
Discovering the “Glue” Connecting Activities

Exploiting Monotonicity to Learn Places Faster

Wil M.P. van der Aalst

Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
E:wvdaalst@pads.rwth-aachen.de W:www.vdaalst.com

Abstract. Process discovery, one of the key areas within process min-
ing, aims to derive behavioral models from event data. Since event logs
are inherently incomplete (containing merely example behaviors) and un-
balanced, this is often challenging. Different target languages can be used
to capture sequential, conditional, concurrent, and iterative behaviors.
In this paper, we assume that a process model is merely a set of places
(like in Petri nets). Given a particular behavior, a place can be “fitting”,
“underfed” (tokens are missing), or “overfed” (tokens are remaining).
We define a partial order on places based on their connections. Then
we will show various monotonicity properties that can be exploited dur-
ing process discovery. If a candidate place is underfed, then all “lighter”
places are also underfed. If a candidate place is overfed, then all “heavier”
places are also overfed. This allows us to prune the search space dramat-
ically. Moreover, we can further reduce the search space by not allowing
conflicting or redundant places. These more foundational insights can be
used to develop fast process mining algorithms producing places with a
guaranteed quality level.

Keywords: Process mining, Process discovery, Petri nets, BPM

1 Introduction

It is a pleasure to contribute to this Festschrift honoring Farhad Arbab’s contri-
butions to computer science. Farhad worked on different topics in the broader
field of formal methods and software engineering. However, he is best known for
his work in coordination models and languages. Often concurrency and composi-
tion played an important role in his work. The Reo coordination language is the
piece de resistance of Farhad’s work. Reo is a channel-based coordination model
wherein complex coordinators, called connectors, are composed from simpler
ones [10]. The language has been mapped to many other languages [16], in-
cluding zero-safe nets (a variant for Petri nets) and constraint automata. There
is also work on the synthesis of Reo circuits from scenario specifications [21].
Unfortunately, mining techniques to learn Reo models from event data are still
missing.

In process mining, typically representations such as Petri nets, workflow nets,
causal nets, process trees, transition systems, statecharts, and BPMN models are

used [3]. Rather than coordinating complex components, these models merely
coordinate activities derived from event data.

The goal of Reo is to provide the “glue” between different software com-
ponents. In the same way, one could view places in a Petri net as the “glue”
between transitions representing activities. In this sense, places in a Petri net
can be viewed as a simple coordination layer. The goal of this paper is to dis-
cover sets of places modeling the underlying process such that (1) this can be
done quickly (handling event logs with millions of events) and (2) that places
have a well-defined minimal quality level.

Event data are collected in logistics, manufacturing, finance, healthcare, cus-
tomer relationship management, e-learning, e-government, and many other do-
mains. The events found in these domains typically refer to activities executed
by resources at particular times and for a particular case (i.e., process instances).
Process mining techniques are able to exploit such data. Here, we focus on process
discovery, but process mining also includes conformance checking, performance
analysis, decision mining, organizational mining, predictions, recommendations,
etc.

Over the last two decades, hundreds of process discovery techniques have
been proposed [3]. Many of the initial techniques could not cope with infrequent
behavior and made very strong assumptions about the completeness of the event
log. For example, traditional region-based techniques assume that all possible be-
havior has been observed (i.e., the log is complete) and that all observed traces
are equally important. State-based regions were introduced by Ehrenfeucht and
Rozenberg in 1989 and generalized by Cortadella et al. [14, 12]. Various authors
used state-based regions for process discovery [7, 22]. Also, language-based re-
gions have been used for this purpose [11, 25]. Over time attention shifted to
approaches able to deal with noise and infrequent behavior. Early approaches
include heuristic mining, fuzzy mining, and various genetic process mining ap-
proaches [24, 15]. Since 2010 the speed at which new process discovery techniques
are proposed is accelerating. As an example consider the family of inductive min-
ing techniques [17–19].

p1

a c

b d

p2

p3

p4

p5

Fig. 1. Process model P1 = {({I}, {a}), ({I}, {b}), ({a}, {c, d}), ({b}, {c, d}),
({c, d}, {�})} composed of five places discovered from event log L1 = [〈I, a, b, c,�〉31,
〈I, b, a, c,�〉27, 〈I, a, b, d,�〉23, 〈I, b, a, d,�〉19] .

This paper provides a fresh look at places in a Petri net seen from the view-
point of process discovery. Each place can be viewed as a constraint, limiting
the behavior of the Petri net. We use a so-called open-world assumption: Any
behavior is possible unless explicitly forbidden by one of the places in the model.
Consider the process model shown in Figure 1 which is composed of five places.
Transition I models the start of the process and transition � marks the end.
Place p1 specifies that activity a can only happen after I. Moreover, at the end,
the number of occurrences of a should match the number of occurrences of I.
Since I happens once, also a should also happen precisely once. Place p3 speci-
fies that activity c and activity d can only happen after a occurred. At the end,
the number of occurrences of c and d should match the number of occurrences
of a. The goal is to discover models merely composed of places from event data.
Each event refers to a case (process instance), activity, and a timestamp. We
can group events based on cases and sort events within a case based on the
timestamps. This way each case can be presented by a trace 〈I, a, b, c,�〉, i.e., a
sequence of activities. An event log is a multiset of such traces. The caption of
Figure 1 shows event log L1 consisting of 100 cases and 500 events referring to
six unique activities.

+0-

++?

?--

p22p12 p32

p21p11 p31

p23p13 p33

Fig. 2. During replay each of the places p32, p21, and p31 will always have at least the
number of tokens in p22. Similarly, places p13, p23, and p12 will always have at most
the number of tokens in p22. Places p11 and p33 may have more or fewer tokens.

It is far from trivial to discover places from larger event logs referring to many
activities. The number of possible places grows exponentially in the number of
activities and to evaluate a place one needs to traverse the whole event log. A

naive algorithm would need to replay the event log for every possible candidate
place. This can be very time-consuming. Moreover, places may be redundant
or conflicting. Therefore, we explore relationships among (sets of) places and
present several monotonicity results. To do this, we define new notions such as
“underfed” and “overfed” places and partial orders on (sets of) places based on
their input and output transitions.

Figure 2 shows the basic idea. If we replay a trace on a particular place, there
could be two problems:

– At some stage, a transition needs to remove a token from the place, but the
place is already empty (the place is “underfed”).

– At the end of the trace, tokens remain in the place (the place is “overfed”).

