
Improving Process Discovery Results by Filtering
Outliers using Conditional Behavioural Probabilities

Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M.P. van der Aalst

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{m.fani.sani,s.j.v.zelst,w.m.p.v.d.aalst}@tue.nl

Abstract. Process discovery, one of the key challenges in process mining, aims
at discovering process models from process execution data stored in event logs.
Most discovery algorithms assume that all data in an event log conform to correct
execution of the process, and hence, incorporate all behaviour in their result-
ing process model. However, in real event logs, noise and irrelevant infrequent
behaviour is often present. Incorporating such behaviour results in complex, in-
comprehensible process models concealing the correct and/or relevant behaviour
of the underlying process. In this paper, we propose a novel general purpose fil-
tering method that exploits observed conditional probabilities between sequences
of activities. The method has been implemented in both the ProM toolkit and the
RapidProM framework. We evaluate our approach using real and synthetic event
data. The results show that the proposed method accurately removes irrelevant
behaviour and, indeed, improves process discovery results.

Key words: Process Mining · Process Discovery · Noise Filtering · Outlier De-
tection · Conditional Probability

1 Introduction

Process mining is a research discipline that is positioned at the intersection of data driv-
en methods like machine learning and data mining and Business Process Management
(BPM) [1]. There are three types of process mining; process discovery, conformance
checking and process enhancement. Process discovery aims at discovering process mod-
els from event logs. Conformance checking aims at assessing to what degree a process
model and event log conform to one another in terms of behaviour. Finally, process
enhancement aims at improving process model quality by enriching them with infor-
mation gained from the event log.

Within process mining/process identification projects, process discovery is often
used to quickly get insights regarding the process under study [1]. A business process
analyst simply applies a process discovery algorithm on the extracted event log and
analyzes its result. Most process discovery algorithms assume that event logs repre-
sent accurate behaviour. Hence, they are designed to incorporate all of the event log’s
behaviour in their resulting process model as much as possible.

Real event logs contain both noise and infrequent behaviour [2]. In general, noise
refers to behaviour that does not conform to the process specification and/or its cor-

{m.fani.sani, s.j.v.zelst, w.m.p.v.d.aalst}@tue.nl

2 Mohammadreza Fani Sani et al.

rect execution. Examples of noise are, amongst others, incomplete logging of process
behaviour, duplicated logging of events and faulty execution of the process. Infrequen-
t behaviour relates to behaviour that may occur, yet, in very exceptional cases of the
process. For example, additional checks may be required when a loan request exceeds
$10.000.000. Incorporating noise and/or infrequent behaviour results in complex, in-
comprehensible process models concealing the correct and/or relevant behaviour of the
underlying process. As such, when using process discovery for the purpose of process i-
dentification, we are often unable to gain any actionable knowledge by applying process
discovery algorithms directly.

In this paper, we focus on improving process discovery results by applying general
purpose event log filtering, i.e. filtering the event log prior to applying any arbitrary
process discovery algorithm. Distinguishing between noise and infrequent behaviour
is a challenging task and is outside the scope of this paper. Hence, we consider both
noise and infrequent behaviour as outliers and aim at identifying and removing such
outliers from event logs. We propose a generic filtering approach based on condition-
al probabilities between sequences of activities. The approach identifies whether cer-
tain activities are likely to happen based on a number of its preceding activities. Us-
ing the ProM (http://promtools.org) [3] based extension of RapidMiner
(http://rapidminer.com), i.e. RapidProM [4], we study the effectiveness of
our approach, using synthetic and real event data. The results of our experiments show
that our approach adequately identifies and removes outliers, and, as a consequence in-
creases the overall quality of process discovery results. Additionally, we show that our
method outperforms other general purpose process mining filtering techniques.

The remainder of this paper is structured as follows. Section 2 motivates the need
for general purpose event log filtering methods. In Section 3, we discuss related work
and after that, in Section 4, we explain our proposed method. Details of the evaluation
and corresponding results are given in Section 5. Finally, Section 6 concludes the paper
and presents future work in this domain.

