in enterprise systems. However, organizations often fail to convert such data into strategic and tac-
tical intelligence. This is due to the lack of dedicated technologies that are tailored to effectively manage the
information on processes encoded in process models and process execution records. Process-related infor-
mation is a core organizational asset which requires dedicated analytics to unlock its full potential. This
paper proposes a framework for devising process querying methods, i.e., techniques for the (automated)
management of repositories of designed and executed processes, as well as models that describe relation-
ships between processes. The framework is composed of generic components that can be configured to
create a range of process querying methods. The motivation for the framework stems from use cases in
the field of Business Process Management. The design of the framework is informed by and validated via
a systematic literature review. The framework structures the state of the art and points to gaps in existing
research. Process querying methods need to address these gaps to better support strategic decision-making
and provide the next generation of Business Intelligence platforms.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Business Process Management (BPM) is the discipline that com-
bines approaches for the design, execution, control, measurement,
and optimization of business processes. Most of the larger organi-
zations adopted BPM principles (e.g., designing processes explicitly).
A growing, but still limited, number of organizations uses explicit
BPM systems, i.e., information systems directly driven and controlled
by explicit process models. Business Intelligence (BI) systems focus
on the dissemination of business-related data without considering
process models. Hence, one can easily witness the gap between
data-driven BI approaches and process-centric BPM approaches. Pro-
cess mining approaches aim to bridge this gap [1]. Like other BPM
approaches, process mining is process-centric. However, unlike most
BPM approaches, it is driven by factual event data rather than
hand-made models.

* Corresponding author.
E-mail addresses: artem.polyvyanyy@qut.edu.au (A. Polyvyanyy),

c.ouyang@qut.edu.au (C. Ouyang), alistair.barros@qut.edu.au (A. Barros),
w.m.p.v.d.aalst@tue.nl (W. M. P. van der Aalst).

Process mining is closely related to the term process analytics [2,3]
which refers to approaches, techniques, and tools to provide process
participants, decision makers, and other stakeholders with insights
about the efficiency and effectiveness of operational processes. The
search, correlation, aggregation, analysis and visualization of pro-
cess events can support insights and improvements in performance,
quality, compliance, forecasting and planning, of processes operat-
ing in dynamic commercial settings. Most of the commercial tools
e.g., Splunk, SAP Business Process Improvement, Pentaho, and Adobe
Analytics, focus on purely structural associations in organizational
information, where process execution is measured via coarse-grained
events (e.g., start and end of process execution) in line with classical
performance-oriented business intelligence analysis of organiza-
tional units, resources, products, services, etc. This is in stark contrast
with process mining approaches that provide fact-based insights to
support process improvements [1]. Process discovery techniques can
be used to learn process models from event logs. However, process
mining extends far beyond process discovery and includes topics like
conformance checking, bottlenecks analysis, decision mining, organi-
zational mining, and predictive process analytics. All of these process
mining approaches have in common that they seek the confrontation

http://dx.doi.org/10.1016/j.dss.2017.04.011
0167-9236/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dss.2017.04.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dss.2017.04.011&domain=pdf
mailto: artem.polyvyanyy@qut.edu.au
mailto: c.ouyang@qut.edu.au
mailto: alistair.barros@qut.edu.au
mailto: w.m.p.v.d.aalst@tue.nl
http://dx.doi.org/10.1016/j.dss.2017.04.011

42 A. Polyvyanyy et al. / Decision Support Systems 100 (2017) 41–56

between event data (i.e., observed behavior) and process models
(hand-made or discovered automatically).

Through these developments, at least three broad contexts for
process analytics can be identified to frame further development
of supportive techniques. Firstly, temporal contexts are important
where past and present process data are retrieved and the future
behavior of processes can be projected. Secondly, process behav-
ior needs to be understood in different organizational contexts, not
only the operational level, but also at strategic and tactical levels,
given reflections of processes in higher-level architecture models.
Thirdly, productivity contexts nowadays focus not only on transac-
tional considerations, through policy and performance compliance
checks, but also on transformational opportunities, whereby insights
into how processes can be standardized, reused, and rapidly adapted,
are crucial.

Process querying studies (automated) methods for managing,
e.g., filtering or manipulating, repositories of models that describe
observed and/or envisioned processes, and relationships between
the processes. A process querying method is a technique that, given
a process repository and a process query, systematically implements
the query in the repository, where a process query is a (formal)
instruction to manage a process repository. The paper addresses
major limitations of techniques for process querying, which often
analyze business processes on a single model scope and ignore pro-
cess semantics aspects. Note that a recent survey demonstrates the
lack of, and the need for, dedicated precise process querying meth-
ods grounded in execution semantics rather than the structure of
business process models [4].

Concretely, this paper proposes the Process Querying Framework,
which aims to guide development of process querying methods.
Given a process repository and a process query that specifies a for-
mal instruction to manage the given repository, the corresponding
process querying problem consists of implementing the instruction
on the repository. The proposed framework is an abstract system
in which components providing generic functionality can be selec-
tively replaced resulting in a new process querying method. The
framework emphasizes unified process querying based on search-
ing process structure and behavior, which includes the designed and
observed behavior. Processes often exhibit complex alignments with
higher manifestations of processes through strategic and tactical
models in the organizational pyramid. Moreover, results of process
querying methods must be effectively interpreted by stakeholders.
The proposed in this paper framework addresses these concerns.

To develop the framework, we use (an adapted version of) the
Design Science Research Methodology (DSRM) by Peffers et al. [5]
that follows the guidelines by Hevner et al. [6] for the required ele-
ments of design research. The framework is a viable artifact that is
produced as an outcome of this design endeavor (Guideline 1: Design
of an Artifact, refer to Ref. [6] for details). The corresponding DSRM
process is depicted in Fig. 1. The process is initiated by the problem
of lack of consensus in designs of methods for process querying.
First, we perform a systematic CRUD (Create, Read, Update, and
Delete) analysis over process repositories to identify a list of use
cases for managing process repositories (Guideline 5: Research
Rigor). The obtained use cases justify relevance of the problem

(Guideline 2: Problem Relevance). The core objective of this work
is the development of a framework for devising process querying
methods. Hence, in the second step, we employ the identified use
cases and CRUD operations to elicit requirements and categories of
process querying problems, which in this paper are referred to as
process query intents. Third, based on the deduced requirements, we
rigorously define the process querying problem and process query-
ing method, and use these notions as the basis for the design of
the framework (Guideline 5: Research Rigor). Fourth, we validate
the proposed framework via a systematic literature review (Guide-
line 3: Design Evaluation; Guideline 5: Research Rigor). The insights
gained from this evaluation are used to iterate the design of the
framework to cater for the features of the state of the art techniques
for managing process repositories while still satisfying the require-
ments deduced from the use cases (Guideline 6: Design as a Search
Process). The conducted systematic review demonstrates that the
developed framework is consistent with process querying methods
in prior literature. Finally, we document and discuss all the steps
taken to design the framework, which is also the main contribution
of this work (Guideline 4: Research Contributions), in the paper at
hand (Guideline 7: Communication of Research).

The remainder of the paper is organized as follows. The next
section discusses how processes manifest horizontally within the
Business Process Management (BPM) lifecycle and vertically at dif-
ferent levels of abstraction of the organizational pyramid, and looks
at use cases for managing process repositories. Based on the insights
gained in Section 2, Section 3 gives rigorous definitions of the process
querying problem and process querying method. Section 4 discusses
the design of the process querying framework, which is based on the
formal notions proposed in Section 3. Then, Section 5 suggests how
the proposed framework can be positioned in light of the broader
process analytics and BI. Section 6 validates the design of the frame-
work via an extensive literature review and states the research gaps.
Section 7 concludes the paper.

2. Process querying requirements

This section provides an exposition of process querying require-
ments, to develop the process querying framework, which is pro-
posed in Sections 3 and 4. Section 2.1 provides a contextual back-
ground of BPM generally used to understand different forms of
processes, how they relate to each other, and how they are managed
in the BPM lifecycle. The functional requirements for process query-
ing are then posited along the fundamental operations relevant to
data querying, i.e., Create, Read, Update, and Delete (CRUD), applied
to processes managed in process repositories (Section 2.2). Non-
functional requirements for high performance query execution are
also discussed (Section 2.3). The process of requirements elicitation
is based on considering how these operations support the needs of
process management as understood through relevant BPM use cases,
as profiled in a comprehensive BPM survey [7]. The requirements,
focused on CRUD operations, are referred to as process query intents,
each bearing specific insights, per process create, read, update, and
delete, which need to be supported through the proposed process
querying framework.

Design and

Develop

Process querying

framework

Demonstrate

and Evaluate

Validation of the

framework via a

systematic

literature review

H
o
w
to

K
n
o
w
le
d
g
e

Identify Problem

and Motivate

Lack of

consensus in

research on

methods for

process querying

Define

Objectives of a

Solution

Develop a

framework for

process querying

methods

In
fe
r
e
n
c
e

T
h
e
o
r
y

D
is
c
ip
li
n
a
r
y

K
n
o
w
le
d
g
e

Communicate

The paper at

hand

Fig. 1. DSRM process for the process querying framework.

A. Polyvyanyy et al. / Decision Support Systems 100 (2017) 41–56 43

2.1. Contexts for process management

Webeginbyconsideringthecontextual insights inwhichprocesses
are managed, and, thus, where process querying is applicable. From a
broad, organizational perspective, various parts of systems, including
business processes, can be seen at different levels of business to IT
systems architecture, typically depicted as a pyramid [8]. Seen from
this perspective, a given process does not exist in isolation, but mani-
fests in variety of forms and in different systems, at strategic, tactical
and operational levels of an organization. Processes may be captured
through dedicated modeling languages and techniques and managed
through BPM systems, e.g., Petri nets, BPMN, UML Activity Diagrams,
or they may be represented in other forms, e.g., task lists in task man-
agement systems and transaction processes in enterprise systems.
Alternatively, they are less explicit at higher levels of the pyramid.
Instead, at these levels, processes are instrumental to other meth-
ods or representations, used for broader considerations of systems
planning and coordination. Fig. 2 shows an organizational pyramid,
illustrating a useful, structural context for process management —
stretching from business strategy down to IT systems.

The highest-level notion of processes plays a vital role in strategic
planning and the high-level representation of organizations, through
business models [9]. Represented typically through strategic value
chains (general activity dependencies with no control flow), pro-
cesses combine with policies, target customers, product and service
offerings, organizational structures and partners, to detail business
models. Strategic value chains reflect not so much process flows
but value accretion, together with key interactions with organiza-
tional and partner roles. When linked to processes at lower levels,
they allow lower levels of processes in business and IT systems to
be steered through policies and other strategic considerations of
organizations.

Over the years, enterprise architecture has become an important
bridge between tactical and operational levels, because it allows fur-
ther details of systems (e.g., services, processes, and applications)
to be aligned, thus supporting systems planning and governance
from a cross-systems, i.e., enterprise purview. Enterprise architec-
ture frameworks such as the Zachman Framework [10], TOGAF [11],
and RM-ODP [12] integrate a number of modeling techniques and
languages in support of this, with processes playing a central role in
yielding architecture coherence. For example, in Archimate [13] used
in TOGAF, processes are defined across business, application and IT
infrastructure layers, and are inter-linked across these while also
anchoring into other aspects such as services, resources and informa-
tion. At the operational architecture level, process models take on a
normative role, as opposed to being descriptive at higher levels and
executable through IT systems (to use the broad positioning of pro-
cesses from Ref. [7]). They guide the operations of specific business

areas and are developed through individual projects. Models are
captured through multi-level process architecture (from operational
value chains to detailed processes) entailing many-to-many relation-
ships between elements across levels and, thus, complex alignment
challenges [14,15].

