
Recurrent Process Mining with Live Event Data

Alifah Syamsiyah, Boudewijn F. van Dongen, Wil M.P. van der Aalst

Eindhoven University of Technology
A.Syamsiyah@tue.nl, B.F.v.Dongen@tue.nl, W.M.P.v.d.Aalst@tue.nl

Abstract. In organizations, process mining activities are typically per-
formed in a recurrent fashion, e.g. once a week, an event log is extracted
from the information systems and a process mining tool is used to ana-
lyze the process’ characteristics. Typically, process mining tools import
the data from a file-based source in a pre-processing step, followed by
an actual process discovery step over the pre-processed data in order
to present results to the analyst. As the amount of event data grows
over time, these tools take more and more time to do pre-processing
and all this time, the business analyst has to wait for the tool to finish.
In this paper, we consider the problem of recurrent process discovery
in live environments, i.e. in environments where event data can be ex-
tracted from information systems near real time. We present a method
that pre-processes each event when it is being generated, so that the
business analyst has the pre-processed data at his/her disposal when
starting the analysis. To this end, we define a notion of intermediate
structure between the underlying data and the layer where the actual
mining is performed. This intermediate structure is kept in a persistent
storage and is kept live under updates. Using a state of the art process
mining technique, we show the feasibility of our approach. Our work is
implemented in the process mining tool ProM using a relational database
system as our persistent storage. Experiments are presented on real-life
event data to compare the performance of the proposed approach with
the state of the art.

Keywords: Recurrent proses mining � Live event data � Incremental process
discovery

1 Introduction

Process mining is a discipline where the aim is to improve an organization’s
processes given the information from the so called event logs [16]. Process mining
techniques have been successfully demonstrated in various case studies such as
health care, insurance, and finance [5, 10, 12, 23]. In many of these cases, a one-
time study was performed, but in practice, process mining is typically a recurring
activity, i.e. an activity that is performed on a routine basis.

As an illustration, suppose that each manager of an insurance company has
the obligation to report her/his work to a director once in each month to see

2 Alifah Syamsiyah, Boudewijn F. van Dongen, Wil M.P. van der Aalst

J

Jan

January February March

Jan,
Feb

Jan, Feb,
Mar

J+F J+F+M

Live Scenario

Traditional Scenario

Monthly report

Since March 2017

Since 2017

Weekly report

Update Phase

Retrieve and
Mining Phase

Abstraction
and Mining
Phase

Intermediate
Structure

New event

Fig. 1. Traditional vs live scenario in process discovery

the company’s progress since the beginning of a year. Typical analysis in such
regular report incorporates the observations from previous month, last three
months, or last year. This type of reporting requires an analyst to repeatedly
produce analysis results from data that grows over time.

Existing process mining tools are not tailored towards such recurrent analy-
ses. Instead, they require the analysts to export the event data from a running
system, import it to the mining tool which pre-processes the data during im-
porting and then use the tool on the pre-processed data. As the amount of data
grows, the import and pre-processing phase takes longer and longer causing the
analyst to waste time.

However, most information systems nowadays record real-time event data
about business processes during their executions. This enables analysis tech-
niques to import and pre-process the data when it “arrives”. By shifting the
pre-processing time an analyst is able to do process mining on the pre-processed
data instantly.

The idea of this live scenario is sketched in Figure 1. In the live scenario,
we introduce a persistent storage for various structures that are kept as “ an
intermediate structure” by process mining algorithms. We then show how such
intermediate structure can be updated without the need for full recomputation
every time an event arrives. Using the intermediate structure of the state-of-
the-art process mining technique, we show the feasibility of our approach in the
general process mining setting and using experiments on real-life data, we show
the added time-benefit for the analyst.

This paper is organized as follows. In Section 2 we introduce recurrent process
mining and we focus on a traditional technique in this setting. In Section 3, we

Recurrent Process Mining with Live Event Data 3

show how recurrent process mining can be performed on live event data and we
prove that the technique of Section 2 can be made incremental. We show the
improvements of our work using real-life data in Section 4. Then, in Section 5
discusses some related work. Finally, we conclude the paper in Section 6.