Note that a place can be “overfed” and “underfed” at the same time. Assume now
that we have a place p22 with two input transitions and two output transitions
(Figure 2 only shows the corresponding arcs). If this place is perfectly fitting
some trace σ (the place is not “underfed” and not “overfed”), then we know
that adding an input arc and/or removing an output arc can only make the place
“heavier” (indicated by the + sign in Figure 2). Moreover, removing an input
arc and/or adding an output arc can only make the place “lighter” (indicated
by the − sign in Figure 2). We can exploit this simple observation. If place p22
is already overfed, then we know that the places p32, p21, and p31 also need to
be overfed. If place p22 is already underfed, then we know that the places p13,
p23, and p12 also need to be underfed. These monotonicity properties allow us to
prune the search space of candidate places. In fact, the monotonicity results can
be exploited by discovery algorithms to speed-up discovery while still producing
all places that meet predefined quality criteria. This paper focuses on the formal
foundation of such approaches without providing a specific process discovery
technique. Nevertheless, it is quite straightforward to see how the results can be
used to speed-up process discovery.

The remainder is organized as follows. Section 2 provides the formal set-
ting by defining behaviors, event logs, process models, and their semantics. In
Section 3 we relate places using partial orders and prove the first monotonicity
results. This is then lifted to quality scores for places (Section 4 and Section 5).
We briefly discuss how these monotonicity results can be used for process dis-
covery (Section 6). To further prune the set of candidate places we define redun-
dancy and conflict (Section 7). Section 8 discusses implications for conformance
checking. Section 9 concludes the paper.

2 Behaviors, Event Logs, and Models

To be able to discuss the monotonicity results that can be exploited by process
discovery approaches we define key notions such as behaviors, event logs, and
places. We also define the semantics of process models based on places using an
open-world assumption.

2.1 Behaviors

First, we introduce some basic mathematical notations.
P(X) = {Y | Y ⊆ X} is the powerset of set X. B(X) = X → IN is the set of

all multisets over some set X. For any B ∈ B(X): B(x) denotes the number of
times element x ∈ X appears in B. B1 = [], B2 = [a, a, b], and B3 = [a3, b2, c]
are multisets over X = {a, b, c}. B1 is the empty multiset, B2 has three elements,
and B3 has six elements. Note that the ordering of elements is irrelevant. Union
(B1∪B2), intersection (B1∩B2), and difference (B1\B2) are defined as usual. All
operators for sets are generalized to multisets, e.g.,

∑
x∈[a,b,b,a,c] x = 2a+ 2b+ c.

σ = 〈x1, x2, . . . , xn〉 ∈ X∗ denotes a sequence over X. σ(i) = ai denotes the
i-th element of the sequence. |σ| = n is the length of σ and dom(σ) = {1, . . . , |σ|}
is the domain of σ. 〈 〉 is the empty sequence, i.e., |〈 〉| = 0 and dom(〈 〉) = ∅.
σ1 · σ2 is the concatenation of two sequences.

Based on the preliminaries we can define the notion of behavior. 〈I, a, b, c,�〉
is an example behavior, i.e., a sequence of activities starting with I and ending
with �.

Definition 1 (Activities and Behaviors). A is the universe of activities (ac-
tions, tasks, operations, transaction types, etc.). There are two special activities:
{I,�} ⊆ A. I is the unique start activity and � is the unique end activity. A
behavior σ = 〈a1, a2, . . . , an〉 ∈ A∗ is a sequence of activity names such that
n ≥ 2, a1 =I, an = �, and for all 1 < i < n: ai ∈ A \ {I,�}. B is the set of
all possible behaviors.

In this paper, A = {I,�, a, b, c, d, . . .} and B = {〈I,�〉, 〈I, a,�〉, 〈I, b,�〉, . . .
〈I, a, b, c, c, a, d,�〉, . . .}.

2.2 Event Logs

An event log can be defined as a multiset of behaviors. Elements of such a
multiset are called traces and refer to cases (i.e., process instance).

Definition 2 (Event Log). An event log L is a multiset of behaviors, i.e.,
L ∈ B(B). σ ∈ L is called a trace.

L1 = [〈I, a, b, c,�〉31, 〈I, b, a, c,�〉27, 〈I, a, b, d,�〉23, 〈I, b, a, d,�〉19] is an ex-
ample of an event log with 100 traces. For example, 31 cases exhibit the behavior
〈I, a, b, c,�〉. Typically, an event log has more information. For example, events
may have a timestamp, refer to resources, locations, customers, costs, etc. Since
we focus on the discovery of the “control-flow backbone” of a process, we can
abstract from these optional attributes.

2.3 Using Places To Constrain Behavior

In the context of process mining, a wide variety of modeling languages are used
ranging from Petri nets, workflow nets, causal nets, process trees and transition

systems to statecharts and BPMN models. In this paper, we use a very “lean”
modeling language based on places and an open-world assumption. First, we
define P and P! as the set of all possible (through) places.

Definition 3 (Places). P = P(A)× P(A) is the set of all possible places. For
any p = (I,O) ∈ P, •p = I is the set of input activities and p• = O is the set of
output activities. P! = (P(A) \ {∅}) × (P(A) \ {∅}) is the set of through places,
i.e., places having non-empty sets of input and output activities.

Note that places do not have names, they are fully identified by the input
and output activities. Therefore, for any p1 and p2, if •p1 = •p2 and p1• = p2• ,
then p1 = p2. A process model is simply a set of places.

Definition 4 (Process Model). A set of places P ⊆ P defines a process model.

Figure 1 shows the process model P1 = {({I}, {a}), ({I}, {b}), ({a}, {c, d}),
({b}, {c, d}), ({c, d}, {�})}.

Unlike conventional Petri nets, there is (1) no initial marking and (2) not an
explicit set of transitions. We do not need an initial marking because behaviors
start with the unique start activity I. T =

⋃
p∈P •p ∪ p• is the implicit set of

transitions (corresponding to the inputs and output of places). However, because
we use an open-world assumption, we allow for activities not mentioned in the
process model. Places only constrain the behavior of the activities explicitly
mentioned. For example, 〈I, a, d, d, d, b, e, e, c,�〉 is a behavior allowed by process
model P1 (simply ignore activities d and e). In the remainder, we will use the
terms transition and activity interchangeably. Whereas the term transition is
common in the context of Petri nets, event logs refer to occurrences of activities
rather than model elements.