2 Motivation

An interpretable process model helps business process analysts to understand what is
going on in event data. However, often process discovery algorithms return results that
are complicated and not understandable, because of outliers within the event logs used.
Figure 1 illustrates how the application of filtering greatly reduces the complexity in a
real event log, i.e. the event log of the Business Process Intelligence Challenge 2012 [5]
(BPIC 2012). Figure 1a shows a process model discovered using the ILP Miner of [6]
for this event log, whereas Figure 1b shows the result of applying the same process
discovery algorithm on 80% of the most frequent original behaviour.

In process mining, two quality measures are defined for measuring the behavioural
quality of process models, i.e. fitness and precision [7]. Fitness computes how much
behaviour in the event log is also described by the process model. On the other hand,
precision measures the amount of behaviour described by the model that is also present
in the event log. The fitness values of Figure 1a and Figure 1b are 0.57 and 0.46 whereas

http://promtools.org
http://rapidminer.com

Filtering Outliers using Conditional Behavioural Probabilities. 3

(a) Result on whole event log. (b) Result on 80% of event log.

Fig. 1: Process models discovered by applying the ILP Miner [6] on the BPIC 2012 log.

their precision values are 0.68 and 1.0 respectively. Thus, the model in Figure 1a de-
scribes more behaviour that is also present in the event log, however, in order to do this
it greatly under-fits, i.e. it allows for much more behaviour compared to the model in
Figure 1b. As a consequence, the model in Figure 1a is overly complex and ambiguous.
The process model in Figure 1b, on the other hand, is much simpler while still covering
at least 80% of the observed behaviour in the event log.

In our motivating example, by removing 20% of behaviour, we obtain a simpler
model, i.e. Figure 1b that still accurately describes the underlying process. However,
arbitrarily removing behaviour based on frequency is too ad-hoc and does not work
when there is a lot of variety present within an event log, e.g. caused by parallelism.
Therefore, we need more advanced filtering methods that take into account and exploit
the actual behaviour described by the event log.

3 Related Work

In recent years, many process discovery algorithms have been proposed [8–13]. The
first algorithms where designed to incorporate all behaviour in the event log [8, 12, 13].
More recently these algorithms have been extended to be able to handle outliers as
well [14, 15]. However, these extended filtering techniques are tailored towards the in-
ternal working of the corresponding algorithm and hence do not work as a general pur-
pose filtering technique. Other process discovery algorithms are specifically designed
to cope with noisy and infrequent behaviour [9, 11]. However, these algorithms do not
result in process models with clear execution semantics. Most of commercial process
mining tools using these algorithms and their filtering are based on just the frequency
of activities and their direct relations.

In this paper, we propose to separate concerns, and thus develop a novel, gener-
al purpose filtering technique that pre-processes event logs. In such way, any process
discovery algorithm is able to benefit from effective identification and removal of out-
lier behaviour. In the remainder of this section, we focus on techniques developed for
general purpose filtering in the process mining domain.

4 Mohammadreza Fani Sani et al.

Table 1: Overview of filtering plugins in ProM.

Plug-in Applications Main Method

Filter Log using
Simple Heuristics

Helpful for removing traces and activities
based on frequency of events or the presence
of certain start/end events.

Frequency/position
of events

Filter Log on
Event/Trace
Attributes

Useful when we want to just keep events/traces
with specific attribute values.

Attribute values

Dotted Chart
Allows us to visually select specific traces in
event logs (usually base on a time frame).

Time window

Transition Systems
Miner

Helpful to project traces/events on specific
transitions and/or states.