At the lowest level, processes are a core part of IT systems design
and implementations. This involves configurable, solution design
models, executable models, and software applications with coded
processes. Executable processes are also in the form of process or
document workflows, tasks lists and other forms supported by BPM
systems such as workflow management systems and task managers.
Software design models also rely on process concepts to capture
and configure software component dependencies, e.g., ERP solution
maps and software component interactions (see exemplar software
architecture of SAPs Business ByDesign [16]). Ultimately, process
instances are recorded as event sequences in logs. Events capture
timestamped data about executed activities and event traces are
aligned to process conceptions of software interactions, e.g., trans-
actions steps of asynchronously running business objects in ERP
systems [17].

As we can see, processes are effectively refined across the archi-
tecture levels even if they are captured through different techniques
and languages having either no, partial, or precise, semantics; cor-
respondingly they are informal (high-level descriptive processes),
semi-formal (lower level descriptive processes) or formal (normative
and executable processes). Ideally, they should be aligned with
processes at across all levels, therefore, requiring correlation of pro-
cesses through query languages (akin to data correlation support in
database query languages, e.g., SQL joins and correlated sub-queries).

Complementary to this structural context of BPM, is a functional
context seen through the classical BPM lifecycle [7], with its
comparatively narrower focus: process (re)design, implementation/
configuration, and execution/adaptation. The focus of the BPM life-
cycle tends to be on lower levels of architecture involving processes
managed through BPM systems. Models may be (re)designed to
capture requirements, refined and configured as executable mod-
els for orchestration through IT systems or as implementation logic
in software code. In the execution/adaptation phase, processes are
orchestrated using execution systems and event logs are generated.
Through runtime execution and analysis of event data, processes
may be adapted for “in-situ” improvements and overcoming errors.
The execution/adaptation phase feeds back into the (re)design phase,
whereby event data analysis is used to create long lasting design
improvements of process models. Thus, the BPM lifecycle provides
a broader context for process querying requirements, with various
steps in the lifecycle offering indispensable insights for how various
process create, read, update, and delete operations are combined in
support of complex process management tasks.

Strategic

Business

Architecture

Tactical Business Architecture

Enterprise Architecture

Operational Architecture

IT Solution Architecture and Systems

Business Models

Solution Design Models, Configurable Software Architecture, Task and Workflow Models, System Logs

Process Architecture, Detailed Business Process Models, Resource Models, Target Operating Models

Business to IT Integrated Models

Business Capability Maps

Strategic planning

Tactical planning

Cross systems operational

planning across business and IT

Operational planning

for supporting

business operations

IT planning for developing

or procuring IT solutions

Fig. 2. Processes at different levels of the organizational pyramid.

44 A. Polyvyanyy et al. / Decision Support Systems 100 (2017) 41–56

2.2. Functional requirements of process querying

To elicit requirements for different classes of management meth-
ods over processes, in this section we perform the CRUD analysis
over an artifact of a process repository; note that the notion of a
process repository is formalized in Section 3. The need for different
CRUD operations over process repositories is justified by mapping
them onto (a subset of) the comprehensive set of BPM use cases
described in Ref. [7]. These use cases refer to the creation of pro-
cess models and data, and their usage to improve, enact, and manage
processes. The BPM uses cases were obtained by identifying interac-
tions between artifacts such as descriptive, normative, configurable,
and executable models, IT systems, event data, and a range of anal-
ysis results. Almost 300 BPM papers were mapped onto these use
cases to justify their importance. The twenty use cases reported in
Ref. [7] are not intended to be definitive or complete. Nevertheless,
they help to structure the possible CRUD operations over process
repositories. In the context of process querying, we refer to these
operations as process query intents, which can be seen as seman-
tic classes of management instructions for process repositories. We
see process query intents as one of the configuration points of the
devised process querying framework, refer to Section 4 for further
details.

Design model. Process models are produced in a number of
ways including creating models for the first time via design, selec-
tion of existing model, and reuse [18] of existing models either via
model merge or model composition. The Design Model use case con-
cerns the creation of models from “scratch” by humans, capturing
a current-state (as-is) or future-state (to-be) of processes. To sup-
port this, a process query intent, Create Process, should allow the
insertion of newly designed models in a process repository, e.g.,
when a model being captured is saved in a process modeling tool.
In addition, the intent, Update Process, should support updates of
model designs, where the model being updated already exists in
the repository. Similarly, the Delete Process, should support in-situ
deletions of models during design, whereby the entire model is
selected through the query conditions/parameters. Note, the dis-
tinction between deleting an entire model and only deleting parts
of a model, where the latter can be rendered through an update
query.

Select model. The Select Model use case relates to the retrieval of
process models from a repository based on structural or behavioral
match of processes. Correspondingly, Read Process should select pro-
cess models satisfying structural (graph structures) and behavioral
(activity traces) based conditions. Although this use case concerns
models, we extend Read Process to cover process models, process
fragments, process instances, e.g., sequences of events in logs, and
individual events. In terms of the behavior, the ability to select
event traces should cover executed process, simulated behavior
(based on selected workload and resource configurations) and per-
missible behavior (modeled but not yet executed). For example, it
should be possible to provide as input behavioral activity traces and
retrieve both models (based on permissible behavior) and instances
(executed behavior) from a repository describing the given traces.

Specific details of processes may be projected in query results,
e.g., query results may need to only include start and end activities
of matched processes. Given that processes rarely exist in isolation
but are linked to other processes, e.g., through use cases, collabora-
tive process, and processes at different levels of abstraction in the
systems architecture, the Read Process intent should support process
correlations in queries. An example is to find all executable pro-
cesses linked to a particular part of an operational value chain, e.g.,
a stage of a value chain. In terms of systems architecture, this would
be expanded to finding all executable processes linked to operational
processes which are linked to the corresponding part of the value
chain. Complementary to exact matching, similarity match [19] is

also critical for various management goals of processes, e.g., find-
ing similarity of a set of processes to a given process or finding
processes that are similar. It should be possible to reference similar-
ity search functions as part of Read Process both prior to, and after
search filters are evaluated (much like aggregate functions apply in
SQL statements).

Models merging and model composition use cases are variants of
model productions from existing models, where the resulting models
rely on selection of processes from several models.

Merge models. The Merge Models use case involves the creation
of a new model based on combining parts of different models. Exam-
ples include extending a process model with parts of other models or
taking different models and merging them into one model. This use
case is based on an elementary step of merging through automated
techniques [20], as opposed to the preparatory and intermediate
steps of identifying models, updating them for fitness, etc., which
involve update or deletion of parts of models. Thus, the Merge Model
use case, supported through a specialized form of the Create Process,
should take as input a set of models, allow a merge function to be
used on these models, and insert the resultant model into a repos-
itory. This intent could be practically implemented in a modeling
tool as part of a merge utility, where the merge function auto-
matically generates a create process, which can then be updated
and saved (committed) by a user. Since correctness of the result-
ing model is not guaranteed through merging, the Update Process
applies, to support subsequent refinements of the merged model,
e.g., removal or updated connection of activities to ensure correct
execution.

Compose model. The Compose Model use case involves the cre-
ation of a new model based on different, and, typically, reusable
models. Like merge models, a specific variant of Create Process, appli-
cable for composition, should take as input a set of models, allow
an algorithmic composition of these models, and insert the composi-
tion into the repository. Unlike, merge model, the composed model’s
parts can be related to the original models, and a corresponding cor-
relation should be explicitly captured. Given the more structured
nature of composition, the subsequent refinement of models for
correctness through the Update Process queries is less likely to be
required.

Following on from use cases concerning model production, we now
consider use cases related to process execution. These involve the
creation of executable models, typically from non-executable mod-
els, e.g., normative process models designed at the operational
architecture level, the execution of models, the creation of process
instance through events, process monitoring and runtime process
adaptation.

Refine model. The need for the detailing of a higher-level model
into an executable model, through the Refine Model use case, can,
in fact, be generalized for model refinement across different lev-
els of systems architecture, refer to Fig. 2. Each level uses modeling
techniques and languages with different degrees of semantics, with
executable models needing to be precise and free of errors so that
they can be executed. Moreover, platform-specific technical config-
uration details need to be present, e.g., message correlations, data
object mapping to required schemas, for execution readiness. As
such, Create Process should support the initial creation (including
versioning) of a refined model and linking it and specific parts of
refinement with the parent model(s). To support this use case, the
Update Process applies for interim saves during refinement steps
and flagging models that they are in a verified, error-free form for
execution.

Enact model. The Enact Model use case, relating to the inter-
pretation of executable models by BPM systems, has somewhat a
subtle application for process querying. Model execution centers on

A. Polyvyanyy et al. / Decision Support Systems 100 (2017) 41–56 45

the selection, scheduling, and execution of activities, through exe-
cution engines. While the core execution components control the
reading, scheduling and internal state management of individual
activities, the goals of efficient memory management and reduced
latency require that parts of models pre-fetched into memory, ahead
of execution, akin to database query execution strategies. For this,
Read Process should be used to support sequential “pre-fetch” of
process models in fragments aligned with platform specific con-
straints, e.g., memory blocks. Thus, we envisage process querying
to be better exploited by process execution engines, down to low-
level technical concerns, i.e., read queries are generated through
execution components of BPM systems. Note, given that different
parts of processes are possible for downstream execution through
choice constructs in models, activity traces based on model struc-
ture and behavior could be used as part of pre-fetch optimiza-
tion strategies, in line with database query execution optimization
strategies [21].

Log event data. When processes are executed the instances
that are generated and run are recorded as events in system logs,
addressed through the Log Event Data use case. This can be sup-
ported through Create Process and Update Process query intents,
which should specify instructions to create event logs, traces, and
events, as well as update traces by inserting fresh events into
traces in tandem with process execution. Timestamps and other
logistical details provided by execution engines can be logged in
events.

Monitor. The Monitor use case, relating to the active reading of
system logs at runtime for evaluating responsiveness, throughput,
resource cost, and other performance indicators, can be supported
via Read Process queries, applied over different process instance sets:
individual, case based, systems wide, etc.

Adapt while running. The Adapt While Running use case
addresses ad-hoc, or permanent, model changes required during
runtime due to emergent requirements, e.g., making sequentially
ordered activities run in parallel in urgent situations. These prac-
tices can be supported through Update Process queries. Note that
the impact of runtime adaptations is on process instances, as newly
generated events will result from changed models, which are inter-
linked to events of the previous models. Thus, updated models need
to be versioned within a current change release cycle, as well as
against all the previous changes. A specific challenge is to ensure
that updates are made with the proper integrity, and models used as
input for change are checked and compared against the intended (to-
be) processes to ensure proper continuity of execution, e.g., stopping
a process in the middle of iterated activities (within a loop) could
result in integrity issues.

In addition to being designed, configured, implemented, and exe-
cuted, processes can be used for non-trivial analysis related to per-
formance and verification. Of these, we consider the former for query
requirements.

Analyze performance based on model. The Analyze Performance
Based on Model use case concerns the simulation of executable
process models for performance analysis in terms of response
times, latencies, resource utilization, throughput, etc. Simulation
techniques focus on specialized analysis such as queueing net-
works or Markov chains to compute the expected performance.
The results of model simulation, resulting in simulated process
instances, can be stored in repositories through the use of Create Pro-
cess and Update Process queries, generated by simulation tools. In
addition, Read Process queries should be used through these tools
to retrieve simulated processes for comparing how different sys-
tems configurations impact the performance of models. Read Process
should also support diagnosis of individual processes and the aggre-
gate analysis of sets of process instances, e.g., process analytics
functions.

Further use cases concerning process analysis involve both pro-
cess models and event data, concerning conformance checking and
performance analysis.

Check conformance using event data. The Check Conformance
Using Event Data use case covers design-time, runtime, and
post-runtime analysis to check that processes comply with business
rules, business requirements and model specifications. One consider-
ation is conformance checking of normative or executable processes
against high-level, descriptive models. Furthermore, if the models
being compared are formal, behavioral conformance can be checked
based on permissible sequences of activities. Where processes have
been executed, conformance of the specified behavior in models
can be checked against observed behavior in event logs, to ensure
that the right sequences of activities have been executed. Accord-
ingly, Read Process queries should retrieve both models and process
instances for structural, behavioral and specified vs. observed behav-
ioral conformance checking. Queries reflecting this intent should be
integral to higher-level process analytics, since this is a key enabler
for process conformance checking, e.g., conformance checking for
business areas and the generation of reporting capturing statistical
analysis for business compliance thresholds. A major considera-
tion for conformance checking lies in collaborative processes, where
cross-process interactions need to be checked for correct executions
and conformance to business rules, e.g., related to service contracts.