2 Recurrent Process Mining

The challenge in process mining is to gain insights into an operational system
in which activities are executed. The execution of these activities is reflected
through events, i.e. events are occurrences of activities. Furthermore, in process
mining, activities are being executed in the context of cases (also referred to as
process instances) at a particular point in time.

Definition 1 (Events, cases, and activities).
Let A be the universe of activities, let C be the universe of cases, and let Υ be
the universe of events. We define #act : Υ Ñ A a function labeling each event
with an activity. We define #cs : Υ Ñ C a function labeling each event with a
case. We define #tm : Υ Ñ R a function labeling each event with a timestamp.

In process mining, the general assumption is that event data is provided in
the form of an event log. Such an event log is basically a collection of events
occurring in a specific time period, in which the events are grouped by cases
sequentialized based on their time of occurrence.

Definition 2 (Event log and trace).
Let E � Υ be a collection of events and ts, te P R two timestamps with ts te
relating to the start and the end of the collection period.

A trace σ P E� is a sequence of events such that the same event occurs only
once in σ, i.e. |σ| � |te P σu|. Furthermore, each event in a trace refers to the
same case c P C, i.e. @ePσ#cspeq � c and we assume all events within the given
time period are included, i.e. @ePΥ p#cspeq � c^ ts ¤ #tmpeq ¤ teq ùñ e P σ.

An event log L P ℘pE�q1 is a set of traces.

Note that the time-period over which an event log is collected plays an im-
portant role in this paper. In most process mining literature, this time period is
neglected and the event log is assumed to span eternity. However, in practice,
analysis always consider event data pertaining to a limited period of time. There-
fore, in this paper, we explicitly consider the following process mining scenarios
(as depicted in Figure 1):

– Analysts perform process mining tasks on a recurrent schedule at regular
points, e.g. once a week about the last week, or once a month about the last
month, or

– Analysts perform process mining on the data since a pre-determined point
in time, e.g. since 2017, or since March 2017.

1 ℘pE�q denotes a powerset of sequences, i.e. L � E�

4 Alifah Syamsiyah, Boudewijn F. van Dongen, Wil M.P. van der Aalst

2.1 Traditional Recurrent Process Mining

To execute the two process mining scenarios, a multitude of process mining
techniques is available. However, all have two things in common, namely (1)
that the starting point for analysis is an event log and (2) that the analysis is
performed in three phases, namely: loading, abstraction, and mining.

While the details may differ, all process mining techniques build an inter-
mediate structure in memory during the abstraction phase. Typically, the time
needed to execute this phase is linear in the number of events in the event
log. This intermediate structure (of which the size is generally polynomial in the
number of activities in the log, but not related to the number of events anymore)
is then used to perform the actual mining task. In this paper, we consider the
state-of-the-art process discovery algorithm, namely the Inductive Miner [6, 7],
which is known to be flexible, to have formal guarantees, and to be scalable. For
the Inductive Miner, the intermediate structure is the so-called direct succession
relation (Definition 3) which counts the frequencies of direct successions.

Definition 3 (Direct succession [16]).
Let L be an event log over E � Υ . The direct succession relation ¡L : A�AÑ N
counts the number of times activity a is directly followed by activity b in some
cases in L as follows:

¡Lpa, bq � ΣσPL Σ
|σ|�1
i�1

#
1, if #actpσpiqq � a ^ #actpσpi� 1qq � b

0, otherwise.

To illustrate how the Inductive Miner algorithm uses the direct succession
relation described above, we refer to Table 1. Here, we show (by example), how
the mining technique uses the relation as an intermediate structure to come to
a result. In order to apply this traditional technique in a recurrent setting, the
loading of the data, the abstraction phase, and the mining phase have to be
repeated. When over time the event data grows, the time to execute the three
phases also grows, hence performing the recurrent mining task considering one
year of data will take 52 times longer than considering one week of data.