2.4 Behavior Defined By Places

To formalize the semantics of a process model P ⊆ P we define “underfed”,
“overfed”, and “fitting” places. Given a behavior σ ∈ B, place p is underfed if
during the replay of the trace place p “goes negative”, i.e., a token needs to be
consumed while it has not been produced (yet). Place p is overfed if at the end
of replaying a trace, tokens remain in p. Place p is fitting if it is not underfed
and not overfed, i.e., place p does not “go negative” and at the end no tokens
remain.

Definition 5 (Underfed, Overfed, and Fitting Places). Let p ∈ P be a
place and σ = 〈a1, a2, . . . , an〉 ∈ B a behavior.

– 5σ(p) if and only if |{1 ≤ i < k | ai ∈ •p}| < |{1 ≤ i ≤ k | ai ∈ p• }| for
some k ∈ {1, 2, . . . , n} (place p is “underfed”),

– 4σ(p) if and only if |{1 ≤ i ≤ n | ai ∈ •p}| > |{1 ≤ i ≤ n | ai ∈ p• }| (place
p is “overfed”), and

– �σ(p) if and only if 65σ(p) and 64σ(p) (place p is “fitting”, i.e., not “under-
fed” and not “overfed”).

Consider trace σ = 〈I, a, b, c, d,�〉 and the five places in Figure 1. Places p1
and p2 are fitting, p3 and p4 are underfed (because d occurs when these places
empty), and p5 is overfed (because two tokens are produced and only one is
consumed).

As mentioned before, activities not in •p∪p• have no effect on the evaluation.
If σ = 〈I, a, e, e, b, f, c, f, d, e,�〉, then p1 and p2 are still fitting, p3 and p4 are
still underfed, and p5 is still overfed.

A place can be both underfed and overfed. Consider trace σ = 〈I, c, a, a, b, b,
�〉 and the five places in Figure 1. Places p1 and p2 are underfed, p3 and p4 are
both underfed and overfed (tokens are missing when c occurs and at the end
tokens remain), and p5 is fitting.

The above notions can be generalized to sets of places. Therefore, it is possible
to say that a model P ⊆ P is fitting (�σ(P)), underfed (5σ(P)), or overfed
(4σ(P)).

Definition 6. Let P ⊆ P be a set of places and σ ∈ B a behavior.

– 5σ(P) if and only if there exists a place p ∈ P such that 5σ(p),
– 4σ(P) if and only if there exists a place p ∈ P such that 4σ(p), and
– �σ(P) if and only if �σ(p) for all p ∈ P .

Using 5σ(P), 4σ(P), and �σ(P) we can compute all fitting, underfed, and
overfed behaviors. The set of fitting behaviors fit(P) precisely defines the se-
mantics of a process model P ⊆ P.

Definition 7 (Model Behavior). Let P ⊆ P be a set of places.

– fit(P) = {σ ∈ B | �σ(P)} is the set of fitting behaviors,
– neg(P) = {σ ∈ B | 5σ(P)} is the set of underfed behaviors, and
– pos(P) = {σ ∈ B | 4σ(P)} is the set of overfed behaviors.

We use the following shorthands: fit(p) = fit({p}), neg(p) = neg({p}), pos(p) =
pos({p}) for any place p. Note that fit(P) = B \ (neg(P) ∪ pos(P)).

p1

a c

b

p2

p3

Fig. 3. Process model P2 = {({I, a}, {a, b}), ({a}, {c}), ({b, c}, {c,�})}
composed of three places discovered from event log L1 = [〈I, b,�〉49,
〈I, a, b, c,�〉31, 〈I, a, a, b, c, c,�〉12, 〈I, a, a, a, b, c, c, c,�〉5, 〈I, a, a, a, a, b, c, c, c, c,�〉1,
〈I, a, a, a, a, a, b, c, c, c, c, c,�〉2] .

Figure 3 shows another example illustrating the declarative nature of places.
P2 = {({I, a}, {a, b}), ({a}, {c}), ({b, c}, {c,�})} has three places allowing for
any behavior satisfying the following constraints: (1) b occurs precisely once, (2)
a occurs any number of times, but only before b, (3) c occurs any number of
times, but only after b, and (4) a and c occur the same number of times. Note
that the model in Figure 3 only constrains activities a, b, and c and therefore
also allows for behaviors like 〈I, d, b, e, f,�〉 and 〈I, a, d, a, d, b, e, c, c, e,�〉.

2.5 Mapping to Petri nets

Traditional Petri nets are described by tuple N = (S, T, F) where S is the
set of places, T is the set of transitions, and F ⊆ (S × T) ∪ (T × S) the set
of arcs [13]. A system net SN = (S, T, F,Minit ,Mfinal) has an initial and a
final marking [1]. The behavior of a system net corresponds to the set of traces
starting in the initial marking Minit and ending in the final marking Mfinal

[1]. The models used in this paper can be converted to a system net using the
following conversion. Given a set of places P ⊆ P (in the sense of Definition 4),
we construct the system net SN = (S, T, F,Minit ,Mfinal) with: S = P ∪{i, q, f},
T = A, F = {(i,I), (�, f)} ∪ {(t, p) ∈ T × P | t ∈ •p} ∪ {(p, t) ∈ P × T | t ∈
p• } ∪ {(t, q) | t ∈ T \ {�}} ∪ {(q, t) | t ∈ T \ {I}}, Minit = [i], and Mfinal = [f].
The set of traces starting in Minit and ending in Mfinal is precisely the set fit(P)
(see Definition 7). Moreover, note that SN is a so-called workflow net [5]. The
workflow net does not need to be sound, but we only consider firing sequences
starting in marking [i] and ending in marking [f].

It is also possible to translate any system net (including workflow nets) with
initial and final markings into an equivalent model P ⊆ P.

We use the simple representation using merely places and no initial and final
markings to be able to succinctly express a range of properties and monotonicity
results without considering markings.

3 Relating Places and Monotonicity

The ultimate goal is to discover places from event logs. However, the goal of this
paper is not to propose a concrete discovery approach. Instead, we reason about
properties of (sets of) places that can be exploited by discovery techniques.

Definition 8 (Place Notations). Let p1 = (I1, O1) ∈ P and p2 = (I2, O2) ∈ P
be two places. These places can be combined to form new places:

– p1 u p2 = (I1 ∩ I2, O1 ∩O2) ∈ P,
– p1 t p2 = (I1 ∪ I2, O1 ∪O2) ∈ P,
– p1 ⊗ p2 = ((I1 ∪ I2) \ (I1 ∩ I2), (O1 ∪O2) \ (O1 ∩O2)) ∈ P.