Analyze performance using event data. The Analyze Performance
Using Event Data use case covers runtime monitoring and post-
runtime analysis to check processes for execution characteristics
such as response times, latencies, and throughput of processes. The
intent of Read Process is, thus, similar to that one for the Check
Conformance Using Event Data use case, but applied for a differ-
ent set of analysis considerations. Individual and aggregated event
data should be selected and compared against key performance indi-
cators. Future performance could also be checked through perfor-
mance profiles of activities determined from historical data and used
as input for simulation or prediction techniques. Thus, this intent
should be integrated into process analytics techniques concerned
with performance.

The final set of BPM use cases we consider relate to the use of diag-
nostic information and event data that can be used to repair, extend,
or improve models.

Repair model. The Repair Model use case refers to the problem
of transforming a given process model to better reflect the observed
deviating behavior recorded in the corresponding event log [22,23].
The challenge is to obtain a good quality model, e.g., structurally sim-
ple, which reflects all the important observed behavior as closely
as possible. The Repair Model use case can be supported using
Update Process and Delete Process intents over process repositories
by providing fine granular operations for transforming models in the
repository to describe, or not describe, certain processes that are
recorded or, respectively, not recorded in the corresponding event
logs.

Extend model. The Extend Model use case relates to the use of
event data in process models to extend the description of process
models. Event data may be annotated with additional information
such as the timestamp of the event, person/resource executing or ini-
tiating the activity, and data elements recorded with the event. This
information can be used to enrich the process model and extend it
beyond a control-flow oriented model with additional perspectives.
For example, timestamps of events may be used to add delay distri-
butions to the model. Data elements, used as part of decisions, can
be used to enrich models with business rules. Resource information
can be used to confer role assignment on activities in the model.
To support this use case, Read Process should be able to retrieve
and correlate process model and event data at the level of activities.

46 A. Polyvyanyy et al. / Decision Support Systems 100 (2017) 41–56

Once users have viewed, analyzed and saved the extended models,
Update Process should allow extended models to be stored in a repos-
itory. Alternatively, a Create Process should support the creation of
extended models, as new model versions.

Improve model. The Improve Model use case focuses on how
performance related diagnostics can be used to generate alternative
process designs which represent improvements of processes, e.g.,
optimization of resources or reducing response times. Process mod-
els combine with event data for inferring alternative behavioral
sequences and activity configurations for processes. Thus, Read Pro-
cess should retrieve models and event data, which are used as input
into process analysis targeting improvements. As part of this, Read
Process should be able to infer gaps between expected and observed
behavior in order to identify improvements concerned with address-
ing gaps.

2.3. Non-functional requirements of process querying

The aforementioned intents involving CRUD operations on pro-
cess repositories impose high performance and scalability require-
ments for process querying engines, considering the high computa-
tion overheads involved in matching processes, active monitoring,
and complex conformance checking. Mature strategies and tech-
niques are available through contributions to database querying over
many years. These have had to content with core challenges of
query processing, which are also relevant to processes. We iden-
tify salient aspects drawn from this tradition for key non-functional
considerations of process querying.

Scanning of logical storage resources, e.g., databases tables, for
processes and process models, inclusive of structural and behav-
ioral data, and covering both executed and simulated data, needs
be done in real-time and scaled out through parallel processing.
While scanning is efficient through in-memory database technology,
the explosive growth of “big data” through event streaming appli-
cations, e.g., sensor data streams in Internet of Things applications,
nonetheless warrants the use of indexing, e.g., B-Tree or R-Tree, to
be created for process data, as alternative access paths to sequential
process repository scans. Proposals for dedicated indexing strategies
for processes involve indexing activity traces and subgraph isomor-
phism algorithms [24,25]. We include under the banner of “indexing”
pragmatic considerations of pre-processing data, e.g., pre-joining, to
reduce computational latency and support rapid retrieval.

Prior to query execution, it is crucial that data distributions of
processes and indexes be profiled, since ranges of attribute values,
sizes of processes and many other insights can be used to elimi-
nate more expensive access strategies and choose the most optimal
ones, e.g., sequential scan or specific index. As with database query
engines, process statistics should be collected periodically on pro-
cess repositories. Query optimization addresses execution efficiency
and is particularly relevant for read, update, and delete queries,
which require evaluation of complex search conditions. It involves
the transformation of a query into an equivalent form (logical query
optimization), as well as the selection of optimal access paths and
generation of access plan (physical query optimization).

In line with contemporary search engines, frequently executed
queries and corresponding results should be “reusable”, subject to
the consistency of data, related to process update frequency. Static
data, through process execution history, or static reference models
are good candidates for efficient retrieval strategies through caching.
Instrumental for caching decisions is the availability of process query-
ing statistics.

3. Process querying

Based on the various requirements reported in Section 2, this
section gives rigorous definitions of the process querying problem and

process querying method. The process querying problem is proposed
as an overarching problem of managing, e.g., filtering or manipulat-
ing, (repositories of) models of observed or envisioned processes,
and models that describe relationships between processes. The pro-
posed formal notions set the basis for the design of the framework
presented in the next section.

Processes are properties of dynamic systems, where a dynamic
system is a system that changes over time, e.g., a process-aware infor-
mation system or software system. A process is an ordering of events
that together strive to achieve a goal state. A state is a characteristic
of a condition of the system at some point in time, i.e., all the
information that is relevant to the system at a certain moment in
time. An event indicates an instantaneous change of the current state
of the system, e.g., a change of the traffic light or change of the read-
ing on a digital clock. One can distinguish an event from other events
via its attributes and attribute values, e.g., a timestamp ‘Mon 01-
11-2016 11:06’. Events are often induced by activities performed by
the system. An event may, for instance, indicate a start or a comple-
tion of the activity. Examples of activities include reading this article,
manufacturing a product, or handling a bank transfer.

Let Uan be the set of all attribute names. We introduce three
special attribute names time, act, rel ∈ Uan, where time, act, and
rel are the ‘timestamp’, ‘activity’, and ‘relationship’ attribute names,
respectively.

Let Uav be the set of all attribute values.

Definition 3.1 (Events). An event e is a partial function from
attribute names to values, e : Uan � Uav.

By E , we denote the set of all events. We specify three
special classes of events: E time, Eact , and Erel. By E time and
Eact , we denote the sets of all events with timestamps, i.e.,
Etime :=

{
e ∈ E | time ∈ dom(e)

}
, and activity names, i.e., Eact :={

e ∈ E | act ∈ dom(e)
}
, respectively. To capture the vertical process

relationships in the context of the organizational pyramid, refer to
Section 2.1, we introduce special events Erel. Let Urel := ℘(E) ×
℘(E), where Urel ⊂ Uav. Then, Erel is the set of all events with
the relationship attribute whose values are in Urel, i.e., Erel :={
e ∈ E | rel ∈ dom(e) ∧ e(rel) ∈ Urel

}
. Hence, an event in Erel refers to

two sets of events that may stem from two different levels in the
organizational pyramid.

A process describes that some events are ordered, i.e., some events
precede other events, while some events are unordered, i.e., for some
events in the process the precedence relation is unknown.

Definition 3.2 (Processes). A process is a partially ordered set p :=
(E, ≤), where E ⊆ E is a set of events and ≤ ⊆ E × E is a partial
order over E, i.e., ≤ is a reflexive, antisymmetric, and transitive binary
relation.

Two unordered events of the process are often interpreted as such
that may be enabled simultaneously or can occur concurrently, refer
to Refs. [26–28]. A process that is a totally ordered set is a trace.

A behavior is a collection of processes that can contain identical
processes.

Definition 3.3 (Behaviors). A behavior b is a multiset of processes.

By B, we denote the set of all behaviors. Intuitively, multiple
instances of a process in a behavior represent the fact that the
process was observed multiple times in the real-world.

One can describe behaviors using conceptual models. A con-
ceptual model is composed of the explicit model and the implicit
model [29]. The explicit model is the set of all statements explicitly

A. Polyvyanyy et al. / Decision Support Systems 100 (2017) 41–56 47

made using some modeling language in order to construct the model.
The implicit model is the set of all statements that can be derived
from the explicit model using deduction rules of the modeling lan-
guage. We refer to a conceptual model that describes behaviors as a
behavior model. Based on the requirements listed in Section 2, we
introduce four classes of behavior models. A behavior model is a (for-
mal) description of a collection of real-world or envisioned processes
of the same nature (i.e., processes that aim to achieve the same goal),
which serves a particular purpose for a target audience. Behavior
models of real-world processes encode processes that follow well-
known (already experienced) sequences of events. Alternatively,
behavior models of envisioned processes describe never observed
sequences of events. For example, event logs [1] are formal mod-
els of events generated by executions of process-aware information
systems and, hence, are examples of behavior models that capture
real-world processes. A design of a new computer algorithm [30] or
a specification of an innovative business process [31] are examples
of models of envisioned processes.

Let A ⊂ Uav be the set of all activities. Let Ums be the set of all
(explicit) model statements. Then, M := ℘(A) × ℘(Ums) is the set of
all activity models, where � := (∅, ∅), � ∈ M, is the special ‘empty’
model. Thus, an activity model M := (A, S) consists of statements S
over activities A.

Definition 3.4 (Behavior models). A behavior model is a pair (M, B),
where M ∈ M is an activity model and B ⊆ B is a set of behaviors.
We introduce four types of behavior models:

◦ An event log is a behavior model (�, {b}), where b ∈ B is a finite
multiset of finite traces over Eact .

◦ A simulation model is a behavior model (M, {b}), where M =
(A, S) ∈ M is a nonempty model and b ∈ B is a finite multiset of
finite processes over Eact such that for every event e in a process
in b it holds that e(act) ∈ A.

◦ A process model is a behavior model (M, B), where M = (A, S) ∈
M is a nonempty model and every b ∈ B is a set of processes
over Eact � Etime such that for every event e in a process in b ∈ B
it holds that e(act) ∈ A.

◦ A correlation model is a behavior model (M, B), where every b ∈
B is a multiset of processes over Erel such that if M = (A, S) is a
nonempty model in M, then for every event e in a process in
b ∈ B it holds that act ∈ dom(e) and e(act) ∈ A.

We say that M and B are, respectively, the explicit component
and the implicit component of the behavior model (M, B). A behavior
model (M, Ø) is informal; no implicit statement can be deduced from
M. A behavior model (M, {b}), where b ∈ B, is formal; the explicit
component of a formal behavior model induces one behavior, i.e.,
all the implicit statements are deduced from M deterministically. A
behavior model (M, B), |B| > 1, is semi-formal; the explicit compo-
nent of a semi-formal behavior model can be interpreted as one of
the behaviors in B reflecting that the deduction rules of the modeling
language used to construct the explicit model are nondeterminis-
tic. Behavior models are immense information resources. A behavior
model characterizes a dynamic system by describing often an infinite
collection of processes that suggest the ways to lead the system to a
potentially infinite number of states [32].

Event logs are studied within the process mining discipline [1].
Event logs are composed of traces, where each trace is a finite
sequence of events that denotes the finite “life” of a process observed
and recorded in the real-world. The core competence of process min-
ing is to connect the observed behavior, i.e., an event log, to an
activity model, e.g., a Petri net or BPMN model, which induces the
implicit model that resembles the event log as closely as possible.
The multiplicity of a trace in the only behavior of the implicit com-
ponent of the event log denotes the number of times the trace was

observed. Because the original link between the traces and the cor-
responding activity model is absent, the explicit component of the
event log is the empty model. However, events in traces of event logs
have the act attribute to refer to activities that induced them.