In Table 2 we show an example of the Inductive Miner applied to a real-
life dataset of the BPI Challenge 2017 [17] which contains data of a full year.
We record the times to perform the three phases of importing, abstraction, and
mining on this dataset after the first month, at the middle of the year, and at
the end of the year. It is clear that indeed the importing and abstraction times
grow considerably, while the actual mining phase is orders of magnitude faster.

�
An exclusive-choice cut of L is a cut p�, A1, ..., Anq such that

@i, j P t1, ..., nu @a P Ai @b P Aj i � j ñ£L pa, bq

Ñ
A sequence cut of L is a cut pÑ, A1, ..., Anq such that

@i, j P t1, ..., nu @a P Ai @b P Aj i j ñ p¡�Lpa, bq ^ £�L pb, aqq

Table 1: Examples of the use of the intermediate structure in Inductive Miner

Recurrent Process Mining with Live Event Data 5

Week Inductive Miner
Loading Abstraction Mining

5 0.8520 2.8531 0.0254
26 3.6319 30.9528 0.0257
52 9.5854 93.5118 0.0291

Table 2: Process mining times (in seconds) in the traditional setting on data of
the BPI Challenge 2017 [17]

Figure 2 shows the result of the Inductive Miner after the first 5 weeks of
data, i.e. if an analyst has produced this picture on January 29th 2016, it would
have taken 3.7305 seconds (� 0.8520�2.8531�0.0254) in total to load the event
log, build the abstraction, and do the mining in order to produce this picture
using the Inductive Miner in ProM.

Fig. 2. Screenshot of ProM showing the result of the Inductive Miner on the BPI
Challenge 2017 data considering the first 5 weeks of data.

In Section 3, we present a method to store the intermediate structure in a
persistent storage and to keep it live under updates, i.e. every time an event is
generated, the intermediate structure is updated (in constant time). This way,
when a process mining task is performed, the time spent by the analyst is limited
to the time to retrieve the intermediate structure and to do the actual mining.

3 Recurrent Process Mining with Live Event Data

It is easy to see that given an event log L, the relation in Definition 3 can
be computed during a single linear pass over the event log, visiting each event
exactly once. In this section, we present a live process mining technique based
on the Inductive Miner which does not require the analyst to repeat the import
and analysis phases every time a process mining task is performed.

In order to enable live process mining, we use a persistent event storage,
called DB-XES [13], which uses a relational database to store event data. The

6 Alifah Syamsiyah, Boudewijn F. van Dongen, Wil M.P. van der Aalst

full structure of this relational database is beyond the scope of this paper, but
what is important is that given a trace, it is possible to quickly retrieve the last
event recorded for that trace.

Definition 4 (Last event in a trace).
Let E � Υ be a collection of events and let c P C be a case. The function
λ : C Ñ E Y tKu is a function that returns the last event in E belonging to case
c, i.e.

λpcq �

#
K, if @ePE#cspeq � c,

e P E, if #cspeq � c^ Ee1 P Ep#cspe1q � c^#tmpe1q ¡ #tmpeqq.

Using DB-XES as a persistent storage and making use of the ability to query
for the last event in a trace, we present the Incremental Inductive Miner in
Section 3.1.

3.1 Incremental Inductive Miner

The Inductive Miner uses only the frequency of direct successions between ac-
tivities as input as defined in Definition 3. Therefore, to enable an incremental
version of the Inductive Miner, we present an update strategy that, given the
relation ¡L for some log L and a new event e, we can derive the relation ¡L1

where L1 is the log L with the additional event e.

Theorem 1 (Updating relation ¡ is possible).
Let E � Υ be a set of events and L a log over E. Let e P Υ zE be a fresh event
to be added such that for all e1 P E holds #tspe1q #tspeq and let E1 � E Y teu
be the new set of events with L1 the corresponding log over E1. We know that for
all a, b P A holds that:

¡L1pa, bq � ¡Lpa, bq �

$'&
'%

0 if λp#cspeqq � K,

1 if #actpλp#cspeqqq � a^#actpeq � b,

0 otherwise.