Places p1 and p2 can be related in different ways:

– p1 = p2 if and only if I1 = I2 and O1 = O2 (equality),

– p1 ‖ p2 if and only if p1 u p2 = (∅, ∅) (non-overlapping),
– p1 @ p2 if and only if I1 ⊆ I2, O1 ⊆ O2, and p1 6= p2 (proper subset), and
– p1 ÷ p2 if and only if p1 6= p2, p1 6‖ p2, p1 6@ p2 and p1 6A p2 (incomparable).

We would like to avoid discovering places that are a combination of places
already in the model. Consider for example adding place pr = ({I, c, d}, {a,�})
to the five places in Figure 1. This place would be redundant, because pr =
p1tp5. Indeed, adding pr would not change the set of fitting behaviors and only
complicate the model. A set of places is non-redundant if none of its places can
be derived from the rest.

Definition 9 (Redundant). Place p ∈ P is redundant with respect to a set of
places P ⊆ P (notation P ⇒ p) if there is a non-empty subset P ′ = {p1, p2, . . . ,
pn} ⊆ P such that pi ‖ pj for any 1 ≤ i < j ≤ n and p = (p1 t p2 t . . . t pn).

For two sets of places P1 ⊆ P and P2 ⊆ P: P1 ⇒ P2 if and only if ∀p2∈P2 P1 ⇒
p2 (i.e., P2 is “implied” by P1).

A set of places P ⊆ P is non-redundant if and only if it is impossible to split
P in two disjoint non-empty subsets P1 and P2 such that P1 ⇒ P2.

Adding input transitions to a place can only lead to more tokens in the
place. Therefore, a place that is overfed by many traces in the event log will also
be overfed by these traces after adding the input transitions. Adding output
transitions to a place can only lead to fewer tokens in the place. Therefore, a
place that is underfed by many traces in the event log will also be underfed by
these traces after adding the output transitions. This information can be used
to prune the search space of discovery algorithms. Therefore, we define a partial
order on places and use this to prove monotonicity results that can be exploited
during process discovery.

Definition 10 (Weighing Places). Let p1 = (I1, O1) ∈ P and p2 = (I2, O2) ∈
P be two places.

– p1 � p2 if and only if I1 ⊆ I2 and O2 ⊆ O1 (i.e., p1 is at least as “light” as
p2) and

– p1 � p2 if and only if I2 ⊆ I1 and O1 ⊆ O2 (i.e., p1 is at least as “heavy”
as p2).

Note that p1 � p2 if and only if p2 � p1. It is easy to see that � defines
a partial order. The relation is reflexive (p � p), antisymmetric (p1 � p2 and
p2 � p1 implies p1 = p2), and transitive (p1 � p2 and p2 � p3 implies p1 � p3).

Definition 11 (Weighing Sets of Places). Let P1 ⊆ P and P2 ⊆ P be two
sets of places.

– P1 � P2 if and only if ∀p1∈P1 ∃p2∈P2 p1 � p2 (i.e., P1 is at least as “light”
as P2) and

– P1 � P2 if and only if ∀p1∈P1
∃p2∈P2

p1 � p2 (i.e., P1 is at least as “heavy”
as P2).

Note that P1 � P2 is not equivalent to P2 � P1. Let P1 = {({a}, {b, c})}
and P2 = {({a}, {b}), ({a}, {d})}. P1 � P2 because ({a}, {b, c}) � ({a}, {b}).
However, P2 6� P1, because ({a}, {d}) 6� ({a}, {b, c}). Both � and � (for sets
of places) are reflexive and transitive, but not antisymmetric. Consider P3 =
{({a, c}, {b}), ({a}, {b}), ({a}, {b, d})} and P4 = {({a, c}, {b}), ({a}, {b, d})}. P3 �
P4 and P4 � P3, but P3 6= P4. Also, P3 � P4 and P4 � P3, but P3 6= P4. Hence,
� and � are not antisymmetric.

The above notations and insights allow us to provide very general monotonic-
ity results.

Theorem 1 (Monotonicity Results). Let P1 ⊆ P and P2 ⊆ P be two sets of
places.

– P1 � P2 implies pos(P1) ⊆ pos(P2),
– P1 � P2 implies neg(P1) ⊆ neg(P2),
– P1 ⇒ P2 implies fit(P1) ⊆ fit(P2).

Proof. If p1 � p2, then while replaying a trace σ, p1 cannot have more tokens
than p2, but p2 can have more tokens than p1 if the right transitions are activated.
Therefore, if 4σ(p1), then 4σ(p2), and if 5σ(p2), then 5σ(p1).

Using this insight we prove that P1 � P2 implies pos(P1) ⊆ pos(P2). Assume
P1 � P2, i.e., ∀p1∈P1

∃p2∈P2
p1 � p2. We need to prove that for any σ ∈ B:

∃p1∈P1
4σ(p1) implies ∃p2∈P2

4σ(p2). Take a p1 such that 4σ(p1). There exists
a p2 ∈ P2 such that p1 � p2. Place p2 can only have more tokens than p1 (and
not fewer). Hence, 4σ(p2).

Similarly, we can prove that P1 � P2 implies neg(P1) ⊆ neg(P2).
P1 ⇒ P2 means that all places in P2 correspond to combinations of places in

P1. Therefore, adding these places does not change the behavior, i.e., fit(P1) =
fit(P1∪P2). Removing places from P1∪P2 can only result in more fitting traces.
Hence, fit(P1) = fit(P1 ∪ P2) ⊆ fit(P2). ut

4 Scoring Places

Theorem 1 can be exploited by process discovery algorithms. If a place is un-
derfed (overfed), it does not make sense to consider lighter (heavier) places.
Therefore, monotonicity results allow for quickly pruning the search space. To
illustrate this, we define concrete quality characteristics for individual places.

One could simply count the fraction of cases having problems. However, some
activities may occur infrequently. Places that are only connected to these low-
frequency activities have many fitting traces by definition (the place is rarely
involved in the execution of a case). In other words, “random places” only con-
nected to low-frequency activities will always have a good score. Therefore, we
also consider the “relative” scores of places by only considering traces that ac-
tually consume/produce tokens from/for the place under investigation. A trace
“activates” place p if it contains an activity in •p ∪ p• .