A simulation model is an activity model together with a finite imi-
tation of its operations in the real-world [33]. The activity model
represents the key behaviors of the system, while the imitation is
derived based on the deduction rules of the modeling language used
to construct the activity model. Thus, every event of the implicit com-
ponent of the simulation model has the act attribute to refer to the
activity that induced the event. Note that the only behavior of a sim-
ulation model (or that one of an event log) encodes only a part of the
behavior that can be deduced from the corresponding activity model.

A process model is an activity model together with a set of all
possible behaviors that can be deduced from the statements in the
activity model [34,35]. A behavior induced by the explicit compo-
nent of a process model can be infinite, e.g., the set of all processes
induced by the model which prescribes that every process must start
by repeating activity X arbitrary number of times before performing
activity Y and then concluding that process is infinite. In addition,
a behavior induced by the explicit component of a process model
can contain an infinite process, e.g., the maximal trace induced by
the model that prescribes to repeatedly perform activity Z is infinite.
To capture that events in the implicit components of process mod-
els are envisioned, i.e., did not occur in the real-world, they do not
have timestamps. Though the implicit components can be infinite, it
is expected that in most of the practical process querying scenarios
explicit components of behavior models will be finite, as one must
be able to store models on a computer.

A correlation model is a behavior model in which every event of
the implicit component has the rel attribute to refer to two sets of
related events. For example, conformance checking [36] refers to the
problem that given an event log and a formal process model checks
whether traces in the event log are in accordance with processes of
the model. An alignment is an example of a correlation model [36].
An alignment between a trace of an event log and a process of a pro-
cess model is a sequence of moves, where a move is a pair in which
the first component refers to an event in the trace and the second
component refers to an event in the process. In general, correlation
models allow relating behavior models at different levels of abstrac-
tion and/or granularity, i.e., vertically and/or horizontally within the
organizational pyramid, cf. Fig. 2.

In this work, we restrict the scope to the four aforementioned
classes of behavior models. However, we envision that future works
on process querying will introduce new classes of behavior models,
and will augment the proposed notion of a behavior model to cater
for the emerging requirements.

A process repository is an organized collection of behavior models.
Let Ure be the set of all repository elements which are not behav-
ior models, e.g., folder structures for organizing behavior models,
names and values of behavior model attributes (such as authors and
versions of behavior models), etc.

Definition 3.5 (Process repositories). A process repository is a pair
(P, R), where P is a collection of behavior models and R ⊆ Ure is a set
of repository elements.

By Upr , we denote the set of all process repositories. Let Uqi be
the set of all query intents that represent the abstract semantics of
methods for querying over process repositories. We propose that Uqi

consists of Create, Read, Update, and Delete (process) query intents,
refer to Section 2.2 for details. Then, Upq := Uqi × U∗

qc is the set of all
process queries, where Uqc is the set of all query conditions, or query
parameters. A process query contains a sequence of parameters to
allow distinguishing between several parameters of the same type.
For example, a process query can capture an instruction to update,

48 A. Polyvyanyy et al. / Decision Support Systems 100 (2017) 41–56

using the update query intent, a process in one of the behaviors
of a process model with a given fresh process. Among other con-
ditions, this query should contain two conditions: the process that
needs to be updated and the fresh process. To distinguish between
the two processes, they must be placed at two different positions
in the sequence of conditions of the query. Note that the above
described query instruction on the level of behaviors of process mod-
els implies changes in the activity models of the resulting updated
process model.

Finally, a process querying method is an (automated) technique
that given a process repository and a process query systematically
performs the query on the given repository. A result of a process
querying method is, again, a process repository which implements
the query on the input repository.

Definition 3.6 (Querying methods). A process querying method is a
function m : Upr × Upq → Upr .

A combination of a process repository and process query specifies
the process querying problem. To solve process querying problems,
process querying methods rely on theoretical computer science fun-
damentals, e.g., results in distributed and parallel computing, model
checking, and formal methods. Section 6 reports on a comprehensive
review of the state of the art methods for process querying.

4. The Process Querying Framework

Based on the formal notions from the previous section, this
section proposes the Process Querying Framework (PQF). Section 4.1
discusses components and logical parts of the framework. Section 4.2
discusses core design decisions that one needs to take when design-
ing a process querying method. Section 4.3 states several chal-
lenges that may emerge as consequences of taken decisions. Finally,
Section 4.4 suggests that every process querying method results from
a compromise between solutions to the stated challenges.

4.1. Components and parts of the framework

The PQF is an abstract system in which components providing
generic functionality can be selectively replaced resulting in a new
process querying method. A schematic view of the framework using
an ad-hoc notation is shown in Fig. 3. In this notation, rectangles
denote active components, i.e., actions to be performed by the process
querying methods. Ovals are used to represent passive components,
i.e., objects and aggregations of objects that are inputs and outputs of
actions. To denote that a passive component serves as an input to an
action, an arc is drawn to point from the component to the action. An
arc that points from an action to a passive component suggests that
the action produces the component as an output. Dashed lines are
used to encode the aggregation relationships, where a component
that is used as an input to an action contains the adjacent passive
components, e.g., a process repository is an aggregation of behavior
models (refer to Definitions 3.4 and 3.5). The framework is logically
divided into four parts that are ‘responsible’ for (i) designing process
repositories and process queries, (ii) preparing and (iii) executing
process queries, and (iv) interpreting results of the process querying
methods. In Fig. 3, each part of the framework is enclosed in an area
denoted by the dotted border. Next, we detail each of the four parts.

4.1.1. Model, simulate, record, and correlate
This part of the framework (see the top of Fig. 3) is responsible for

acquiring/constructing, behavior models and formalizing/designing,
process queries. Behavior models can be acquired in several ways.
They may stem from manual, semi-, or fully-automated exercises.
Examples of automated exercises include model discovery using pro-
cess mining techniques [1] and model construction using process
querying, e.g., a fresh model may result from executing an update
query. Behavioral models can be constructed by recording or sim-
ulating execution traces of systems, and by correlating steps of
two different processes. All these alternatives are captured by the
Modeling, Simulating, Recording, and Correlating active components,

Fig. 3. A schematic view of the Process Querying Framework.

A. Polyvyanyy et al. / Decision Support Systems 100 (2017) 41–56 49

refer to Fig. 3. Examples of behavior models include computer pro-
grams, business process specifications (e.g., EPC, BPMN, YAWL, BPEL
models), formal models of computation (finite automata and Petri
nets), event logs [1], and alignments [36].

Process querying demands mathematically precise and unam-
biguous specifications of instructions for managing process reposi-
tories. A process querying instruction, or a query, specifies how pro-
cesses, behaviors, and behavior models should be manipulated in
a process repository. It is composed of a query intent and a list of
query conditions, refer to Section 3 for details. The intent specifies
the abstract semantics of the query, e.g., to retrieve/read processes,
behaviors, or models, or to remove/delete some processes in cer-
tain behavior models. Query conditions are used to parameterize
intents to obtain precise querying instructions. For example, the
aforementioned intents must be supplied with conditions to spec-
ify what processes to retrieve and remove. Thus, a query condition
may be specified as a collection of processes, i.e., a behavior model.
Note that two queries with different intents may have different
query conditions. For example, an update query may use three con-
ditions to specify in what collections of processes (i), which old
processes (ii) should be replaced with which fresh processes (iii). For
a delete query, it may suffice to use two conditions that tell in what
collections of processes (i) which processes (ii) should be removed.

The PQF relies on formal representations of queries. The For-
malizing component of the framework takes a process querying
instruction as input and produces a (process) query that cap-
tures the instruction in a formal language. Concrete instantiations
of the framework may rely on manual, semi-, or fully-automated
components responsible for the formalization of process querying
instructions.

4.1.2. Prepare
The “Prepare” part of the framework (see the bottom left of Fig. 3)

is responsible for making process repositories ready for efficient
querying. This part includes components for constructing dedicated
data structures that can speed up execution of process queries. We
suggest constructing these data structures offline. They often require
additional storage space to maintain the extra copy, or even several
copies, of an indexed repository, behavior, or process. The frame-
work suggests two methods for preparing for querying: indexing
and caching. In databases, indexing is a technique to construct a
data structure to efficiently retrieve data records based on some
attributes. In computing, caching is a technique to store data so that
future requests to that data can be served faster, where the data that
gets stored in a cache might be the result of an earlier computation.
Similar ideas can be used to speed up executions of process querying
methods.

The Indexing component of the framework takes a process repos-
itory as input and constructs its alternative representations, i.e., an
index. An index can be larger in size than the repository. By using an
index, process querying methods can achieve different space-time
tradeoffs, i.e., they can trade increased space of input process repre-
sentations for a decrease in execution times of process queries. The
Indexing component is also responsible for collecting statistics over
properties of repositories, behaviors, processes, and index, denoted
by Process Statistics in the figure. Process statistics can be used to
‘guide’ the execution of queries. For example, a process querying
method can proceed by first executing queries over small mod-
els. The rationale behind this strategy is based on the assumption
that execution of queries over small behavior models will take sig-
nificantly less time and, hence, first query results can be obtained
faster.

The Caching component of the framework relies on Process
Querying Statistics to decide which (parts of) query results to store for
later reuse. Process Querying Statistics may include aggregate infor-
mation on the execution of process queries and evaluation of process

query conditions, e.g., their frequencies. It gets regularly updated by
the Process Querying component and, thus, is denoted as its output
in Fig. 3. Results of frequent process queries can be stored in a cache
and looked up at a later stage, e.g., when the user requests to evalu-
ate the query again. Similarly, results of evaluating frequent process
query conditions can be stored and reused, even when new requests
to these conditions originate from fresh queries.

One can adopt other standard optimization approaches for pro-
cess querying. These include parallel computing (e.g., map-reduce),
algorithm redesign (e.g., stochastic and dynamic optimization), and
hardware acceleration (e.g., in-memory databases). However, these
approaches are often inherent to the design of techniques that get
optimized. In contrast, techniques in the “Prepare” part of the frame-
work are complement optimizations that are ‘orthogonal’ to the
design of the process querying methods.

4.1.3. Execute
The “Execute” part of the framework (see the bottom right of

Fig. 3) is responsible for executing process queries. Prior to exe-
cuting a query, to avoid unnecessary computations, one can filter
the repository to remove models, behaviors, and/or processes that
are irrelevant for the purpose of the query. For example, if a query
requests to retrieve models that describe a process with an event that
refers to a given activity, it makes no sense to execute the query over
the models that do not contain that activity.

The Filtering component is responsible for filtering process repos-
itories. The component takes a Process Repository and Process Query
as input and produces a Filtered Process Repository. The filtered
repository is the input repository with some of its parts marked as
irrelevant for the purpose of executing the query. To identify the
irrelevant parts of a repository, the component uses information in
Index, Process Statistics, and Cache; note that information kept in
these components can be used to anticipate query results.

The Optimizing component is responsible for query optimization.
It takes the same input as the Filtering component and produces an
Execution Plan — a list of instructions that aim at executing the input
query using the least possible amount of resources. The Optimizing
component may implement two types of optimization: logical and
physical. A logical optimization entails reformulating a given query
into an equivalent but easier – which usually means a faster – to
execute query. A physical optimization is responsible for determin-
ing efficient means for carrying out instructions in a given execution
plan.

Finally, the Process Querying component takes Filtered Process
Repository, Execution Plan, Index, Process Statistics, and Cache as input
and applies a process querying method to produce a fresh Process
Repository that implements the query. Based on the query and its
result, the component updates Process Querying Statistics. The Fil-
tered Process Repository and Execution Plan are the critical inputs of
the Process Querying component. The query cannot be executed with-
out these inputs. All the other inputs can, in principal, be empty. We
refer to the resulting Process Repository as the critical output of the
component.