Frequency of
transitions

Filter Log using
Prefix-Closed
Language

Allows us to remove events from traces. Rule based

The vast majority of process mining research has an accompanying implementation
in the process mining toolkit ProM. Most work on general purpose event log filtering
concerns ad-hoc filtering implementations within ProM. Many of these implementa-
tions are useful when we aim at using specific subsets of traces/events of an event log
instead of the whole event log. In Table 1, the main filtering plugins are listed, accompa-
nied by a brief description of their applications and methods. All plugins take an event
log as an input and return a filtered event log as an output. Moreover, they need some
form of domain knowledge to work properly. In addition, typically the user needs to set
one or more (complex) settings. However, they do not support generic outlier detection,
i.e. in cases where we possess no or little domain knowledge.

Little research has been done in the field of general purpose filtering. In [16] a
graph-based outlier detection method is proposed to detect inaccurate data in an event
log. In [17] a method is proposed that detects non-fitting behaviour based on a given
reference model and then repairs the event log. As we want to improve process discov-
ery results and, in general, we do not have a reference model, this method is not useful
for general purpose filtering. In [18] the authors propose to provide training traces to the
PRISM algorithm [19] which returns rules for detecting outliers. However, in real event
logs, providing a set of training traces that cover all possible outliers is impractical.

The most relevant research in the area of general purpose log filtering is the work
in [20]. The authors propose to construct an Anomaly Free Automaton (AFA) based on
the whole event log and a given threshold. Subsequently, all events that do not fit the
AFA are removed from the filtered event log. Filtering event logs using AFA indeed
allows us to detect and remove noisy and/or infrequent behaviour. However, the tech-
nique does not allow us to detect all types of outliers like incomplete traces, i.e. traces
that fit the AFA perfectly yet do not terminate properly. Incorporation of such behaviour
can still lead to infeasible process discovery results.

Finally, separating outliers from event logs and focusing just on them rather than all
behaviour also has been studied [21], however, a detailed treatment of outlier detection
is outside the scope of this paper.

Filtering Outliers using Conditional Behavioural Probabilities. 5

4 Filtering with Conditional Behavioural Probabilities

As indicated in Section 3, most filtering approaches are not suitable for process discov-
ery because they need additional information like reference model or a set of outlier
traces. Furthermore, the AFA filter, which is the most suitable general purpose event
log filter, has trouble identifying irrelevant infrequent behaviour. Therefore, we present
a general purpose filtering method that is able to deal with all types of outliers. The
main purpose of the filter is to identify the likelihood of the occurrence of an activity,
based on its surrounding behaviour, e.g. how likely is it that activity a follows the se-
quence of activities 〈b, c〉. To detect such likelihood it uses the conditional probability
of activity occurrences, given a sequence of activities. As we just consider a sample of
behaviour in the underlying process, i.e. an event log, all computed probabilities are an
estimation of the behaviour that truly happened. Prior to presenting the filtering method,
we present some basic notations used throughout the paper.

4.1 Basic Notation and Definitions

Given a set X , a multiset M over X is a function M : X → N≥0. We write a multiset
as M = [ek11 , e

k2
2 , ..., e

kn
n], where for 1 ≤ i ≤ n we have M(ei) = ki with ki ∈ N>0.

If ki = 1, we omit its superscript, and if for some e ∈ X we have M(e) = 0, we omit
it from the multiset notation. Also, M = [] is an empty multiset if ∀e ∈ X , M(e) = 0.
We let M = {e ∈ X | M(e) > 0}, i.e. M ⊆ X . The set of all possible multisets over
a set X is written asM.