Proof. Let c � #cspeq P C be the case to which the fresh event belongs.
If for all e1 P E holds that #cspe1q � c, then this is the first event in case c

and we know that L1 � LY xey. Hence relation ¡ does not change from L to L1

as indicated by case 1.
If there exists e1 � λp#cspeqq P E with #cspe1q � c, then we know that there

is a trace σc P L. Furthermore, we know that L1 � pLztσcuq Y tσc � xeyu, i.e.
event e gets added to trace σc of L. This implies that ¡L1p#actpe1q,#actpeqq =
¡Lp#actpe1q,#actpeqq � 1 as indicated by case 2.

In all other cases, the number of direct successions of two activities is not
affected. �

Using the simple update procedure indicated in Theorem 1 the Incremen-
tal Inductive Miner allows for recurrent process mining under live updates. In
Section 4 we show how the effect of keeping relation ¡ lives on the total time
needed to perform the recurrent process mining task.

Recurrent Process Mining with Live Event Data 7

10 20 30 40 50

1

2

3

n-th Week

T
im

e
(S

ec
o
n
d
s)

10 20 30 40 50

50

100

150

n-th Week

T
im

e
(S

ec
o
n
d
s)

Fig. 3. The comparison of recurrent process discovery using DIIM (left) vs traditional
Inductive Miner (right)

4 Experimental Results

We implemented the algorithm presented as a ProM2 plug-in called Database-
Incremental Inductive Miner (DIIM)3. DIIM is designed for recurrent process
discovery based on live event data. It uses DB-XES as the back-end storage
and the Inductive Miner as the mining algorithm. In this section, we show the
experimental results of applying DIIM in a live scenario and we compare it to
traditional Inductive Miner.

For the experiment, we used a real dataset from BPI Challenge 2017 [17].
This dataset pertains to the loan applications of a company from January 2016
until February 2017. In total, there are 1,202,267 events and 26 different activities
which pertain to 31,509 loan applications.

In this experiment, we looked into some weekly reports where we were inter-
ested to see process models of the collective data since 2016. The last working
day, i.e. Friday, was chosen as the day when we performed the process discov-
ery to have a progress report for that week. In live scenario, we assumed that
each event was inserted to the DB-XES database precisely at the time stated in
the timestamp attribute of the event log. Then, the DB-XES system immedi-
ately processed each new event data as it arrived using triggers in the relational
database, implementing the update procedures detailed in Section 3, thus keep-
ing the relations live under updates. In traditional scenario, we split the dataset
into several logs such that each log contained data for one week. For the n-th
report, we combined the log from the first week until the n-th week, loaded it
into ProM, and discovered a process model.

Figure 3 shows the experimental results of recurrent process discovery using
DIIM and the Inductive Miner. The x-axis represents the n-th week, while the
y-axis represents the time spent by user (in seconds) to discover process models.
The blue dots are the experiment using DIIM which includes the total times to
insert new events, update the intermediate structure, retrieve the values from the

2 See http://www.processmining.org and http://www.promtools.org
3 https://svn.win.tue.nl/repos/prom/Packages/DatabaseInductiveMiner/

Trunk/

http://www.processmining.org
http://www.promtools.org
https://svn.win.tue.nl/repos/prom/Packages/DatabaseInductiveMiner/Trunk/
https://svn.win.tue.nl/repos/prom/Packages/DatabaseInductiveMiner/Trunk/

8 Alifah Syamsiyah, Boudewijn F. van Dongen, Wil M.P. van der Aalst

DB-XES, and mine the process models, while the red dots are the experiment
using traditional Inductive Miner which includes the time to load the XES event
logs, build the intermediate structure, and mine the process models.

As shown in Figure 3, our incremental technique is much faster, even when
considering the time needed to insert events in the relational database, a process
that is typically executed in real time and without the business analyst being
present. More important however, is the trendlines of both approaches.