4.1.4. Interpret
Process querying can lead to two outcomes: (i) the query instruc-

tion is successfully implemented in the resulting repository, or (ii)
available resources are not sufficient to execute the query. The latter
situation may arise when managing vast (possibly infinite) collec-
tions of processes using finite resources, e.g., finite computer mem-
ory or limited processing power. If it is impossible to execute a query
due to the physical limits of available resources, one can proceed in
several ways. Sometimes it may suffice to reformulate the original
query to give up on the precision of the expected result. Alterna-
tively, one may try to optimize the querying method to handle the
specifics of the original query. Some approaches to managing vast

50 A. Polyvyanyy et al. / Decision Support Systems 100 (2017) 41–56

collections of processes include the use of symbolic techniques (e.g.,
binary decision diagrams), manipulations with structural regularities
in behavior models, and rigorous abstractions of processes.

Once a query gets executed, its result should be communicated to
the user. Because queries can formulate elaborate instructions that
induce manipulations over large data sets, the user requires support
to facilitate understanding of query results. To this end, the frame-
work includes a dedicated part that is responsible for interpreting
results of executed queries (see the right of Fig. 3). The common goal
of all the components of the “Interpret” part of the framework is to
contribute towards user’s better comprehension of process querying
results. They are inspired by the various means for improving com-
prehension of conceptual models proposed by Lindland et al. [29].
The components perform whatever it takes to make the result of exe-
cuting a given process query easier to understand by the user. To
identify and explain the differences between the original repository
and the resulting repository as well as the reasons for the differences,
the components of the “Interpret” part of the framework rely on all
the critical inputs and outputs of the Process Querying component,
i.e., they take all the bits and pieces that are used to execute the query
as input.

To foster understanding of process query results, one can intro-
duce techniques for inspecting them. Indeed, the user can under-
stand a concept or phenomenon by inspecting, or reading, it. Various
approaches can be proposed to facilitate and guide the process of
reading query results. The inspection can be supported by expla-
nation notes predefined by process analysts and domain experts.
Comprehension of query results can be improved by presenting them
diagrammatically. The derived visual artifacts can be animated to
demonstrate dynamics of processes that were effected during exe-
cution of the query. If artifacts that encode query results get large in
size, their comprehension can be stimulated by projecting, i.e., hid-
ing, some of their parts. One can use simulations to induce sample
processes that were effected by the query. Finally, query results can
be translated to various formalisms that are easier understood by the
users.

We anticipate that new means for explaining query results will
emerge, as methods for process querying will become more mature.
When explaining results of queries to the users, we recommend
to apply best practices in design of easy-to-comprehend process
models and related artifacts, refer to Refs. [37,38] for details.

4.2. Design decisions

A design decision, or a design rationale, is an explicit argumenta-
tion for the reasons behind a decision made when designing a system
or artifact. When designing a new process querying method, one
needs to take various design decisions. Some fundamental decisions
that emerge from the PQF are discussed below.

4.2.1. DD1: which behavior models to support?
First and foremost, one needs to decide which behavior models

will be supported by the envisaged process querying method. For
example, one may wish to develop a method for managing event
logs. This method will most likely be different from the one that
manages correlation models (even if both methods support the same
query intents). The choice of behavior models implicitly restricts the
class of processes, or languages (in the terminology of computation
theory [39]), supported by the method. For example, if one restricts
behavior models to process models captured using finite automata,
the class of supported processes will be limited by the class of regular
languages [39].

4.2.2. DD2: which processes to support?
An activity model, as defined in Section 3, can be interpreted as

such that describes several different collections of processes, each

induced by a different semantics criterion. For example, an activ-
ity model can be interpreted using the finite, infinite, or fair process
semantics. According to the finite process semantics, an activity
model captures a collection of processes that lead to a terminal state.
If one considers the infinite process semantics, an activity model can
describe processes that never terminate, i.e., processes that describe
infinitely many events. Thus, an infinite process strives to, but never
achieves, its goal state. A fair process can be finite or infinite. A pro-
cess in which an event is enabled for execution over and over again
but does not get performed from some state on is unfair [40]. A
not unfair process, as per the above principle, is said to be strongly
fair. In Ref. [41], the authors study strong fairness and several other
types of fair process semantics criteria. The choice of the corre-
spondences between activity models and collections of processes
that they are associated with defines the problem space for pro-
cess querying methods, i.e., it implies processes to consider when
executing process queries.

4.2.3. DD3: which process queries to support?
When devising a process querying method, one needs to decide

which types of queries the method will support. The design of a
query entails choosing its intent and conditions. A choice of the intent
suggests the semantics of the query, e.g., to create, read, update,
or delete behavior models, or parts thereof, in a process repository.
Query conditions are used to specify query parameters. The choice
of supported queries determines the expressiveness of the process
querying method, i.e., its ability to describe various problems for
managing process repositories.

4.3. Design challenges

Next, we discuss some challenges that one may face when devel-
oping a process querying method. These challenges stem from the
aforementioned design decisions. The subsequent discussions are
not meant to be exhaustive. We envision that new challenges will
arise in future to address emerging requirements.

4.3.1. DC1: computability
Process queries must be computable, i.e., it should be possible

to solve process querying problems using algorithms (preferably on
a wide range of inputs). This poses a significant design challenge.
Note that there exist process querying problems that are known to
be undecidable, i.e., it has been demonstrated that they cannot be
solved. For example, process queries can be specified as temporal
logic formulas [42]. However, certain temporal logic formulas are
undecidable on some classes of processes [43]. A query that cannot
be computed is of no help to the user. Thus, one needs to ensure
that queries supported by the devised process querying method are
decidable on the class of the supported behavior models.

4.3.2. DC2: complexity/efficiency
Process querying aims at providing valuable insights into oper-

ational processes and recorded business cases of modern organiza-
tions. In addition to the aforementioned use cases, refer to Section 2,
process querying methods should support users in learning pro-
cesses, behaviors, and models contained in process repositories,
i.e., they should support exploratory querying [44]. This calls for
techniques capable of executing queries efficiently. Hence, another
fundamental challenge of designing a good process querying method
is to propose a fast method that executes using small memory foot-
prints. One can measure the efficiency of a process querying method
using techniques in computational complexity theory, which study
computation time and storage space required to solve a computa-
tional problem.

A. Polyvyanyy et al. / Decision Support Systems 100 (2017) 41–56 51

4.3.3. DC3: expressiveness/suitability
Process querying methods should offer a great variety of con-

cepts and principles to capture and exercise in the context of process
querying. Hence, the third fundamental challenge of process query-
ing is to achieve full expressiveness, i.e., the ability to capture all
suitable (useful to the users) process queries that specify instruc-
tions for managing process repositories. A process querying method
should support all the useful (as perceived by the users) process
queries. The suitability of process queries can be assessed empirically
or, similar to Ref. [45], by identifying reoccurring patterns in queries.

4.4. Process querying compromise

A process querying method can be characterized by the expres-
siveness of the supported process queries that result from a compro-
mise of selecting computable, efficient, and suitable queries. Given
answers to design decisions DD1 and DD2, i.e., which behavior mod-
els and processes to support, cf. Section 4.2, one should aim at
supporting as many useful process queries as possible.

Let D be the set of all computable, or decidable, process queries
(in the context of the supported behavior models). Let E ⊆ D be the
set of all process queries that can be computed efficiently. Finally, let
S be the set of all process queries that are perceived by the users as
suitable, or useful. Then, queries in E ∩ S are the queries that should
be supported by the process querying method. Ideally, it should hold
that S ⊆ E, i.e., all the queries that are of interest to the users can be
computed efficiently. However, in practice, it may be impossible to
fulfill the requirement of S ⊆ D. Then, one should strive to improve
the efficiency of methods for computing queries in (S ∩ D) � E. Note
that to achieve completeness in this endeavor, one should know the
decidability of every query in S.

5. Query-Based Process Analytics and Business Intelligence

Process analytics includes process querying, process analysis,
matching and correlating process execution data and models [3].
According to Gartner, CIOs rank BI and analytics as number one tech-
nology priority for 2012 through 2016. Despite its central role in
assessing the performance of organizations, process analytics, as of
today, remains largely “behavior-unaware”. A notable exception is
the work done by the process mining community [1]. Mainstream
BPM approaches tend to treat behavior models as static graphs
rather than dynamic behavior generating artifacts. Mainstream BI

approaches tend to be behavior agnostic. The topic of process query-
ing, as defined in this paper, remains underdeveloped. A recent
survey, refer to Ref. [4], demonstrates the lack of and the need for
process querying methods grounded in behaviors encoded in mod-
els. Moreover, it is acknowledged that process analytics remains
mostly limited in its ability to aggregate process performance indi-
cators at the level of individual processes [3].

Process querying can be used to derive analytical insights about
the performance of processes within organizations. We envision
that this can be implemented via process query procedures, i.e.,
orchestrations of process queries. To bridge the gap between high-
level business questions and process analytics, we propose to look
into questionnaire-based approaches. By guiding business analysts
and domain experts through preconfigured and intuitive (semi-
automated) questionnaire instructions, one can attempt to translate
business questions into low-level process query procedures that
contribute towards answering the business question. In this light,
a business question is a collection of inputs (i.e., existing process
knowledge), outputs (i.e., derived process knowledge), and an ana-
lytical component. The analytical component of a business question
is composed of manual and automated parts. Business questions
with manual parts in analytical components seek expert knowledge,
as every manual part is intended to be answered by a business ana-
lyst or domain expert. We suggest that automated parts of analytical
components can be specified as process queries.

One can formalize a questionnaire as a state machine, where
states encode available knowledge and transitions represent answers
to manual parts or executions of automated parts of the correspond-
ing analytical component. Hence, the user can start a questionnaire
at one of its initial states, the one that encodes the current process
knowledge, and proceed by executing (either manually or automat-
ically) a predefined sequence of parts of the analytical component
towards one of its accepting states, the one that represents the
derived knowledge realizing the initial analytical need.

Fig. 4 (a) schematizes the envisaged high-level interactions
between stakeholders and components when engaged into the
query-based process analytics experience. Business analysts and
domain experts can obtain an answer to a business question by
completing the corresponding questionnaire. By working through a
questionnaire, they configure process query procedures that real-
ize automated parts of the analytical component of the question.
The procedures enact process querying methods that deliver ana-
lytical insights back to the stakeholders who initiated the business

(a) (b)

Fig. 4. Positioning of process querying within (a) the Query-Based Process Analytics and (b) BI.

52 A. Polyvyanyy et al. / Decision Support Systems 100 (2017) 41–56

question. The obtained insights are used to complete manual parts of
the questionnaire. The results of the process query procedures influ-
ence the process of completing the questionnaire as they impact the
acquired process knowledge. Once the questionnaire is completed,
the accumulated analytical insights deliver an answer to the orig-
inal business question. The role of a process analyst, or a process
scientist, is to support process analytics experiences undergone by
business analysts and domain experts. A process scientist is a per-
son who has technical skills to design questionnaires and process
query procedures, and to monitor executions of process querying
methods. Questionnaires, as well as questionnaire patterns, that
implement common process analytics scenarios, e.g., those that are
available in the literature [3,42], can be aggregated into an analyti-
cal knowledge-base. The users of the envisaged query-based process
analytics approach will then be able to recompose (and again store
for later reuse) existing and specify new questionnaires that realize
emerging BI needs.

Fig. 4 (b) puts process querying and the proposed approach to
process analytics into the broader perspective of BI. Business ana-
lysts refer to BI as a family of technologies that promise to deliver
actionable information to support decision making. In our case, the
angle is towards process intelligence, i.e., technologies that analyze
the process-related information within process management and
execution applications.

6. Process querying: state of the art

This section reports on a structured literature review of the exist-
ing research efforts that contribute to process querying. The review
follows the guidelines proposed by Webster and Watson [46] and
a more rigorous process suggested by vom Brocke et al. [47]. The
review process consists of three main phases: literature search and
collection (Section 6.1), literature selection (Section 6.2), and lit-
erature analysis and evaluation (Section 6.3). To keep the process
manageable with limited resources, instead of conducting a truly
exhaustive literature review across various domains, we aim for a
generous coverage of representative samples of the research work
in the area of BPM on and closely related to the topic of process
querying.