Let A denote the set of all possible activities and let A∗ denote the set of all pos-
sible finite sequences over A. A finite sequence σ of length n over A is a function
σ : {1, 2, ..., n} → A, alternatively written as σ = 〈a1, a2, ..., an〉 where ai = σ(i)
for 1 ≤ i ≤ n. The empty sequence is written as ε. Concatenation of sequences σ
and σ′ is written as σ · σ′. We let hd : A∗ × N≥0 9 A∗ with, given some σ ∈ A∗
and k ≤ |σ|, hd(σ, k) = 〈a1, a2, .., ak〉 , i.e., the sequence of the first k elements
of σ. Note that hd(σ, 0) = ε. Symmetrically tl : A∗ × N≥0 9 A∗ is defined as
tl(σ, k) = 〈an−k+1, an−k+2, ..., an〉, i.e., the sequence of the last k elements of σ.
Again, tl(σ, 0) = ε. Sequence σ′ = 〈a′1, a′2, ..., a′k〉 is a subsequence of sequence σ if
and only if we are able to write σ as σ1 · 〈a′1, a′2, ..., a′k〉 · σ2, where both σ1 and σ2 are
allowed to be ε, i.e. σ is a subsequence of itself.

Event logs describe sequences of executed business process activities, typically in
context of some case, e.g. a customer or some order-id. The execution of an activity in
context of a case is referred to as an event. Events are unique. A sequence of events is
referred to as a trace. A trace projected onto the activities it describes is referred to as
a trace-variant. Thus, it is possible that multiple traces describe the same trace-variant,
i.e. sequence of activities, however, each trace contains different events. An example
event log, adopted from [1], is presented in Table 2. Consider all activities related to
Case-id 1. Sara registers a request, after which Ali examines it thoroughly. William
checks the ticket after which Ava examine causally and reject the request.

Definition 1 (Trace, Variant, Event Log). Let A be a set of activities. An event log is
a multiset of sequences over A, i.e. L ∈M(A∗).

6 Mohammadreza Fani Sani et al.

Table 2: Fragment of a fictional event log (each line corresponds to an event).

Case-id Activity Resource Time-stamp
...
1 register request (a) Sara 2017-04-08:08.10
1 examine thoroughly (b) Ali 2017-04-08:09.17
2 register request (a) Sara 2017-04-08:10.14
2 check ticket (d) William 2017-04-08:10.23
1 check ticket (d) William 2017-04-08:10.53
2 examine causally (b) Ava 2017-04-08:11.13
1 reject request (h) Ava 2017-04-08:13.05
...

We abstract from the notion of events in Definition 1. Each σ ∈ L describes an
observed trace-variant whereas L(σ) describes its frequency.

Definition 2 (Subsequence Frequency). LetL be an event log over a set of activitiesA
and let σ ∈ A∗. The subsequence frequency of σ w.r.t L, written as freq(σ, L), denotes
the number of times σ occurs as a subsequence of any trace present in L.

Given a simple example event logL1 = [〈a, b, c, d〉5, 〈a, c, b, d〉3], we have freq(〈a〉, L1) =
freq(ε, L1) = 8, freq(〈a, b〉, L1) = 5, etc.

Definition 3 (Conditional Occurrence Probability). Let L be an event log over a set
of activities A and let σ ∈ A∗ be a subsequence. Given some a ∈ A, the conditional
probability of occurrence of activity a, given σ and L, i.e. COP (a, σ, L) is defined as:

COP (a, σ, L) =

{
freq(σ·〈a〉,L)
freq(σ,L) if freq(σ, L) 6= 0

0 otherwise

Clearly, the value of any COP (a, σ, L) is a real number in [0, 1]. A high value
of COP (a, σ, L) implies that after the occurrence of σ, it is very probable that ac-
tivity a occurs. For example, COP (a, σ, L) = 1 implies that if σ occurs, a always
happens directly after it. Based on the previously used simple event log, we have
COP (b, 〈a〉, L1) =

5
8 .

4.2 Outlier Detection

We aim to exploit conditional probabilities present within event logs for the purpose of
filtering event logs. Conceptually, after a given subsequence, activities that have a par-
ticularly low COP -value are unlikely to have happened and therefore their occurrence
may be seen as outlier. To account for dependencies between activities and previously
occurred activities at larger distances, we compute COP -values for subsequences of
increasing length.