Definition 12 (Activation). Let p ∈ P be a place.

– actσ(p) = ∃a∈σ a ∈ (•p ∪ p•) denotes whether the place has been activated
in a trace σ ∈ B, i.e., a token was consumed or produced for p in σ.

– actL(p) = ∃σ∈L actσ(p) denotes whether place p has been activated in an
event log L ∈ B(B).

Definition 13 (Place Scores). Let L ∈ B(B) be an event log and τ ∈ [0, 1] a
threshold. For any place p ∈ P such that actL(p), we define the following scores:

– #5freq,L(p) = | [σ∈L|5σ(p)] |
|L| is the fraction of traces for which p is underfed,

– #4freq,L(p) = | [σ∈L|4σ(p)] |
|L| is the fraction of traces for which p is overfed,

– #�
freq,L(p) = | [σ∈L|�σ(p)] |

|L| is the fraction of fitting traces,

– #5rel,L(p) = | [σ∈L|5σ(p) ∧ actσ(p)] |
| [σ∈L|actσ(p)] | = | [σ∈L|5σ(p)] |

| [σ∈L|actσ(p)] | is the fraction of activat-

ing traces for which p is underfed,

– #4rel,L(p) = | [σ∈L|4σ(p) ∧ actσ(p)] |
| [σ∈L|actσ(p)] | = | [σ∈L|4σ(p)] |

| [σ∈L|actσ(p)] | is the fraction of activat-

ing traces for which p is overfed,

– #�
rel,L(p) = | [σ∈L|�σ(p) ∧ actσ(p)] |

| [σ∈L|actσ(p)] | is the fraction of activated traces that are

also fitting,
– 5τfreq,L(p) if and only if #5freq,L(p) > τ ,

– 4τfreq,L(p) if and only if #4freq,L(p) > τ ,

– �τfreq,L(p) if and only if #�
freq,L(p) ≥ τ ,

– 5τrel,L(p) if and only if #5rel,L(p) > τ ,

– 4τrel,L(p) if and only if #4rel,L(p) > τ ,

– �τrel,L(p) if and only if #�
rel,L(p) ≥ τ .

For a discovered place we would like #�
freq,L(p) and #�

rel,L(p) to be as high

as possible. A place p is perfectly fitting log L if #�
freq,L(p) = #�

rel,L(p) = 1. If

�0.95
rel,L(p), then at least 95% of all traces that activate place p are fitting. If a

discovery algorithm only adds places for which �0.95
rel,L(p), then all places have a

minimal quality level interpretable by end users (unlike existing approaches that
do not provide such a guarantee or “only in the limit”).

5 Monotonicity of Place Scores

Since we are interested in places of a certain quality level, e.g., places for which
�0.95

rel,L(p) holds, we would like to avoid spending time on the evaluation of places
that do not meet the desired quality level. We would like to use Theorem 1 to
quickly prune the set of candidate places. We start by listing several observations
that directly follow from earlier definitions.

Lemma 1. Let L ∈ B(B) be an event log, σ ∈ B a trace, and τ ∈ [0, 1] a
threshold. For any place p ∈ P such that actL(p):

– 5σ(p) implies actσ(p),

X X

Y Y

def ga

Fig. 4. Visualization of the sets used in Lemma 2. In Theorem 2: X = [σ ∈ L | 4σ(p1)],
Y = [σ ∈ L | actσ(p1)], X ′ = [σ ∈ L | 4σ(p2)], and Y ′ = [σ ∈ L | actσ(p2)].

– 4σ(p) implies actσ(p),

– #�
freq,L(p) ≤ 1−#5freq,L(p),

– #�
freq,L(p) ≤ 1−#4freq,L(p),

– #�
freq,L(p) ≥ 1− (#5freq,L(p) + #4freq,L(p)),

– #�
rel,L(p) ≤ 1−#5rel,L(p),

– #�
rel,L(p) ≤ 1−#4rel,L(p),

– #�
rel,L(p) ≥ 1− (#5rel,L(p) + #4rel,L(p)),

– �τfreq,L(p) implies 641−τ
freq,L(p),

– �τfreq,L(p) implies 651−τ
freq,L(p),

– �τrel,L(p) implies 641−τ
rel,L(p),

– �τrel,L(p) implies 651−τ
rel,L(p),

– 65τfreq,L(p) and 64τfreq,L(p) implies �1−2×τ
freq,L (p), and

– 65τrel,L(p) and 64τrel,L(p) implies �1−2×τ
rel,L (p).

Proof. Note that 5σ(p) implies 6�σ(p), 4σ(p) implies 6�σ(p), and �σ(p) implies
65σ(p) and 64σ(p). These insights can be used to verify the properties listed.

Consider for example the last property. Assume 65τrel,L(p) and 64τrel,L(p).

Since #5rel,L(p) ≤ τ and #4rel,L(p) ≤ τ , we know #�
rel,L(p) ≥ 1 − (#5rel,L(p) +

#4rel,L(p)) ≥ 1− (τ + τ). Hence, �1−2×τ
rel,L (p). ut

Before we show monotonicity with respect to the place scores, we first prove
the following lemma.

Lemma 2. Let X, Y , X ′, and Y ′ be sets such that Y 6= ∅, Y ′ 6= ∅, X ⊆ Y ,
X ′ ⊆ Y ′, X ⊆ X ′, and Y ′ \ Y ⊆ X ′.

|X|
|Y |
≤ |X

′|
|Y ′|

Proof. Let A = Y ∪ Y ′, a = |X ∩X ′|, b = |X ∩ (Y ′ \X ′)|, c = |X ∩ (A \ Y ′)|,
d = |(Y \X) ∩X ′|, e = |(Y \X) ∩ (Y ′ \X ′)|, f = |(Y \X) ∩ (A \ Y ′)|, g =

|(A \ Y) ∩X ′|, h = |(A \ Y) ∩ (Y ′ \X ′)|, and i = |(A \ Y) ∩ (A \ Y ′)| (see Fig-
ure 4). Because X ⊆ X ′, b = c = 0. Because Y ′ \ Y ⊆ X ′, h = 0. Also i = 0.
Hence, |X| = a, |Y | = a+ d+ e+ f , |X ′| = a+ d+ g, |Y ′| = a+ d+ e+ g.

|X|
|Y |

=
a

a+ d+ e+ f
≤ a

a+ d+ e
≤ a+ g

a+ d+ e+ g
≤ a+ d+ g

a+ d+ e+ g
=
|X ′|
|Y ′|

Note that a
a+d+e ≤

a+g
a+d+e+g because a(a + d + e + g) = a2 + ad + ae + ag ≤

a2 + ad+ ae+ ag + dg + eg = (a+ g)(a+ d+ e). ut

Recall that our goal is to dismiss candidate places that are overfed or underfed
as soon as possible. Given a threshold τ we would like to avoid checking the
quality of places for which 4τfreq,L(p), 5τfreq,L(p), 4τrel,L(p), or 5τrel,L(p). Using
the partial order on places, we can exploit the following monotonicity result.