As expected, the time to perform the process mining task in the traditional
setting is growing linear in the size of the event data (the arrival rate of events in
this dataset is approximately constant during the entire year). This is due to the
fact that the first two phases of loading the data and doing the abstraction into
the intermediate structure scales linearly in the number of events, whereas the
mining scales in the number of activities. The latter is considerably smaller than
the former in most practical cases as well as in this example. Our incremental
algorithms are more stable over time as the update time only depends on the
number of newly inserted events and both the retrieval and mining times depend
on the number of activities rather than the number of events.

The variations in the recorded values of the DIIM are therefore explained by
the number of inserted events in a day. The higher the number of newly inserted
events, the longer it takes to do the update in the relational database system of
the intermediate structure. However, the total update time remains limited to
around 1.4 seconds per day.

In order to see the average time for doing an update for a single event, we
normalized the total update time with the number of events inserted in each
day as shown in Figure 4. The x-axis represents the n-th day, while the y-axis
represents the update time per event. As shown from the Figure 4, the average
time to conduct an update for a single event stabilizes around 0.000545 seconds,
i.e. the database system can handle around 1800 events per second and this
includes the insertion of the actual event data in the underlying DB-XES tables.

To validate the fact that the update time scales linearly in the number of
activities, we refer to Figure 5. For this experiment, we used a different dataset
with 31 different activities and eleven thousands of events, provided to us by Xe-
rox Services, India. The x-axis represents the total number of different activities
which has been inserted to the database, while the y-axis represents the time
in seconds to update an event. From the figure, it is clear that the update time
indeed depends linearly on the number of activities.

It is important to realize that the results of the process mining techniques in
both the traditional and the live setting are not different, i.e. the process models
are identical. Figure 6 shows a screenshot of a process model in ProM, produced
by the Incremental Inductive Miner considering all the data in the original file. In
the traditional setting, it would have taken an analyst 103.1263 seconds to load
the event log, build the abstraction and do the mining in order to get this picture
on December 30th 2016. Due to the availability of the intermediate structure in
the database, it would take the analyst only 0.0392 seconds to produce the same
result using the Incremental Inductive Miner.

Recurrent Process Mining with Live Event Data 9

50 100 150 200 250 300 350

2

4

6

8

�10�4

n-th Day

A
v
er

a
g
e

U
p

d
a
te

T
im

e
(S

ec
o
n
d
s)

Fig. 4. Average update time per event

10 15 20 25 30

0.5

1

1.5

�10�2

Total Number of Activities

U
p

d
a
te

T
im

e
(S

ec
o
n
d
s)

y �5.82 � 10�4 � x� 6.27 � 10�4

Fig. 5. The influence of number of activi-
ties to update time

Fig. 6. Screenshot of ProM showing the result of the Inductive Miner on the BPI
Challenge 2017 data considering all data.

5 Related Work

For a detailed explanation about process mining, we refer to [16]. Here we pri-
marily focus on the work related to recurrent process discovery in process mining
and its applications on live event data.

In the current setting of process discovery, event data from a file-based sys-
tem is imported to a process mining tool. This technique potentially creates
redundancy of data reloading in environments which necessitate some repeti-
tions in the discovery. Therefore, some researches have been looking to the area
of databases, Hadoop, and other ways to store event data in a persistent manner.

A study in [22] examined a tool called XESame. To access the data in XE-
Same, one needs to materialize the data by selecting and matching it with
XES [4] elements. It does not provide a direct access to the database. A more
advanced technique using ontology was proposed in [1,2]. In this work, data can
be accessed on-demand using query unfolding and rewriting techniques, called
ontology-based data access. However, performance issues make this approach
unsuitable for large event logs.

Relational XES, or RXES, was introduced in [18]. The RXES schema was
designed with a focus on XES standard. Using experiments with real life data,

10 Alifah Syamsiyah, Boudewijn F. van Dongen, Wil M.P. van der Aalst

it was shown that RXES typically uses less memory compared to the file-based
OpenXES and MapDB XESLite implementations [9]. As an improved version of
RXES, DB-XES was introduced in [13] to enable process mining in the large.
In [14] DB-XES basic schema is extended to allow instant social network mining,
especially the handover of work networks.