In our proposed method, for each i ∈ {1, 2, ..., k} we construct a COP -Matrix.
Assume there are a total of m unique subsequences with length 1 ≤ l ≤ k in an
event log. A COP -Matrix Al

COP for length l is simply an m × |A|-matrix, where
Al
COP (σ, a) = COP (a, σ, L).

Filtering Outliers using Conditional Behavioural Probabilities. 7

Algorithm 1 Outlier Detection Algorithm
procedure OUTLIERDTECTION(L, k, κ)
Computing Probabilities:

for (l ∈ {1, ..., k}) do
Build Al

COP , Al
E and Al

S

FilteredEventLog← A new empty event log
Filtering:

for (σ ∈ L) do
Outlier← false
for (l = 1 : k) do

for (subsequence σ′ with length l and following activity a) do
Find corresponding COP (a, σ′, L) in Al

COP , Al
E and Al

S values
if (κ > COP (a, σ′, L)) then

Outlier← true
if (Outlier = false) then

FilteredEventLog← Add σ to FilteredEventLog
return FilteredEventLog

We additionally compute conditional probabilities for start and end subsequences
relatively. We let Al

S denote a matrix describing the occurrence probability matrix of
all subseqeunces σ′ = hd(σ) with |σ′| = l for σ ∈ L. We are able to compute such
probability by dividing the number of traces that start with σ′ over the total number of
traces in the log. Similarly we define Al

E denote a matrix describing the conditional
probability matrix of all subseqeunces σ′ = tl(σ) with |σ′| = l for σ ∈ L that is equal
to a = ε in Al

COP . By doing so, we be able to handle outliers which occur in the start
and the end parts of trace.

Given our differentCOP -Matrices, and a user-defined threshold κ, we identify each
entry Al(σ′, a) < κ as an outlier. The pseudo-code of detecting outliers is present in
Algorithm 1. In this fashion, it is possible to detect outliers that occur in start, middle or
end part of traces. There are two ways to handle detected outliers. We are able to simply
remove the corresponding event from the trace, i.e event-level filtering, or, remove the
trace as a whole, i.e. trace-level filtering. However, removing an improbable event in
a trace may make the trace to have more outlier behaviour. Hence, we just focus on
trace-level filtering.

With increasing value of k (maximum length of subsequences), the complexity of
the filtering method increases. The number of different strings we can generate over A
with length k is (|A|)k and total possible subsequences for some k:

∑k
i=1 |A|i where

|A| is the number of activities in the L. However, there is no need to compute COP s
of all possible subsequences. For subsequences with length k + 1, it is sufficient to
just consider σ′.〈a〉 in level k that κ ≤ COP (a, σ′, L). For example, if at k = 1
COP (c, 〈b〉) ≤ κ, there is no need to consider 〈b, c〉 as a subsequent at k = 2, even
though the COP (a, 〈b, c〉) be higher than κ.

4.3 Implementation

To be able to combine the proposed filtering method with any process discovery algo-
rithm, we implemented the Matrix Filter plugin (MF) in the ProM framework (svn.
win.tue.nl/repos/prom/Packages/LogFiltering). The plugin takes an
event log as an input and outputs a filtered event log. The user is able to specify thresh-

svn.win.tue.nl/repos/prom/Packages/LogFiltering
svn.win.tue.nl/repos/prom/Packages/LogFiltering

8 Mohammadreza Fani Sani et al.

old κ and whether event-level or trace-level filtering needs to be applied. The maximum
subsequence length to be considered also needs to be specified.

In addition, to apply our proposed method on various event logs with different fil-
tering thresholds and applying different process discovery algorithms with different
parameters, we ported the Matrix Filter (MF) plugin to RapidProM. RapidProM is
an extension of RapidMiner that combines scientific workflows [22] with a range of
(ProM-based) process mining algorithms.

5 Evaluation

To evaluate the usefulness of filtering outliers using our method, we have conducted
several experiments using both synthetic and real event data. The purpose of these ex-
periments is to answer the following questions:

1. Does MF help process discovery algorithms to return more precise models?
2. How does the performance of MF compare to AFA filtering method?