Theorem 2 (Monotonicity). Let L ∈ B(B) be a non-empty event log and let
τ ∈ [0, 1] be some threshold. For any two places p1, p2 ∈ P such that p1 � p2:

– If 4τfreq,L(p1), then 4τfreq,L(p2).
– If 5τfreq,L(p2), then 5τfreq,L(p1).

Moreover, if actL(p1) and actL(p2), then these findings also apply to the relative
notion.

– If 4τrel,L(p1), then 4τrel,L(p2).
– If 5τrel,L(p2), then 5τrel,L(p1).

Proof. Assume4τfreq,L(p1). Hence, #4freq,L(p1) = | [σ∈L|4σ(p1)] |
|L| ≥ τ . Since4σ(p1)

implies4σ(p2) for any σ ∈ L, | [σ∈L|4σ(p2)] |
|L| ≥ | [σ∈L|4σ(p1)] |

|L| . Hence,4τfreq,L(p2).

Similarly, we can show that 5τfreq,L(p2) implies 5τfreq,L(p1).

Assume 4τrel,L(p1). Hence, #4rel,L(p1) = | [σ∈L|4σ(p1)] |
| [σ∈L|actσ(p1)] | ≥ τ . Using Lemma 2

we show that #4rel,L(p2) = | [σ∈L|4σ(p2)] |
| [σ∈L|actσ(p2)] | ≥ τ . Let X = [σ ∈ L | 4σ(p1)],

Y = [σ ∈ L | actσ(p1)], X ′ = [σ ∈ L | 4σ(p2)], and Y ′ = [σ ∈ L | actσ(p2)].
X, X ′, Y , and Y ′ are multisets. However, for simplicity assume that each case
is uniquely identifiable so that we can treat these as sets. One can use case
identifiers to identify traces even when they are identical. To apply Lemma 2,
we first check the conditions: Y 6= ∅ because actL(p1), Y ′ 6= ∅ because actL(p2),
X ⊆ Y because 4σ(p1) implies actσ(p1), X ′ ⊆ Y ′ because 4σ(p2) implies
actσ(p2), X ⊆ X ′ because 4σ(p1) implies 4σ(p2), and Y ′ \ Y ⊆ X ′, because
if actσ(p2) and not actσ(p1), then 4σ(p2). The last observation holds because
p1 � p2, actσ(p2) and not actσ(p1) implies that a token was put in p2 and it was
not removed. Note that all output arcs of p2 are also output arcs of p1. Hence,
the token put in p2 cannot be removed. Therefore, 4σ(p2). Applying Lemma 2

shows that #4rel,L(p1) ≤ #4rel,L(p2), proving that 4τrel,L(p2). Similarly, we can
show that 5τrel,L(p2) implies 5τrel,L(p1). ut

6 Exploiting Monotonicity During Discovery

The goal of this paper is not to provide a particular discovery algorithm. How-
ever, Theorem 2 provides the basis for Apriori-style algorithms [8, 9, 20]. Such
algorithms are used in frequent item-set mining, association rule learning, se-
quence mining, and episode mining. The basic idea of such algorithms is to
avoid spending time on “hopeless candidate patterns” by dramatically prun-
ing the search space. For example, in a supermarket, the number of customers
buying products A, B, and C is smaller than (1) the number of the customers
buying products A and B, (2) the number of the customers buying products A
and C, and (3) the number of the customers buying products B and C. Hence,
if one of the latter three groups ({A,B}, {A,C}, or {B,C}) is infrequent, then
by definition also the former group ({A,B,C}) is infrequent. Obviously, we can
use the monotonicity results presented in this paper in a similar fashion.

++

++

p22p12 p32

p21p11 p31

p23p13 p33

overfed overfed

overfed overfed

Fig. 5. If place p22 is already overfed, then we know that the places p32, p21, and p31
also need to be overfed.

Figure 5 sketches the situation where we have evaluated a place p22 and the
place turned out to be overfed, i.e., at the end of a trace tokens remain. Obviously,
the place remains overfed when we remove an output arc or add an input arc.
Therefore, by definition, p32, p21, and p31 also need to be overfed. Figure 6
describes to opposite situation. If place p22 “goes negative” when replaying a
trace (i.e., the place is underfed), then the place remains underfed when we
remove an input arc or add an output arc. Hence, p13, p23, and p12 also need to
be underfed.

We can use these insights to prune the search space of candidate places.
Assume we have 80 candidate places as shown in Figure 7(a). We can pick

--

--

p22p12 p32

p21p11 p31

p23p13 p33

underfed underfed

underfed underfed

Fig. 6. If place p22 is already underfed, then we know that the places p13, p23, and p12
also need to be underfed.

a random candidate place, say Place 1. If this place is underfed according to
some criterion (e.g., in more than 10% of the traces the place does not have
enough tokens at some stage), then we can identify lighter places that must
have the same problem. Assume that Place 1 is indeed underfed and has the
lighter neighboring places highlighted in Figure 7(b). As a result, we can remove
16 candidate places by just evaluating Place 1. Then we pick the next random
candidate place, say Place 2. If this place is overfed (e.g., in more than 10% of
the traces Place 2 was not empty at the end), then we can identify all heavier
places that must have the same problem. These are removed. Figure 7(c) shows
that we can remove 15 candidate places by just evaluating Place 2. The next
randomly selected candidate place turns out to be fitting (e.g., in 90% of the
traces Place 3 was empty at the end and in 90% of the traces there were sufficient
tokens), i.e., Place 3 is not underfed and not overfed. In the next step, we remove
another 16 candidate places because Place 4 is overfed (Figure 7(d)). Then we
remove another set of places because Place 5 is underfed (Figure 7(e)). We can
repeat the process until there no candidate places left. Figure 7(f) shows the
remaining three places. Note that an evaluated place can be both underfitting
and overfitting. When encountering such places, the search space can be pruned
in two directions (remove all lighter and heavier places). As sketched in Figure 7,
it will often be the case that only a fraction of the candidate places needs to be
evaluated using replay techniques.