Process mining not only covers procedural process discovery, but also declar-
ative process discovery. The work in [11] deals with declarative process discovery
using SQL databases. Building on top of RXES, the authors introduce a min-
ing approach that directly works on relational event data by querying the log
with conventional SQL. Queries can be customised and cover process perspec-
tive beyond the control flow, e.g., organisational aspects. However, none of these
techniques handles live event data, the focus is often on static data that has
been imported in a database.

Treating event data as a dynamic sequence of events has been explored in
[19,20]. This work presented single-node stream extension of process mining tool
ProM which enables researchers and business users to also apply process mining
on streaming-data. The applicability of the framework on the cooperative aspects
of process mining was demonstrated in [21]. Here the authors define the notion
of case administration to store for each case the (partial) sequence of (activity,
resource)-pairs seen so far.

Another online process discovery technique based on streaming technology
was proposed in [8]. This work presented a novel framework for the discovery
of LTL-based declarative process models from streaming event data. The frame-
work continuously updates a set of valid business constraints based on the events
occurring in the event stream. Moreover, it gives the user meaningful information
about the most significant concept drifts occurring during process execution.

However, from the real-time techniques using streaming event data that we
have seen so far, none of them deals with recurrent process discovery. Interme-
diate results are not stored after presenting the results. Therefore, all data (old
and new) needs to be reloaded and processed each time a new analysis is needed.
Building on from that concern, this work explores both in the ability to process
live event data and to handle recurrent questions in process discovery.

6 Conclusion

Process mining aims to give insights into processes by discovering process models
which adequately reflect the behavior seen in an event log. One of the challenges
in process mining is the recurrent nature of mining tasks which, using traditional
tools and techniques, require analysts to import and pre-process larger and larger
datasets.

In this paper we focused on recurrent process discovery on live event data.
Using the Inductive Miner technique as an example, we show how we can reduce
the time needed for an analyst to do process mining by storing intermediate
structure in a persistent storage. Then we show how to keep this intermediate
structure alive under insertion of new events.

Recurrent Process Mining with Live Event Data 11

Using a concrete implementation, we use the relational database called DB-
XES to store the event data and the intermediate structure. In this relational
database, we added triggers to update the intermediate structure with the in-
sertion of each event and we implemented the Incremental Inductive Miner as a
version of the existing technique which is able to use this persistent intermediate
structure directly.

We tested the performance of the proposed approach and compared it to
the traditional techniques using real-life datasets. We show that loading and
mining time of the traditional approach grows linearly as the event data grows.
In contrast, our incremental implementation shows constant times for updating
(per event) and the retrieval and mining times are independent of the size of the
underlying data.

The core ideas in the paper are not limited to control flow. They are, for
example, trivially extended to store intermediate structures keeping track of
average times between activities or for social networks. Moreover, they are not
restricted towards procedural process discovery. In [15] we show how the work
extends into declarative process discovery, particularly using MINERful [3] as
the discovery technique. We introduce a so-called controller function which we
keep live under updates. Then we show that, using the controller function, we
can keep all MINERful relations live under updates.

A more fundamental challenge for future work is the updating of the inter-
mediate structures in batches of events, rather than for each event separately.
Furthermore, we aim to enable these techniques to keep these structures live
under removal of past events.

References

1. D. Calvanese, T.E. Kalayci, M. Montali, and S. Tinella. Ontology-based Data Ac-
cess for Extracting Event Logs from Legacy Data: The onprom Tool and Method-
ology. In BIS 2017, 2017.

2. D. Calvanese, M. Montali, A. Syamsiyah, and W.M.P. van der Aalst. Ontology-
Driven Extraction of Event Logs from Relational Databases. In BPI 2015, pages
140–153, 2015.