6.1. Literature search and collection

According to vom Brocke et al. [47], before conducting a litera-
ture search, it is necessary to define a research scope and provide the
conceptualization of the topic. As discussed in Sections 2–4, the topic
of concern is process querying for managing collections of processes
specified in the form of behavior models (e.g., event logs or process
models). Based on the definition of the process querying problem,
refer to Section 3, we identified four sets of keywords (see below)
and used them to set the literature search criteria.

◦ keywords-1: query, queries, querying, search, searches, search-
ing, retrieve, retrieval, retrieving, analysis, analysing, analyzing,
manage, managing, manipulate, manipulating, filter, filtering

◦ keywords-2: process, processes, workflow, workflows, model,
models

◦ keywords-3: process model, process models, business process,
business processes, event log, event logs, simulation model, simu-
lation models, alignment, alignments, conformance checking

◦ keywords-4: repository, repositories, collection, collections

For the literature search, we chose two popular scholarly
databases, Scopus and Web of Science, which both are well-known
sources of citations. For each database, we conducted two search
iterations. Each iteration was performed from scratch against the

whole database, instead of the search results from the previous
iteration. We applied the following keyword-based search criteria:

◦ First iteration: ((any word in keywords-1) AND (any word
in keywords-2)) in the paper’s Title AND (any word in
keywords-3) in (the paper’s Abstract (if Scopus) OR the paper’s
Topic (if Web of Science)),

◦ Second iteration: (any word in keywords-1) AND (any word in
keywords-3) AND (any word in keywords-4) in (the paper’s
Abstract (if Scopus) OR the paper’s Topic (if Web of Science)).

In addition, we applied further filtering rules to literature search:
Papers must be (i) written in English, (ii) published as a journal arti-
cle, book, book chapter, proceedings paper, or as an article in press
(Scopus only), (iii) published in the subject area of Computer Science
in Scopus or in the Web of Science category of Computer Science
Information Systems, and (iv) published between 2000 and 2017.

For each database, the search results of the two iterations were
merged using the search engine of the database. Finally, the search
results in the two databases were manually combined by removing
the duplicates. This led to a collection of 2647 papers. Table 1 (a)
summarizes the literature search statistics.

6.2. Literature selection

The literature selection phase was performed in three sequential
steps. In the first step, we identified and excluded irrelevant papers,
as informed by their titles. The title of an excluded paper indicates
that it is either beyond the scope of BPM or is not related to pro-
cess querying. For example, we identified a large number of papers
that study service computing (such as web search, service manage-
ment, cloud, service-oriented model, etc.; 312 papers), simulation of
systems or system models (but not of processes; 248 papers), data
management (irrelevant to process querying; 231 papers), modeling
in general (not on process or workflow modeling; 226 papers), align-
ment (of policies, systems, etc.; 152 papers), analysis of a process,
workflow, log data (irrelevant to process querying; 167 papers), net-
work analysis and networks of collaboration (123 papers), resource
and organizational perspective (116 papers), software management
(beyond the scope of BPM; 87 papers), enterprise system, model, and
architecture (82 papers), security management (65 papers), and so
on. As a result, 2351 out of 2647 collected papers were excluded
based on their titles.

In the second step, we conducted selection based on the papers’
topics. To this end, the abstract and content of a paper were stud-
ied to understand the topic of the paper. Our decision of selecting or
excluding a paper was made according to the scope of this research
as to study the relevant methods and techniques for querying busi-
ness processes that are specified in the form of behavior models.
Typical examples of excluded literature include: papers on scientific
workflow as the topic has a different focus from business-oriented
processes; papers on the application, rather than the definition, of
supporting techniques (including process querying) for process ana-
lytics; papers on querying different aspects of a business process
(e.g., its business content or performance) other than its control-
flow; papers on querying a business process with a focus on the
activity labels or the textual information of the process without con-
sidering the execution order of the activities in the process; etc. As
a result, a total of 223 papers were removed based on their topics.
In addition, we also discovered and removed 22 papers that are not
written in English.

In the third step, we performed a paper quality screening. If a
paper does not have a clear contribution or suffers from an unclear
solution to the research question(s) raised in the paper, we do not
consider it qualified for review and evaluation in the next phase.
Another 12 papers were excluded due to quality issues. The selection

A. Polyvyanyy et al. / Decision Support Systems 100 (2017) 41–56 53

Table 1
Statistics on (a) the literature search and (b) literature selection.

(a)

By Iteration By Database Total

first 1,586

second 903

first 486

second 336

Scopus

Web of Science

Database Iteration
Hits Retrieved

2,386

773

2,647

(b)

By Title By Topic Non English* By Quality

* These papers were retrieved from Scopus only. They are written in a language other

than English except for their title and abstract.

 # Hits Retrieved
Hits Excluded

 # Hits Selected

2,351 223 22 122,647 39

phase led to a collection of 39 papers. Table 1 (b) summarizes the
selection statistics.

6.3. Literature analysis and evaluation

Prior to analysis of the 39 selected papers, we categorized them
into four groups based on their topics.

◦ Structural querying focuses on the structural topology and
characteristics of behavior models. Graph-based search tech-
niques are mostly used in this group of research. Two typ-
ical examples are BP-QL for querying business processes
specified in BPEL [48] and BPMN-Q for querying processes
in BPMN [49–52]. Another research stream is on studying
structural similarity between process models which provides
useful underlying techniques for efficient structural query-
ing [24,53,54]. Structural matching techniques propose exact
matching between graphs or graph fragments and are applied
in process querying [55,56]. Two query languages [57,58] that
focus on pattern-based graph matching techniques are pro-
posed. Other relevant work include: semantic querying of
process structural characteristics [59], a querying technique
used for BPMN process models annotated with crosscutting
concerns [60], a visual model query artifact [61], and a descrip-
tive language to query and change the structural aspect of
process models [62].

◦ Behavioral querying focuses on behaviors induced by activ-
ity models. Typical examples are querying techniques based
on Petri nets [25,63], YAWL nets [64], temporal logics such
as LTL [65], and a process query language [66,67] specifically
designed to support behavioral querying. Another research
stream studies behavioral similarity search [68–71] grounded
in behavioral relations over activities and originates from
the existing research on behavioral profile [72]. There is also
a study on specifying and comparing processes using finite
automata [73].

◦ Process execution querying addresses querying the execution
traces of business processes at run-time (for monitoring pur-
poses) or post-execution. Both a process model and its event
log are available inputs for the relevant research, and these
are considered simulation models according to Definition 3.4.
Typical examples are BP-Mon [74,75], BP-Ex [76–78], and
BPQL [79].

◦ Event log querying focuses on querying traces of business pro-
cesses in the form of event logs only (i.e., no process model is
available). Only a few relevant research outcomes were discov-
ered [80–83]. Most of the approaches convert process logs into
graphs and then apply FPSPARQL (an extension of SPARQL) [80]
or graph-based search techniques [82,83] to implement pro-
cess querying. The authors of Ref. [81] use LTL to retrieve traces
against a given business rule from the event log.

In addition, three survey papers on the topics of process model
similarity search [84], behavioral similarity metrics and evaluation
[85], and process querying techniques [4] were selected. In Ref. [4],

the authors focus on comparing syntactic-based querying and
semantic-based querying to emphasize the importance of consid-
ering the process semantics (i.e., behavior) when querying process
repositories.

Before moving to a detailed evaluation of the selected literature,
we defined a set of evaluation metrics as informed by the PQF, refer
to Section 4. To validate the framework’s design, we were interested
in understanding the selected literature in the following four aspects.

◦ Process repository design aspect:

− What types of behavior models are supported by process
repositories?

− What modeling languages are used to specify behavior
models?

− What is the level of formalism of behavior models in process
repositories? For example, a process model may be speci-
fied in a formal language such as Petri net, a semi-formal
language such as BPMN (which has execution semantics), or
an informal language like value chains; refer to Section 3 for
more details on formal, semi-formal, and informal behavior
models.

◦ Process query design aspect:

− What query intents are supported? The Read intent is further
subdivided into two intents of ‘retrieve’ and ‘project’, where
‘retrieve’ is to know whether or not a model satisfies a query
and ‘project’ is to obtain some details about a model (e.g., a
fragment of the model) that satisfies a query.

− What underlying techniques are applied to support the
querying (querying technique for short)?

− What is the level of formalism with respect to the seman-
tics of querying method (querying semantics for short)? In
other words, up to what level of formalism does the querying
method treat behavior models in process repositories. For
example, the process repository may be composed of formal
models but the proposed querying method may be treating
them as informal models.

− Is there a particular research artifact in the form of a query
language?

◦ Prepare & execute aspect looks into which components of the
“Prepare” part and the “Execute” part of the framework are
studied in the literature.

◦ Interpret aspect studies which components of the “Interpret”
part of the framework for explaining process querying results
are addressed in the state of the art querying methods.

Next, we analyzed the main research efforts from the selected
literature in process querying using the above evaluation metrics.
The papers are organized into the four topic groups that were men-
tioned earlier, and one key paper is included for each research
item. Note that the three survey papers are not included in the
literature evaluation. Detailed evaluation results of these key papers
are presented in Table 2.

54
A

.
Polyvyanyy

et
al.

/
D

ecision
Support

System
s

100
(2017)

41–56

Table 2
Evaluation results of the key papers on process querying in the BPM field.

Topic

Group
(Short) Title

k
e

y
 r

e
fe

re
n

c
e

e
v

e
n

t
lo

g

si
m

u
la

ti
o

n
 m

o
d

e
l

p
ro

c
e

ss
 m

o
d

e
l

B
P

M
N

B
P

A
L

 (
a

 B
P

M
N

 v
a

ri
a

n
t)

B
P

E
L

E
P

C

fi
n

it
e

 s
ta

te
 a

u
to

m
a

to
n

 (
F

S
A

)

P
e

tr
i

n
e

t

Y
A

W
L

 n
e

t

p
ro

ce
ss

 g
ra

p
h

d
ir

e
ct

 a
cy

cl
ic

 g
ra

p
h

p
ro

ce
ss

 m
e

ta
m

o
d

e
l

fo
rm

a
l

se
m

i-
fo

rm
a

l

in
fo

rm
a

l

R
e

a
d

 (
re

tr
ie

v
e

)

R
e

a
d

 (
p

ro
je

c
t)

U
p

d
a

te

g
ra

p
h

 m
a

tc
h

in
g

g
ra

p
h

 s
im

il
a

ri
ty

g
ra

p
h

-b
a

se
d

 s
e

a
rc

h

F
S

A
-b

a
se

d

P
e

tr
i

n
e

t-
b

a
se

d

te
m

p
o

ra
l

lo
g

ic

e
v

e
n

t
co

rr
e

la
ti

o
n

to
p

-k
 s

e
le

ct
io

n

a
ct

iv
it

y
 l

a
b

e
l

si
m

il
a

ri
ty

fo
rm

a
l

-
p

a
rt

ia
l

o
rd

e
r

se
m

i-
fo

rm
a

l
-

p
a

rt
ia

l
o

rd
e

r

in
fo

rm
a

l

B
P

-Q
L

B
P

-M
o

n

B
P

-E
x

B
P

M
N

-Q

B
P

M
N

 V
Q

L

D
M

Q
L

G
M

Q
L

V
M

Q
L

D
e

sc
ri

p
ti

v
e

 P
Q

L

B
Q

L

A
P

Q
L

 /
 P

Q
L

F
P

S
P

A
R

Q
L

Q
u

B
P

A
L

B
P

Q
L

in
d

e
x

in
g

fi
lt

e
ri

n
g

o
p

ti
m

iz
in

g
 (

e
x

e
c.

 p
la

n
)

p
ro

je
c

ti
n

g

tr
a

n
sl

a
ti

n
g

v
is

u
a

li
zi

n
g

Querying business processes with BP-QL [48]

BPMN-Q: A language to querying business processes [49]

Semantic querying of business process models [50]

Querying graph-based repositories of process models [51]

Efficient processing of BPMN-Q queries [52]

Query structural information of BPEL processes [55]

Process Matching: A structural approach for process search [56]

FNet: An index for advanced business process querying [24]

Ontology-based querying of composite services by processes [59]

Crosscutting concern documentation by BPMN VQL [60]

DMQL: The diagramed model query language [57]

GMQL: The generic model query language [58]

Querying business process models with VMQL [61]

PQL: A descriptive language to query, abstract & change process models [62]

Indexing business processes via annotated finite state automata [73]

Compliance checking using BPMN-Q & temporal logic [65]

Querying business process models based on semantics [63]

Efficient querying of large process model repositories [64]

APQL: A process-model query language [66]

Indexing and efficient instance-based retrieval of process models [25]

Querying process models by behavior inclusion [71]

Monitoring business processes with queries [74]

Type inference and checking for queries on execution traces [76]

Models and query languages for probabilistic processes [78]

Process query language to make workflow processes more flexible [79]

A query language for analyzing business processes execution [80]

Log-based understanding of processes via temporal logic query checking [81]

Log-based process fragment querying to support process design [82]

A framework supporting querying analysis of process logs [83]

querying

semantic
query language

Structural

querying

Behavioral

querying

Process

execution

querying

Event log

querying

Literature

Process Repository Design Process Query Design
Prepare &

Execute
Intepretbehavior

model
modeling language

level of

formalism

query

intent
querying technique

NOTE: The sign of � indicates the evaluation item is supported. The sign of ± means there is some intermediate or indirect support. E.g., Ref. [51] applies the index-and-filtering functionalities provided by the underlying RDBMS
deployed in the research instead of developing its own mechanism, hence it is evaluated ± for both items of indexing and filtering. Then, in Ref. [52] the authors progressed the work by proposing their own mechanisms for
indexing and filtering and therefore the work is evaluated � for both items.