Figure 7 only sketches the idea and places are selected randomly. One can
also think of smarter strategies. For example, one can start with places having
just a few connections. Let pc be a candidate place having n input and output
activities, i.e., n = | •pc| + |pc• | is the number of arcs. Let A4 = {p ∈ P |
| •p|+ |p• | < n ∧ p � pc} and A5 = {p ∈ P | | •p|+ |p• | < n ∧ p � pc} be the

1 1

2

(a) All 80 candidate places. Select a randomly chosen

place (Place 1) and evaluate it using replay.
(b) Since Place 1 is underfed, we can remove its lighter

neighbors. Next, select a randomly chosen Place 2.

3

2

4

3

(c) Test Place 2. Since it is overfed, we can remove its

 heavier neighbors. Next, select Place 3.
(d) Place 3 is fitting and is kept. Place 4 is overfed and

we can remove its heavier neighbors.

3

5

7

9

3

(e) Place 5 is underfed and we can remove its lighter

neighbors.
(f) The process is repeated until there are no unexplored

candidate places left. At the end three fitting places remain.

Fig. 7. A process discovery algorithm could simply evaluate all places and only keep
those that are fitting (i.e., meet certain quality criteria). However, the monotonicity
results in Theorem 2 show that there are many candidate places that we do not need
to check. This is the key to discovering places efficiently.

heavier and lighter ancestors of pc. If for any p ∈ A4, 5τfreq,L(p) or 5τrel,L(p),

then we know that 5τfreq,L(pc) or 5τrel,L(pc). If for any p ∈ A5, 4τfreq,L(p) or
4τrel,L(p), then we know that 4τfreq,L(pc) or 4τrel,L(pc). These properties can be
used to avoid certain checks.

There are many more ways to speedup the search process further:

– Suppose that we consider a place to be overfed when at least 10% of the traces
have remaining tokens. This means that we can abort the place evaluation
when we have found 10% of traces having problems (for poorly fitting places
this may be reached quickly).

– A similar strategy can be used for underfed places. Moreover, the replay of
a trace can be aborted when the first problem is encountered.

– If we know the frequencies of all activities in the log, we can do an initial
check to see whether the sum of the frequencies of the input activities ap-
proximately matches the sum of the frequencies of the input activities (this
is also used in [6]). Such aggregate information can be used to guide the
pruning process. There can even be guarantees, provided that we can make
assumptions about the distribution of activities over traces or bound the
trace length.

In short, there are many ways to exploit the monotonicity results provided in
this paper.

7 Further Pruning of the Search Space

Next to avoiding checks for places that are obviously “too light” or “too heavy”,
we would also like to avoid adding redundant and conflicting places.

In Theorem 1, we showed that P1 ⇒ P2 implies fit(P1) ⊆ fit(P2). Hence,
adding redundant places does not limit the set of fitting traces and therefore
only complicates the process model. This can be exploited while constructing a
process model. If two non-overlapping places p1 and p2 have been added, one
should not consider adding place p = p1 t p2.

Moreover, we would also like to avoid adding conflicting places. If two places
are in conflict (notation p1#p2), then there are traces that could never fit both
places.

Definition 14 (Conflict). Let p1, p2 ∈ P be two places. p1 ≺ p2 if and only if
p1 � p2 and p1 6= p2. p1 � p2 if and only if p1 � p2 and p1 6= p2. p1#p2 if and
only if p1 ≺ p2 and p1 � p2.

Theorem 3. Let p1, p2 ∈ P be two places and σ ∈ B a trace. If �σ(p1), p1#p2,
and actσ(p1 ⊗ p2), then 6�σ(p2).

Proof. Assume �σ(p1), p1#p2, and actσ(p1 ⊗ p2). Hence, p1 ≺ p2 or p1 � p2. If
p1 ≺ p2, then the number of tokens in p2 is always at least the number of tokens
in p1 for any sequence, including σ. In fact, in σ there is at least one additional
token produced or a token was not consumed (because actσ(p1 ⊗ p2)). Because

p1 ends empty, p2 must have a remaining token at the end. Hence, σ cannot
be fitting (6�σ(p2)). If p1 � p2, then the number of tokens in p2 is always at
most the number of tokens in p1. In fact, there is at least one additional token
consumed or a token was not produced (because actσ(p1⊗p2)). Because p1 ends
empty, p2 must have a missing token at the end. Hence, σ cannot be fitting. ut

Consider places p1 = ({a}, {b, c}) and p2 = ({a, d}, {b}). Obviously, p1 ≺ p2.
For a trace involving c and/or d activities, it can never be the case that both
places are fitting. Since p1 and p2 disagree on the allowed behavior, one would not
like to add both to the same process model. Also this property can be exploited
during discovery.

8 How About Conformance Checking?

Process mining is not limited to process discovery and includes conformance
checking, model repair, performance analysis, decision mining, and organiza-
tional mining. Moreover, also predictive and prescriptive analytics are supported
by process mining tools and techniques [3]. Viewing a process model as merely
a collection of independent places may also help to expedite these other analysis
tasks. Consider for example conformance checking which involves detecting and
diagnosing both differences and commonalities between an event log and a pro-
cess model [4]. Typically, four dimensions are distinguished: fitness, precision,
generalization, and simplicity. State-of-the-art techniques use so-called align-
ments or token-based replay [3]. However, these techniques often do not have
the monotonicity properties one expects [23]. For example, removing a place
should never result in a better precision or lower fitness. In [2] a probabilistic
angle is added to these questions, also revealing obvious problems related to ex-
isting conformance measures. The monotonicity results presented in this paper
may provide a fresh look on conformance problems. First of all, it could be good
to check places individually. Second, there are ways to quickly analyze whether
a place is overfed and/or underfed.

9 Conclusion

For this Festschrift celebrating Farhad Arbab’s achievements in coordination
models and languages, I decided to focus on the discovery of a very simple
coordination model: “places”. We like to learn such coordination structures from
observed behaviors.