To evaluate discovered process models, we use fitness and precision (introduced in Sec-
tion 2). There is a trade off between these measures [23]. Sometimes, removing a little
behaviour causes a decrease in fitness value, yet increases precision. To strike a balance
between fitness and precision, we use the F-Measures metric that combines fitness and
precision: 2×Precision×Fitness

Precision+Fitness . Also, filtering time and process model discovery time
in milliseconds have been measured. Note that in all experiments, filtered event logs are
only used in the process discovery part. Computing the F-Measure for all process mod-
els is done using the corresponding raw, unfiltered event logs. Furthermore, we only
consider subsequences with length k in [0, 2].

In the first experiment we investigate the effect of changing the κ in the MF thresh-
old on the F-Measure w.r.t. different process discovery algorithms. We use the Inductive
Miner [13] (IM) and the ILP Miner (ILP) [12]. Additionally we assess the interaction
between our filtering technique and integrated filtering within the Inductive Miner, i.e.
we use the IMi variant [14] with noise thresholds 0.1 and 0.3. We apply these algo-
rithms and filtering methods on the BPIC2012 log. The results for this experiment are
shown in Figure 2.

In this figure, each line corresponds to a discovery algorithm. The x-axis represents
the threshold level of MF, the y-axis represents the corresponding F-Measure. Hence,
for each technique, the data point x = 0 corresponds to not applying behavioural con-
ditional probability filtering. We thus aim at finding out whether there exist regions of
threshold values for which we are able to increase the F-measure when applying filter-
ing. The F-measure of IM on this event log without using MF is 0.45. However, using
the proposed filter increases the F-Measure of the discovered model to 0.80. Even for
IMi, which uses an embedded filter, the MF increases the F-Measure from 0.69 and 0.7
to 0.81. As the ILP miner is more sensitive to outliers, MF helps more and its enhance-
ment for this algorithm is higher. When increasing the threshold of MF to a value of
0.7 or higher, all the traces in the event log are removed and the fitness and F-Measure
of the discovered model will equal to 0. The best result, i.e. an F-measure of 0.81, is
achieved by IMi with threshold 0.1 and MF threshold of 0.09.

Filtering Outliers using Conditional Behavioural Probabilities. 9

Fig. 2: Applying process discovery algo-
rithms on the BPIC2012 log with differ-
ent MF thresholds.

Fig. 3: Comparing process models discov-
ered by 11 noise thresholds on the BPIC
2012 log with/without filtering.

To illustrate the effect of filtering on the discovered process models, in Figure 3,
we apply IMi with 11 internal thresholds ranging from 0.0 to 0.5 on the raw BPIC2012
and the filtered event log using MF with threshold 0.09. Here, each circle or square
correspond to fitness and precision values related to one discovered model. A circle is
related to applying MF, whereas squares relate to using the raw event log. As the results
show, MF causes a little decrease in fitness value, yet yields an increase in precision
value. The average of F-Measures when applying no filtering is 0.66 versus 0.77 in case
of MF (with threshold 0.09). Thus, Figure 2 and Figure 3 indicate that MF improves
process discovery results, i.e. the process models have an overall higher F-Measure.

In a second experiment, using the BPIC2012 and BPIC2017 [24] event log, we
additionally assess what the maximal obtainable level of F-measure is for differen-
t process discovery algorithms, using different levels of internal filtering. We computed
F-measures based on the unfiltered event log, and, maximized the F-measure result for
both MF and AFA. With a workflow in the RapidMiner, for both filtering methods we
filtered the event log using 40 different thresholds. The results are presented in Figure 4.
This figure shows MF allows us to discover process models with higher F-Measures.