A. Polyvyanyy et al. / Decision Support Systems 100 (2017) 41–56 55

The literature analysis results in Table 2 justify the design of the
framework proposed in Section 4, as most of the proposed compo-
nents and features of the design are addressed in the literature.

None of the existing methods for process querying addresses
all the components of the framework, even for a subset of behav-
ior model types and/or different levels of formalism. The insights
gained from the reported evaluation were used to inform the design
of the framework. In particular, the “Interpret” part was introduced
after the respective functionality was identified in the selected
literature.

The identified in this literature review research gaps include: (i)
absence of querying methods over correlation models, e.g., align-
ments [36], (ii) absence of unified querying methods over several
types of behavior models, (iii) absence of unified querying methods
over all levels of formalism of behavior models, e.g., informal, semi-
formal, and formal models, (iv) absence of works on caching in the
context of process querying, (v) lack of techniques for indexing pro-
cess repositories and optimization of process queries, (vii) lack of
various means for explaining process querying results (as most of the
methods rely only on means of translating and visualizing querying
results), and (viii) lack of works on components that can be used to
instantiate the proposed framework for querying over formal process
models with querying semantics grounded in behavior of the pro-
cess models. We believe that the proposed framework for process
querying methods and the insights gained in the conducted litera-
ture review will help to steer as of today somewhat uncoordinated
efforts in research on process querying.

7. Conclusion

This paper proposes a framework for developing process querying
methods, i.e., (automated) techniques for managing process repos-
itories. The active components of the framework specify generic
functionalities that can be configured and specialized to address a
particular process querying problem. The framework is grounded in
various use cases taken from the BPM field and the reported lit-
erature review. The use cases motivate the framework and guide
its design. The literature review justifies the design and reveals
research gaps. As of today, comprehensive process querying meth-
ods grounded in behaviors captured by models of dynamic systems
are missing. The introduction of these methods will enable the so far
unmatched experience in process analytics that will lead to the next
generation of smart BI technologies.

Acknowledgments

This research is partly supported by the Australian Research
Council Discovery Project DP150103356.

References

[1] W.M.P. van der Aalst, Process Mining–Data Science in Action, 2nd ed. ed.,
Springer. 2016.

[2] M. zur Muehlen, R. Shapiro, Business Process Analytics, Handbook on Busi-
ness Process Management 2, International Handbooks on Information Systems,
Springer. 2015, pp. 243–263.

[3] S. Beheshti, B. Benatallah, S. Sakr, D. Grigori, H.R. Motahari-Nezhad, M.C.
Barukh, A. Gater, S.H. Ryu, Process Analytics — Concepts and Techniques for
Querying and Analyzing Process Data, Springer. 2016.

[4] J. Wang, T. Jin, R.K. Wong, L. Wen, Querying business process model reposi-
tories — a survey of current approaches and issues, World Wide Web 17 (2014)
427–454.

[5] K. Peffers, T. Tuunanen, M.A. Rothenberger, S. Chatterjee, A design science
research methodology for information systems research, J. Manag. Inf. Syst. 24
(2008) 45–77.

[6] A.R. Hevner, S.T. March, J. Park, S. Ram, Design science in information systems
research, MIS Q. 28 (2004) 75–105.

[7] W.M.P. van der Aalst, Business process management: a comprehensive survey,
ISRN Softw. Eng. 2013 (2013)

[8] J.L. Whitten, V.M. Barlow, L. Bentley, Systems Analysis and Design Methods,
3rd ed. ed., McGraw-Hill Professional. 1997.

[9] A. Osterwalder, Y. Pigneur, Designing business models and similar strategic
objects: the contribution of IS, JAIS 14 (2013)

[10] J.A. Zachman, A framework for information systems architecture, IBM Syst. J.
38 (1999) 454–470.

[11] V. Haren, TOGAF Version 9.1, 10th ed. ed., Van Haren Publishing. 2011.
[12] A.P. Barros, K. Duddy, M. Lawley, Z. Milosevic, K. Raymond, A. Wood, Processes,

Roles, and Events: UML Concepts for Enterprise Architecture, UML, LNCS vol.
1939, Springer. 2000, pp. 62–77.

[13] H. Jonkers, M.M. Lankhorst, R. van Buuren, S. Hoppenbrouwers, M.M. Bon-
sangue, L.W.N. van der Torre, Concepts for modeling enterprise architectures,
Int. J. Coop. Inf. Syst. 13 (3) (2004) 257–287.

[14] M. Weidlich, A.P. Barros, J. Mendling, M. Weske, Vertical Alignment of Process
Models — How Can We Get There? BPMDS, LNBIP vol. 29, Springer. 2009, pp.
71–84.

[15] A. Polyvyanyy, M. Weidlich, M. Weske, Isotactics as a Foundation for Alignment
and Abstraction of Behavioral Models, BPM, LNCS vol. 7481, Springer. 2012,
pp. 335–351.

[16] T. Schneider, SAP Business By Design Studio — Application Development, SAP
Press. 2011.

[17] X. Lu, M. Nagelkerke, D. van de Wiel, D. Fahland, Discovering interacting
artifacts from ERP systems, IEEE TSC 8 (2015)

[18] A. Koschmider, M. Fellmann, A. Schoknecht, A. Oberweis, Analysis of pro-
cess model reuse: where are we now, where should we go from here? Decis.
Support Syst. 66 (2014) 9–19.

[19] B.F. van Dongen, R.M. Dijkman, J. Mendling, Measuring Similarity between
Business Process Models, Seminal Contributions to Information Systems
Engineering, 25 Years of CAiSE, Springer. 2013, pp. 405–419.

[20] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, Merging Event–
Driven Process Chains, OTM Conferences, LNCS vol. 5331, Springer. 2008, pp.
418–426.

[21] I. Trummer, C. Koch, Multi-objective parametric query optimization, PVLDB 8
(2014) 221–232.

[22] D. Fahland, W.M.P. van der Aalst, Model repair — aligning process models to
reality, Inf. Syst. 47 (2015) 220–243.

[23] A. Polyvyanyy, W.M.P. van der Aalst, A.H.M. ter Hofstede, M.T. Wynn, Impact–
driven process model repair, ACM Trans. Softw. Eng. Methodol. 25 (2017)
1–60.

[24] Z. Yan, R. Dijkman, P. Grefen, FNet: An index for advanced business process
querying, BPM, LNCS vol. 7481, Springer. 2012, pp. 246–261.

[25] A. Polyvyanyy, M. La Rosa, A.H.M. ter Hofstede, Indexing and Efficient
Instance-Based Retrieval of Process Models Using Untanglings, CAiSE, LNCS vol.
8484, Springer. 2014, pp. 439–456.

[26] C.A. Petri, Nicht-sequentielle Prozesse, Arbeitsberichte des IMMD 8, Univer-
sität Erlangen Nürnberg. 1976.

[27] M. Nielsen, G.D. Plotkin, G. Winskel, Petri nets, event structures and domains,
Part I, Theor. Comput. Sci. 13 (1981)

[28] U. Goltz, W. Reisig, The non-sequential behavior of Petri nets, Infect. Control.
57 (1983)

[29] O.I. Lindland, G. Sindre, A. Sølvberg, Understanding quality in conceptual
modeling, IEEE Softw. 11 (1994) 42–49.

[30] T.H. Cormen, Algorithms Unlocked, MIT Press. 2013.
[31] J. Recker, Evidence-Based Business Process Management: Using Digital Oppor-

tunities to Drive Organizational Innovation, BPM–Driving Innovation in a
Digital World, Springer. 2015, pp. 129–143.

[32] C. Baier, J.-P. Katoen, Principles of Model Checking, MIT Press. 2008.
[33] J. Banks, J.S.C. II, B.L. Nelson, D.M. Nicol, Discrete-Event System Simulation, 5th

ed. ed., Pearson Education. 2010.
[34] W.M.P. van der Aalst, C. Stahl, Modeling Business Processes — A Petri Net-Ori-

ented Approach, MIT Press. 2011.
[35] W. Reisig, Understanding Petri Nets — Modeling Techniques, Analysis Methods,

Case Studies, Springer. 2013.
[36] W.M.P. van der Aalst, A. Adriansyah, B.F. van Dongen, Replaying history on

process models for conformance checking and performance analysis,
Wiley Interdiscip. Rev.-Data Mining Knowl. Discov. 2 (2012) 182–
192.

[37] J. Mendling, M. Strembeck, J. Recker, Factors of process model comprehen-
sion — findings from a series of experiments, Decis. Support Syst. 53 (2012)
195–206.

[38] J. Mendling, H.A. Reijers, W.M.P. van der Aalst, Seven process modeling
guidelines (7PMG), Inf. Softw. Technol. 52 (2). (2010)

[39] M. Sipser, Introduction to the Theory of Computation, 3rd ed. ed., Cengage
Learning. 2012.

[40] E. Kindler, W.M.P. van der Aalst, Liveness, fairness, and recurrence in Petri
nets, Inf. Process. Lett. 70 (1999)

[41] K.R. Apt, N. Francez, S. Katz, Appraising fairness in languages for distributed
programming, Distrib. Comput. 2 (1988)

[42] M. Reichert, B. Weber, Enabling Flexibility in Process-Aware Information Sys-
tems, Springer. 2012, 297–317.

[43] J. Esparza, M. Nielsen, Decidability issues for Petri nets — a survey, Bull. EATCS
52 (1994) 244–262.

[44] R.W. White, R.A. Roth, Exploratory Search: Beyond the Query–Response
Paradigm, Morgan & Claypool Publishers. 2009.

[45] M. Dwyer, G. Avrunin, J. Corbett, Patterns in Property Specifications for Finite-S-
tate Verification, ICSE, ACM. 1999,

http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0005
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0010
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0015
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0020
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0025
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0030
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0035
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0040
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0045
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0050
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0055
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0060
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0065
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0070
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0075
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0080
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0085
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0090
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0095
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0100
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0105
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0110
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0115
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0120
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0125
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0130
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0135
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0140
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0145
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0150
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0155
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0160
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0165
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0170
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0175
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0180
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0185
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0190
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0195
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0200
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0205
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0210
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0215
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0220
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0225

56 A. Polyvyanyy et al. / Decision Support Systems 100 (2017) 41–56

[46] J. Webster, R.T. Watson, Analyzing the past to prepare for the future: writing
a literature review, MIS Q. 26 (2002) xiii–xxiii.