The process models in this paper are fully described by places. For the seman-
tics, we employ an open-world assumption and special start and end activities.
This yields a representation very suitable for process mining. Given a particular
behavior, a place can be “fitting”, “underfed” (tokens are missing), or “overfed”
(tokens are remaining). We would like to discover fitting places from event data
satisfying predefined quality criteria. This is not a trivial task and for large event

logs this easily becomes intractable. Therefore, we studied monotonicity proper-
ties in the context of event logs. For example, if place p1 is “lighter” than place
p2 (i.e., p1 � p2) and 5% of the activated traces produce too few tokens for
p2 (50.05

rel,L(p2)), then the same traces also produce too few tokens for p1 (i.e.,

50.05
rel,L(p1)). This helps to prune the set of candidate places. Moreover, also no-

tions like redundancy and conflict can be used to reduce the search space further.
These properties allow for new Apriori-style algorithms. The insights could also
be used to speed-up the discovery of hybrid process models [6].

This contribution did not show how to synthesize Reo circuits from event
data. However, this remains an interesting question and I encourage the Reo
community to look into this. Finally, I would like to wish Farhad all the best
and hope that he will remain working on the “science of coordination” after his
“coordination of science” activities at CWI have ended.

References

1. W.M.P. van der Aalst. Decomposing Petri Nets for Process Mining: A Generic
Approach. Distributed and Parallel Databases, 31(4):471–507, 2013.

2. W.M.P. van der Aalst. Mediating Between Modeled and Observed Behavior: The
Quest for the “Right” Process. In IEEE International Conference on Research
Challenges in Information Science (RCIS 2013), pages 31–43. IEEE Computing
Society, 2013.

3. W.M.P. van der Aalst. Process Mining: Data Science in Action. Springer-Verlag,
Berlin, 2016.

4. W.M.P. van der Aalst, A. Adriansyah, and B. van Dongen. Replaying History
on Process Models for Conformance Checking and Performance Analysis. WIREs
Data Mining and Knowledge Discovery, 2(2):182–192, 2012.

5. W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede, N. Sidorova, H.M.W.
Verbeek, M. Voorhoeve, and M.T. Wynn. Soundness of Workflow Nets: Classifi-
cation, Decidability, and Analysis. Formal Aspects of Computing, 23(3):333–363,
2011.

6. W.M.P. van der Aalst, R. De Masellis, C. Di Francescomarino, and C. Ghidini.
Learning Hybrid Process Models From Events: Process Discovery Without Faking
Confidence. In J. Carmona, G. Engels, and A. Kumar, editors, International Con-
ference on Business Process Management (BPM 2017), volume 10445 of Lecture
Notes in Computer Science, pages 59–76. Springer-Verlag, Berlin, 2017.

7. W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek, B.F. van Dongen, E. Kindler,
and C.W. Günther. Process Mining: A Two-Step Approach to Balance Between
Underfitting and Overfitting. Software and Systems Modeling, 9(1):87–111, 2010.

8. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large
Databases. In Proceedings of the 20th International Conference on Very Large Data
Bases (VLDB), pages 487–499, Santiago de Chile, Chile, 1994. Morgan Kaufmann
Publishers Inc.

9. R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proceedings of the
11th International Conference on Data Engineering (ICDE’95), pages 3–14. IEEE
Computer Society, 1995.

10. F. Arbab. Reo: A Channel-Based Coordination Model for Component Composi-
tion. Mathematical Structures in Computer Science, 14(3):329–366, 2004.

11. R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process Mining Based on
Regions of Languages. In G. Alonso, P. Dadam, and M. Rosemann, editors, Inter-
national Conference on Business Process Management (BPM 2007), volume 4714
of Lecture Notes in Computer Science, pages 375–383. Springer-Verlag, Berlin,
2007.

12. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri Nets
from Finite Transition Systems. IEEE Transactions on Computers, 47(8):859–882,
August 1998.

13. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK,
1995.

14. A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures - Part 1 and Part 2.
Acta Informatica, 27(4):315–368, 1989.

15. C.W. Günther and W.M.P. van der Aalst. Fuzzy Mining: Adaptive Process Sim-
plification Based on Multi-perspective Metrics. In G. Alonso, P. Dadam, and
M. Rosemann, editors, International Conference on Business Process Management
(BPM 2007), volume 4714 of Lecture Notes in Computer Science, pages 328–343.
Springer-Verlag, Berlin, 2007.

16. S.S.T.Q. Jongmans and F. Arbab. Overview of Thirty Semantic Formalisms for
Reo. Scientific Annals of Computer Science, 22(1):201–251, 2012.

17. S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Discovering Block-
Structured Process Models from Event Logs Containing Infrequent Behaviour.
In N. Lohmann, M. Song, and P. Wohed, editors, Business Process Management
Workshops, International Workshop on Business Process Intelligence (BPI 2013),
volume 171 of Lecture Notes in Business Information Processing, pages 66–78.
Springer-Verlag, Berlin, 2014.

18. S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Discovering Block-
structured Process Models from Incomplete Event Logs. In G. Ciardo and
E. Kindler, editors, Applications and Theory of Petri Nets 2014, volume 8489 of
Lecture Notes in Computer Science, pages 91–110. Springer-Verlag, Berlin, 2014.

19. S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Scalable Process Discovery
with Guarantees. In K. Gaaloul, R. Schmidt, S. Nurcan, S. Guerreiro, and Q. Ma,
editors, Enterprise, Business-Process and Information Systems Modeling (BPMDS
2015), volume 214 of Lecture Notes in Business Information Processing, pages 85–
101. Springer-Verlag, Berlin, 2015.

20. H. Mannila, H. Toivonen, and A.I. Verkamo. Discovery of Frequent Episodes in
Event Sequences. Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

21. S. Meng, F. Arbab, and C. Baier. Synthesis of Reo Circuits From Scenario-Based
Interaction Specifications. Science of Computer Programming, 76(8):651–680, 2011.

22. M. Sole and J. Carmona. Process Mining from a Basis of Regions. In J. Lilius and
W. Penczek, editors, Applications and Theory of Petri Nets 2010, volume 6128 of
Lecture Notes in Computer Science, pages 226–245. Springer-Verlag, Berlin, 2010.

23. N. Tax, X. Lu, N. Sidorova, D. Fahland, and W.M.P. van der Aalst. The Impre-
cisions of Precision Measures in Process Mining. Information Processing Letters,
135:1–8, 2018.

24. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data using Little Thumb. Integrated Computer-Aided Engi-
neering, 10(2):151–162, 2003.

25. J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik.
Process Discovery using Integer Linear Programming. Fundamenta Informaticae,
94:387–412, 2010.