In Figure 5, we compare the average required time of applying the process discov-
ery algorithms with/without filtering methods. In this figure, the y-axis represents the
time in milliseconds with logarithmic scale. According to this figure, filtering methods
reduce the required time for discovering process models, because there are fewer traces
in the filtered event logs. Although, in AF the discovery time reduction is higher, the
filtering time for this method is much higher than MF method. Therefore, in general
MF seems to be faster than AF.

In the last experiment, to evaluate the ability of our proposed filtering method in
detecting traces that contain outliers and corresponding effects on quality of process
discovery algorithms, we use three synthetic event logs; a12f0n, a22f0n and a32f0n.
These event logs are manipulated by adding niose with a probability of 0, 10, 20 or 50
percent [2]. The last two characters of event log indicate the probability of noise added
to it, for example, a22f0n20 correspond to a22f0n with 20% noise probability.

The noisy event logs are used for process discovery and the original synthetic event
logs (free of noise) are used for computing the F-Measure. Similar to the experiment in
Figure 3, the IMi algorithm with 11 various internal noise thresholds has been used. We

10 Mohammadreza Fani Sani et al.

(a) BPIC 2012 (b) BPIC 2017

Fig. 4: Effect of filtering on best F-Measure of discovered models.

Fig. 5: Average of required time for process discovery with/without filtering

(a) MF on a12f0n (b) AFA on a12f0n

(c) MF on a22f0n (d) AFA on a22f0n

(e) MF on a32f0n (f) AFA on a32f0n

Fig. 6: Effect of filtering thresholds on F-Measures of synthetic event logs. y-axises are
indicating values of best F-Measure and x-axises are showing the filtering thresholds.

Filtering Outliers using Conditional Behavioural Probabilities. 11

only show results for the best F-Measure obtained. The results of this experiment are
presented in Figure 6. According to this figure, the F-Measure of models improves when
applying filtering methods. The improvement is observed to be much more substantial
for event logs that contain more percentage of noise. For the a12f0n event log which
has the simplest structure among these event logs, both methods lead to similar results.
However, for a22f0n, applying MF results in better F-Measures. Finally, in a32f0n that
corresponds to the most complex model with lots of parallelism, AFA performs better
than MF. This can be explained by the fact that when a lot of paralelism is present, the
conditional probability of non-outlier behaviour is low as well, i.e. parallelism implies
a lot of variety in behaviour. In such situation it seems that using short subsequences
(e.g. k = 1) or using a smaller κ value is a better choice for MF.

The experiments indicate that the proposed filtering method is useful for process
discovery algorithms and allow us to obtain models with higher F-Measure whilst using
a reduced discovery time. Hence, this shows that our method tends to outperform state-
of-the-art process mining filtering techniques.

6 Conclusion

Process discovery is used to extract process models from event logs. However, real
event logs contain noise and infrequent behaviour that hamper the direct applicabili-
ty of existing process discovery algorithms. Separating such outliers from event logs
is beneficial for process discovery techniques and helps to improve process discovery
results.

To address this problem, we propose a filtering method that takes an event log as an
input and returns a filtered event log based on a given threshold. It uses the conditional
probability of the occurrence of an activity after a given sequence of activities. If this
probability is lower than the given threshold, the activity is considered as an outlier.

To evaluate the proposed filtering method we developed a plugin in the ProM frame-
work and the RapidProM extension of RapidMiner. As presented, we have applied
this method on real event logs, and several process discovery algorithms. Additionally,
we used the proposed method on three synthetic event logs. The results indicate that
the proposed approach is able to help process discovery algorithms to discover model-
s that strike a more adequate balance between different behavioural quality measures.
Furthermore, using these experiments we show that our filtering method outperforms
related state-of-the-art process mining filtering techniques.