[47] J. Vom Brocke, A. Simons, B. Niehaves, K. Riemer, R. Plattfaut, A. Cleven, et al.
Reconstructing the Giant: On the Importance of Rigour in Documenting the
Literature Search Process., ECIS, 2009. pp. 2206–2217.

[48] C. Beeri, A. Eyal, S. Kamenkovich, T. Milo, Querying business processes with
BP-QL, Inf. Syst. 33 (2008) 477–507.

[49] A. Awad, BPMN-Q: A Language to Query Business Processes, EMISA, LNI vol.
P-119, GI. 2007, pp. 115–128.

[50] A. Awad, A. Polyvyanyy, M. Weske, Semantic Querying of Business Process
Models, EDOC, IEEE Comp. Society. 2008,

[51] A. Awad, S. Sakr, Querying Graph-Based Repositories of Business Process
Models, DASFAA Workshops, LNCS vol. 6193, Springer. 2010, pp. 33–44.

[52] A. Awad, S. Sakr, On efficient processing of BPMN-Q queries, Comput. Ind. 63
(2012) 867–881.

[53] R. Dijkman, M. Dumas, L. García-Ba nuelos, Graph Matching Algorithms for
Business Process Model Similarity Search, BPM, LNCS vol. 5701, Springer. 2009,
pp. 48–63.

[54] Z. Yan, R. Dijkman, P. Grefen, Fast business process similarity search, Distrib.
Parallel Databases 30 (2012) 105–144.

[55] Z. Ma, W. Lu, F. Leymann, Query structural information of BPEL processes, ICIW,
IEEE Computer Society. 2009,

[56] J. Zhu, H.K. Pung, Process Matching: A Structural Approach for Business Process
Search, ComputationWorld, IEEE Computer Society. 2009, pp. 227–232.

[57] P. Delfmann, D. Breuker, M. Matzner, J. Becker, Supporting information
systems analysis through conceptual model query — the Diagrammed Model
Query Language (DMQL), Commun. Assoc. Inf. Syst. 37 (2015)

[58] P. Delfmann, M. Steinhorst, H.-A. Dietrich, J. Becker, The generic model query
language GMQL — conceptual specification, implementation, and runtime
evaluation, Inf. Syst. 47 (2015) 129–177.

[59] F. Smith, M. Missikoff, M. Proietti, Ontology-based querying of composite
services, BSME, Springer. 2010,

[60] C. Di Francescomarino, P. Tonella, Crosscutting Concern Documentation by
Visual Query of Business Processes, BPM Workshops, LNBIP vol. 17, Springer.
2008, pp. 18–31.

[61] H. Störrle, V. Acretoaie, Querying Business Process Models with VMQL, BMFA,
4, ACM. 2013, pp. 1–10.

[62] K. Kammerer, J. Kolb, M. Reichert, PQL — A Descriptive Language for Querying,
Abstracting and Changing Process Models, BPMDS, LNBIP vol. 214, Springer.
2015, pp. 135–150.

[63] T. Jin, J. Wang, L. Wen, Querying Business Process Models Based on Semantics,
DASFAA, Springer. 2011,

[64] T. Jin, J. Wang, M. La Rosa, A. ter Hofstede, L. Wen, Efficient querying of large
process model repositories, CII 64 (2013)

[65] A. Awad, G. Decker, M. Weske, Efficient Compliance Checking Using BPMN-Q
and Temporal Logic, BPM, LNCS vol. 5240, Springer. 2008, pp. 326–341.

[66] A.H.M. ter Hofstede, C. Ouyang, M. La Rosa, L. Song, J. Wang, A. Polyvyanyy,
APQL: A Process-Model Query Language, AP-BPM, LNBIP vol. 159, Springer.
2013, pp. 23–38.

[67] A. Polyvyanyy, L. Corno, R. Conforti, S. Raboczi, M. La Rosa, G. Fortino,
Process Querying in Apromore, BPM Demos, CEUR Workshop Proceedings
1418, CEUR-WS.org. 2015, pp. 105–109.

[68] M. Kunze, M. Weske, Metric Trees for Efficient Similarity Search in Large
Process Model Repositories, BPM, LNBIP vol. 66, Springer. 2010, pp. 535–546.

[69] M. Kunze, M. Weidlich, M. Weske, Behavioral Similarity — A Proper Metric,
BPM, LNCS vol. 6896, Springer. 2011,

[70] M. Guentert, M. Kunze, M. Weske, Evaluation Measures for Similarity Search
Results in Process Model Repositories, ER, LNCS vol. 7532, Springer. 2012, pp.
214–227.

[71] M. Kunze, M. Weidlich, M. Weske, Querying Process Models by Behavior
Inclusion, Softw. Syst. Model. 14 (2015)

[72] M. Weidlich, H. Ziekow, J. Mendling, Optimising Complex Event Queries over
Business Processes Using Behavioural Profiles, BPM Workshops, LNBIP vol. 66,
Springer. 2010, pp. 743–754.

[73] B. Mahleko, A. Wombacher, Indexing business processes based on annotated
finite state automata, ICWS, IEEE. 2006, pp. 303–311.

[74] C. Beeri, A. Eyal, T. Milo, A. Pilberg, Monitoring Business Processes with Queries,
VLDB, ACM. 2007, pp. 603–614.

[75] C. Beeri, A. Eyal, T. Milo, A. Pilberg, BP-Mon: query-based monitoring of BPEL
business processes, Sigmod Rec. 37 (2008)

[76] D. Deutch, T. Milo, Type inference and type checking for queries on execution
traces, PVLDB 1 (2008) 352–363.

[77] E. Balan, T. Milo, T. Sterenzy, BP-Ex: a uniform query engine for business
process execution traces, EDBT, ACM. 2010,

[78] D. Deutch, T. Milo, On models and query languages for probabilistic processes,
Sigmod Rec. 39 (2010) 27–38.

[79] M. Momotko, K. Subieta, Process Query Language: A Way to Make Workflow
Processes More Flexible, ADBIS, LNCS vol. 3255, Springer. 2004, pp. 306–321.

[80] S. Beheshti, B. Benatallah, H.R.M. Nezhad, S. Sakr, A Query Language for
Analyzing Business Processes Execution, BPM, LNCS vol. 6896, Springer. 2011,
pp. 281–297.

[81] M. Räim, C. Di Ciccio, F.M. Maggi, M. Mecella, J. Mendling, Log-Based Under-
standing of Business Processes through Temporal Logic Query Checking, OTM
Conferences, LNCS vol. 8841, Springer. 2014, pp. 75–92.

[82] K. Yongsiriwit, N.N. Chan, W. Gaaloul, Log-Based Process Fragment Querying to
Support Process Design, HICSS, IEEE Computer Society. 2015, pp. 4109–4119.

[83] B. Fazzinga, S. Flesca, F. Furfaro, E. Masciari, L. Pontieri, C. Pulice, A Framework
Supporting the Analysis of Process Logs Stored in Either Relational or NoSQL
DBMSs, ISMIS, LNCS vol. 9384, Springer. 2015, pp. 52–58.

[84] R.M. Dijkman, M. Dumas, B.F. van Dongen, R. Käärik, J. Mendling, Similarity
of business process models: metrics and evaluation, Inf. Syst. 36 (2011)
498–516.

[85] M. Kunze, M. Weske, Methods for Evaluating Process Model Search, BPM
Workshops, LNBIP vol. 171, Springer. 2013.

Artem Polyvyanyy. Dr. Artem Polyvyanyy is a lecturer
at the Business Process Management Discipline, School
of Information Systems, Science and Engineering Faculty,
of the Queensland University of Technology, Brisbane,
Australia. He has a strong background in Computer Sci-
ence, Software Engineering, and Business Process Man-
agement from the National University of Kyiv-Mohyla
Academy, Kyiv, Ukraine, and the Hasso Plattner Insti-
tute, Potsdam, Germany. He received a PhD degree (Dr.
rer. nat.) in the scientific discipline of Practical Computer
Science from the University of Potsdam, Germany. His per-
sonal research interests include Distributed and Parallel
Systems, Concurrency Theory, Petri Nets, Formal Meth-
ods, Information Systems, Software Engineering, Work-
flow Management, and Business Process Management.

More recently, he has conducted research on process analysis, behavior abstraction in
concurrent systems, process mining, and process querying.

Chun Ouyang. Dr. Chun Ouyang is a senior lecturer in
the School of Information Systems at Queensland Univer-
sity of Technology (QUT). After she received her PhD from
the University of South Australia in 2004, Chun became
a member of the Business Process Management (BPM)
research group at QUT. Chuns research interests in BPM
range from underlying techniques (mainly Petri nets) for
process modeling and analytics, process mining, stan-
dards and methods used in industry (such as mainstream
modeling languages BPMN, BPEL), application of aspect-
orientation to BPM, and application of BPM to various
domains such as screen business and healthcare.

Alistair Barros. Alistair Barros is a full professor of Infor-
mation Systems and Head of Services Science Discipline,
at QUTs School of Information Systems. He has a PhD
from the University of Queensland and ICT experience
across industry, technology vendor and research roles,
including Global Research Leader and Chief Develop-
ment Architect at SAP. He has contributed to a num-
ber of widely adopted IT platform standards/references,
including: Business Process Management Notation 2.0, the
Workflow Patterns, Unified Modelling Language 2.0 and
Unified Service Description Language. He has led large
research proposals/projects across Europe and Australia
including Smart Services Collaboration Research Centre,
Internet of Services projects in EU Framework Program
7, German BMBF and a number of Australian Research

Council projects. In addition to his research and teaching roles at QUT, Alistair is cur-
rently serving as a consultant chief architect in an Ernst & Young led team, in one of the
federal government largest service delivery transformation projects, the $1.6 billion
Welfare Payments Infrastructure Transformation project.

Wil van der Aalst. Prof.dr.ir. Wil van der Aalst is a full pro-
fessor of Information Systems at the Technische Univer-
siteit Eindhoven (TU/e). At TU/e he is the scientific director
of the Data Science Center Eindhoven (DSC/e). Since 2003
he holds a part-time position at Queensland University of
Technology (QUT). His personal research interests include
process mining, Petri nets, business process management,
workflow management, process modeling, and process
analysis. He is also a member of the Board of Governors
of Tilburg University and an elected member of the Royal
Netherlands Academy of Arts and Sciences, the Royal Hol-
land Society of Sciences and Humanities, and the Academy
of Europe.

http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0230
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0230
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0235
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0240
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0245
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0250
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0255
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0260
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0265
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0270
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0275
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0280
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0285
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0290
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0295
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0300
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0305
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0310
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0315
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0320
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0325
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0330
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0335
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0340
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0345
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0350
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0355
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0360
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0365
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0370
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0375
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0380
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0385
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0390
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0395
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0400
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0405
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0410
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0415
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0420
http://refhub.elsevier.com/S0167-9236(17)30078-7/rf0425

	Process querying: Enabling business intelligence through query-based process analytics
	1. Introduction
	2. Process querying requirements
	2.1. Contexts for process management
	2.2. Functional requirements of process querying

	2.3. Non-functional requirements of process querying
	3. Process querying
	4. The Process Querying Framework
	4.1. Components and parts of the framework
	4.1.1. Model, simulate, record, and correlate
	4.1.2. Prepare
	4.1.3. Execute
	4.1.4. Interpret

	4.2. Design decisions
	4.2.1. DD1: which behavior models to support?
	4.2.2. DD2: which processes to support?
	4.2.3. DD3: which process queries to support?

	4.3. Design challenges
	4.3.1. DC1: computability
	4.3.2. DC2: complexity/efficiency
	4.3.3. DC3: expressiveness/suitability

	4.4. Process querying compromise

	5. Query-Based Process Analytics and Business Intelligence
	6. Process querying: state of the art
	6.1. Literature search and collection
	6.2. Literature selection
	6.3. Literature analysis and evaluation

	7. Conclusion
	Acknowledgments
	References