3. C. Di Ciccio and M. Mecella. Mining Constraints for Artful Processes, pages 11–23.
Springer Berlin Heidelberg, 2012.

4. C.W. Günther. XES Standard Definition. www.xes-standard.org, 2014.
5. M.J. Jans, M. Alles, and M.A. Vasarhelyi. Process Mining of Event Logs in Au-

diting: Opportunities and Challenges. Available at SSRN 2488737, 2010.
6. S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Discovering Block-

Structured Process Models from Event Logs - A Constructive Approach. In Petri
Nets 2013, pages 311–329, 2013.

7. S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Discovering Block-
Structured Process Models from Event Logs Containing Infrequent Behaviour. In
BPM Workshop 2013, pages 66–78, 2013.

8. F.M. Maggi, A. Burattin, M. Cimitile, and A. Sperduti. Online Process Discovery
to Detect Concept Drifts in LTL-Based Declarative Process Models, pages 94–111.
Springer Berlin Heidelberg, 2013.

12 Alifah Syamsiyah, Boudewijn F. van Dongen, Wil M.P. van der Aalst

9. F. Mannhardt. XESLite Managing Large XES Event Logs in ProM. BPM Center
Report BPM-16-04, 2016.

10. E. Rojas, J. Munoz-Gama, M. Sepúlveda, and D. Capurro. Process Mining in
Healthcare: A Literature Review. Journal of Biomedical Informatics, 61:224–236,
2016.

11. S. Schönig, A. Rogge-Solti, C. Cabanillas, S. Jablonski, and J. Mendling. Efficient
and Customisable Declarative Process Mining with SQL, pages 290–305. Springer
International Publishing, Cham, 2016.

12. S. Suriadi, M.T. Wynn, C. Ouyang, A.H.M. ter Hofstede, and N.J. van Dijk. Un-
derstanding Process Behaviours in a Large Insurance Company in Australia: A
Case Study. In CAiSE 2013, pages 449–464, 2013.

13. A. Syamsiyah, B.F. van Dongen, and W.M.P. van der Aalst. DB-XES: Enabling
Process Mining in the Large. In SIMPDA 2016, pages 63–77, 2016.

14. A. Syamsiyah, B.F. van Dongen, and W.M.P. van der Aalst. Discovering Social
Networks Instantly: Moving Process Mining Computations to the Database and
Data Entry Time. In BPMDS 2017, 2017.

15. A. Syamsiyah, B.F. van Dongen, and W.M.P. van der Aalst. Recurrent Process
Mining on Procedural and Declarative Approaches. BPM Center Report BPM-17-
03, 2017.

16. W.M.P. van der Aalst. Process Mining: Data Science in Action. Springer, 2016.
17. B.F. van Dongen. BPI Challenge 2017, 2017.
18. B.F. van Dongen and S. Shabani. Relational XES: Data Management for Process

Mining. In CAiSE 2015, pages 169–176, 2015.
19. S.J. van Zelst, A. Burattin, B.F. van Dongen, and H.M.W. Verbeek. Data Streams

in ProM 6: A Single-Node Architecture. In BPM Demo Session 2014, page 81,
2014.

20. S.J. van Zelst, B.F. van Dongen, and W.M.P. van der Aalst. Know What You
Stream: Generating Event Streams from CPN Models in ProM 6. In BPM Demo
Session 2015, pages 85–89, 2015.

21. S.J. van Zelst, B.F. van Dongen, and W.M.P. van der Aalst. Online Discovery of
Cooperative Structures in Business Processes. In OTM Conferences 2016, pages
210–228, 2016.

22. H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst.
XES, XESame, and ProM 6. In Information Systems Evolution, volume 72, pages
60–75, 2010.

23. Z. Zhou, Y. Wang, and L. Li. Process Mining Based Modeling and Analysis of
Workflows in Clinical Care - A Case Study in a Chicago Outpatient Clinic. In
ICNSC 2014, pages 590–595, 2014.

	Recurrent Process Mining with Live Event Data