We plan to evaluate the effect of using different values of k, i.e. length of subse-
quences. Also, other metrics besides the F-Measure like simplicity, generalization and
structuredness could be analyzed. We want to apply event-level filtering and also assess
different ways of using κ.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition. Springer
Berlin Heidelberg (2016)

12 Mohammadreza Fani Sani et al.

2. Maruster, L., Weijters, A.J.M.M., van der Aalst, W.M.P., van den Bosch, A.: A Rule-Based
Approach for Process Discovery: Dealing with Noise and Imbalance in Process Logs. Data
Min. Knowl. Discov. 13(1) (2006) 67–87

3. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Rozinat, A., Verbeek, H.M.W.,
Weijters, A.J.M.M.: ProM: The Process Mining Toolkit. BPM (Demos) 489(31) (2009)

4. van der Aalst, W.M.P., Bolt, A., van Zelst, S.J.: RapidProM: Mine Your Processes and Not
Just Your Data. CoRR abs/1703.03740 (2017)

5. van Dongen, B.: BPI Challenge 2012 (2012)
6. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Discovering

Relaxed Sound Workflow Nets using Integer Linear Programming. CoRR abs/1703.06733
(2017)

7. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the Role of Fitness, Precision,
Generalization and Simplicity in Process Discovery. In: On the Move to Meaningful Internet
Systems, OTM, Springer (2012) 305–322

8. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering
Process Models From Event Logs. IEEE Trans. Knowl. Data Eng. 16(9) (2004) 1128–1142

9. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible Heuristics Miner (FHM). In: CIDM. (2011)
10. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther,

C.W.: Process Mining: A Two-Step Approach to Balance Between Underfitting and Overfit-
ting. Software & Systems Modeling 9(1) (2008) 87–111

11. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining –Adaptive Process Simplification
Based on Multi-perspective Metrics. In: Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2007) 328–343

12. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process Dis-
covery using Integer Linear Programming. Fundam. Inform. 94(3-4) (2009) 387–412

13. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured Process
Models from Event Logs - A Constructive Approach. In: Application and Theory of Petri
Nets and Concurrency. Springer Berlin Heidelberg (2013) 311–329

14. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured Process
Models from Event Logs Containing Infrequent Behaviour. In: Business Process Manage-
ment Workshops. Springer International Publishing (2014) 66–78

15. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Avoiding Over-Fitting in ILP-Based
Process Discovery. In: BPM. (2015) 163–171

16. Ghionna, L., Greco, G., Guzzo, A., Pontieri, L.: Outlier Detection Techniques for Process
Mining Applications. In: ISMIS 2008. (2008) 150–159

17. Wang, J., Song, S., Lin, X., Zhu, X., Pei, J.: Cleaning Structured Event Logs: A Graph Repair
Approach. In: ICDE 2015. (2015) 30–41

18. Cheng, H.J., Kumar, A.: Process Mining on Noisy Logs —Can Log Sanitization Help to
Improve Performance? Decision Support Systems 79 (2015) 138–149

19. Cendrowska, J.: PRISM: An Algorithm for Inducing Modular Rules. International Journal
of Man-Machine Studies 27(4) (1987) 349–370

20. Conforti, R., La Rosa, M., ter Hofstede, A.H.M.: Filtering Out Infrequent Behavior from
Business Process Event Logs. IEEE Trans. Knowl. Data Eng. 29(2) (2017) 300–314

21. Yang, W., Hwang, S.: A Process-Mining Framework for the Detection of Healthcare Fraud
and Abuse. Expert Syst. Appl. 31(1) (2006) 56–68

22. Bolt, A., de Leoni, M., van der Aalst, W.M.P.: Scientific Workflows for Process Mining:
Building Blocks, Scenarios, and Implementation. STTT 18(6) (2016) 607–628

23. De Weerdt, J., , M., Vanthienen, J., Baesens, B.: A Robust F-measure for Evaluating Discov-
ered Process Models. In: Proceedings of the CIDM. (2011) 148–155

24. van Dongen, B.: BPI Challenge 2017 (2017)

	Improving Process Discovery Results by Filtering Outliers using Conditional Behavioural Probabilities
	Mohammadreza Fani Sani, Sebastiaan J. van Zelst, Wil M.P. van der Aalst

